1
|
Cook TM, Biswas E, Aboobucker SI, Dutta S, Lübberstedt T. A cell-based fluorescent system and statistical framework to detect meiosis-like induction in plants. FRONTIERS IN PLANT SCIENCE 2024; 15:1386274. [PMID: 39040508 PMCID: PMC11260738 DOI: 10.3389/fpls.2024.1386274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 06/18/2024] [Indexed: 07/24/2024]
Abstract
Genetic gains made by plant breeders are limited by generational cycling rates and flowering time. Several efforts have been made to reduce the time to switch from vegetative to reproductive stages in plants, but these solutions are usually species-specific and require flowering. The concept of in vitro nurseries is that somatic plant cells can be induced to form haploid cells that have undergone recombination (creating artificial gametes), which can then be used for cell fusion to enable breeding in a Petri dish. The induction of in vitro meiosis, however, is the largest current bottleneck to in vitro nurseries. To help overcome this, we previously described a high-throughput, bi-fluorescent, single cell system in Arabidopsis thaliana, which can be used to test the meiosis-like induction capabilities of candidate factors. In this present work, we validated the system using robust datasets (>4M datapoints) from extensive simulated meiosis induction tests. Additionally, we determined false-detection rates of the fluorescent cells used in this system as well as the ideal tissue source for factor testing.
Collapse
Affiliation(s)
- Tanner M. Cook
- Iowa State University, Department of Agronomy, Ames, Iowa, IA, United States
| | - Eva Biswas
- Iowa State University, Department of Statistics, Ames, Iowa, IA, United States
| | | | - Somak Dutta
- Iowa State University, Department of Statistics, Ames, Iowa, IA, United States
| | - Thomas Lübberstedt
- Iowa State University, Department of Agronomy, Ames, Iowa, IA, United States
| |
Collapse
|
2
|
Pierson Smela M, Adams J, Ma C, Breimann L, Widocki U, Shioda T, Church GM. Induction of Meiosis from Human Pluripotent Stem Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.31.596483. [PMID: 38854076 PMCID: PMC11160729 DOI: 10.1101/2024.05.31.596483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
An in vitro model of human meiosis would accelerate research into this important reproductive process and development of therapies for infertility. We have developed a method to induce meiosis starting from male or female human pluripotent stem cells. We demonstrate that DNMT1 inhibition, retinoid signaling activation, and overexpression of regulatory factors (anti-apoptotic BCL2, and pro-meiotic HOXB5, BOLL, or MEIOC) rapidly activates meiosis, with leptonema beginning at 6 days, zygonema at 9 days, and pachynema at 12 days. Immunofluorescence microscopy shows key aspects of meiosis, including chromosome synapsis and sex body formation. The meiotic cells express genes similar to meiotic oogonia in vivo, including all synaptonemal complex components and machinery for meiotic recombination. These findings establish an accessible system for inducing human meiosis in vitro.
Collapse
Affiliation(s)
| | - Jessica Adams
- Wyss Institute, Harvard University; Boston, 02215, USA
| | - Carl Ma
- Wyss Institute, Harvard University; Boston, 02215, USA
| | - Laura Breimann
- Department of Genetics, Harvard Medical School; Boston, 02115, USA
| | - Ursula Widocki
- Broad Institute of MIT and Harvard; Cambridge, 02138, USA
| | - Toshi Shioda
- Mass. General Research Institute; Boston, 02129, USA
| | - George M. Church
- Wyss Institute, Harvard University; Boston, 02215, USA
- Department of Genetics, Harvard Medical School; Boston, 02115, USA
| |
Collapse
|
3
|
Cook TM, Biswas E, Dutta S, Aboobucker SI, Hazinia S, Lübberstedt T. Assessing data analysis techniques in a high-throughput meiosis-like induction detection system. PLANT METHODS 2024; 20:7. [PMID: 38212773 PMCID: PMC10785433 DOI: 10.1186/s13007-023-01132-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/26/2023] [Indexed: 01/13/2024]
Abstract
BACKGROUND Strategies to understand meiotic processes have relied on cytogenetic and mutant analysis. However, thus far in vitro meiosis induction is a bottleneck to laboratory-based plant breeding as factor(s) that switch cells in crops species from mitotic to meiotic divisions are unknown. A high-throughput system that allows researchers to screen multiple candidates for their meiotic induction role using low-cost microfluidic devices has the potential to facilitate the identification of factors with the ability to induce haploid cells that have undergone recombination (artificial gametes) in cell cultures. RESULTS A data analysis pipeline and a detailed protocol are presented to screen for plant meiosis induction factors in a quantifiable and efficient manner. We assessed three data analysis techniques using spiked-in protoplast samples (simulated gametes mixed into somatic protoplast populations) of flow cytometry data. Polygonal gating, which was considered the "gold standard", was compared to two thresholding methods using open-source analysis software. Both thresholding techniques were able to identify significant differences with low spike-in concentrations while also being comparable to polygonal gating. CONCLUSION Our study provides details to test and analyze candidate meiosis induction factors using available biological resources and open-source programs for thresholding. RFP (PE.CF594.A) and GFP (FITC.A) were the only channels required to make informed decisions on meiosis-like induction and resulted in detection of cell population changes as low as 0.3%, thus enabling this system to be scaled using microfluidic devices at low costs.
Collapse
Affiliation(s)
- Tanner M Cook
- Department of Agronomy, Iowa State University, Ames, IA, USA
| | - Eva Biswas
- Department of Statistics, Iowa State University, Ames, IA, USA
| | - Somak Dutta
- Department of Statistics, Iowa State University, Ames, IA, USA
| | | | - Sara Hazinia
- Department of Agronomy, Iowa State University, Ames, IA, USA
| | | |
Collapse
|
4
|
Cook TM, Isenegger D, Dutta S, Sahab S, Kay P, Aboobucker SI, Biswas E, Heerschap S, Nikolau BJ, Dong L, Lübberstedt T. Overcoming roadblocks for in vitro nurseries in plants: induction of meiosis. FRONTIERS IN PLANT SCIENCE 2023; 14:1204813. [PMID: 37332695 PMCID: PMC10272530 DOI: 10.3389/fpls.2023.1204813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 05/17/2023] [Indexed: 06/20/2023]
Abstract
Efforts to increase genetic gains in breeding programs of flowering plants depend on making genetic crosses. Time to flowering, which can take months to decades depending on the species, can be a limiting factor in such breeding programs. It has been proposed that the rate of genetic gain can be increased by reducing the time between generations by circumventing flowering through the in vitro induction of meiosis. In this review, we assess technologies and approaches that may offer a path towards meiosis induction, the largest current bottleneck for in vitro plant breeding. Studies in non-plant, eukaryotic organisms indicate that the in vitro switch from mitotic cell division to meiosis is inefficient and occurs at very low rates. Yet, this has been achieved with mammalian cells by the manipulation of a limited number of genes. Therefore, to experimentally identify factors that switch mitosis to meiosis in plants, it is necessary to develop a high-throughput system to evaluate a large number of candidate genes and treatments, each using large numbers of cells, few of which may gain the ability to induce meiosis.
Collapse
Affiliation(s)
- Tanner M. Cook
- Iowa State University, Department of Agronomy, Ames, IA, United States
| | - Daniel Isenegger
- Agriculture Victoria, Agribio, La Trobe University, Melbourne, VIC, Australia
| | - Somak Dutta
- Iowa State University, Department of Statistics, Ames, IA, United States
| | - Sareena Sahab
- Agriculture Victoria, Agribio, La Trobe University, Melbourne, VIC, Australia
| | - Pippa Kay
- Agriculture Victoria, Agribio, La Trobe University, Melbourne, VIC, Australia
| | | | - Eva Biswas
- Iowa State University, Department of Statistics, Ames, IA, United States
| | - Seth Heerschap
- Iowa State University, Department of Electrical and Computer Engineering, Ames, IA, United States
| | - Basil J. Nikolau
- Iowa State University, Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Ames, IA, United States
| | - Liang Dong
- Iowa State University, Department of Electrical and Computer Engineering, Ames, IA, United States
| | | |
Collapse
|
5
|
Mouka A, Arkoun B, Moison P, Drévillon L, Jarray R, Brisset S, Mayeur A, Bouligand J, Boland-Auge A, Deleuze JF, Yates F, Lemonnier T, Callier P, Duffourd Y, Nitschke P, Ollivier E, Bourdin A, De Vos J, Livera G, Tachdjian G, Maouche-Chrétien L, Tosca L. iPSCs derived from infertile men carrying complex genetic abnormalities can generate primordial germ-like cells. Sci Rep 2022; 12:14302. [PMID: 35995809 PMCID: PMC9395518 DOI: 10.1038/s41598-022-17337-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 07/25/2022] [Indexed: 11/29/2022] Open
Abstract
Despite increasing insight into the genetics of infertility, the developmental disease processes remain unclear due to the lack of adequate experimental models. The advent of induced pluripotent stem cell (iPSC) technology has provided a unique tool for in vitro disease modeling enabling major advances in our understanding of developmental disease processes. We report the full characterization of complex genetic abnormalities in two infertile patients with either azoospermia or XX male syndrome and we identify genes of potential interest implicated in their infertility. Using the erythroblasts of both patients, we generated primed iPSCs and converted them into a naive-like pluripotent state. Naive-iPSCs were then differentiated into primordial germ-like cells (PGC-LCs). The expression of early PGC marker genes SOX17, CD-38, NANOS3, c-KIT, TFAP2C, and D2-40, confirmed progression towards the early germline stage. Our results demonstrate that iPSCs from two infertile patients with significant genetic abnormalities are capable of efficient production of PGCs. Such in vitro model of infertility will certainly help identifying causative factors leading to early germ cells development failure and provide a valuable tool to explore novel therapeutic strategies.
Collapse
Affiliation(s)
- Aurélie Mouka
- AP-HP, Université Paris-Saclay-Hôpital Antoine Béclère, Service d'Histologie, Embryologie et Cytogénétique, 92140, Clamart, France
- Faculté de Médecine, Université Paris-Saclay, 94270, Le Kremlin-Bicêtre, France
| | - Brahim Arkoun
- Inserm U1287, Laboratoire Cellules Souches Hématopoïétiques et Hémopathies Myeloïdes, Université Paris-Saclay, Gustave Roussy Cancer Campus, 94800, Villejuif, France
- Laboratoire de Développement des Gonades, UMRE008 Stabilité Génétique Cellules Souches et Radiations, Commissariat à l'Energie Atomique et Aux Énergies Alternatives, Institut de Biologie François Jacob, 92265, Fontenay-aux-Roses, France
- Université de Paris, Paris, France
- Université Paris-Saclay, 91400, Orsay, France
| | - Pauline Moison
- Laboratoire de Développement des Gonades, UMRE008 Stabilité Génétique Cellules Souches et Radiations, Commissariat à l'Energie Atomique et Aux Énergies Alternatives, Institut de Biologie François Jacob, 92265, Fontenay-aux-Roses, France
- Université de Paris, Paris, France
- Université Paris-Saclay, 91400, Orsay, France
| | - Loïc Drévillon
- AP-HP Sorbonne Université-La Pitié Salpêtrière, SiRIC Curamus, 75013, Paris, France
| | - Rafika Jarray
- Sup'Biotech/ Laboratoire CEA-IBFJ-SEPIA, 92265, Fontenay-aux-Roses, France
| | - Sophie Brisset
- AP-HP, Université Paris-Saclay-Hôpital Antoine Béclère, Service d'Histologie, Embryologie et Cytogénétique, 92140, Clamart, France
- Faculté de Médecine, Université Paris-Saclay, 94270, Le Kremlin-Bicêtre, France
| | - Anne Mayeur
- AP-HP, Université Paris-Saclay - Hôpital Antoine Béclère, Biologie de la Reproduction, 92140, Clamart, France
| | - Jérôme Bouligand
- INSERM UMR_S U1185, Faculté de Médecine Paris-Saclay, Université Paris-Saclay, Le Kremlin Bicêtre, France
- Service de Génétique Moléculaire, Pharmacogénétique et Hormonologie, Hôpitaux Universitaires Paris Sud, AH-HP, CHU Bicêtre, Paris, France
| | - Anne Boland-Auge
- Centre National de Recherche en Génomique Humaine, Université Paris-Saclay, CEA, 91057, Evry, France
| | - Jean-François Deleuze
- Centre National de Recherche en Génomique Humaine, Université Paris-Saclay, CEA, 91057, Evry, France
| | - Frank Yates
- Sup'Biotech/ Laboratoire CEA-IBFJ-SEPIA, 92265, Fontenay-aux-Roses, France
| | - Thomas Lemonnier
- Sup'Biotech/ Laboratoire CEA-IBFJ-SEPIA, 92265, Fontenay-aux-Roses, France
| | - Patrick Callier
- Département de Génétique Humaine, Hôpital Universitaire de Dijon, Dijon, France
| | - Yannis Duffourd
- Inserm UMR 1231 GAD, Faculté des Sciences de la Santé, Université de Bourgogne et de Franche-Comté, Dijon, France
| | - Patrick Nitschke
- Plateforme Bio-Informatique, IMAGINE Institute, Université Paris Descartes, Paris, France
| | - Emmanuelle Ollivier
- Plateforme Bio-Informatique, IMAGINE Institute, Université Paris Descartes, Paris, France
| | - Arnaud Bourdin
- PhyMedExp, Université Montpellier, INSERM, CHU Montpellier, Montpellier, France
| | - John De Vos
- IRMB, Université Montpellier, INSERM, CHU Montpellier, Montpellier, France
| | - Gabriel Livera
- Laboratoire de Développement des Gonades, UMRE008 Stabilité Génétique Cellules Souches et Radiations, Commissariat à l'Energie Atomique et Aux Énergies Alternatives, Institut de Biologie François Jacob, 92265, Fontenay-aux-Roses, France
- Université de Paris, Paris, France
- Université Paris-Saclay, 91400, Orsay, France
| | - Gérard Tachdjian
- AP-HP, Université Paris-Saclay-Hôpital Antoine Béclère, Service d'Histologie, Embryologie et Cytogénétique, 92140, Clamart, France
- Faculté de Médecine, Université Paris-Saclay, 94270, Le Kremlin-Bicêtre, France
- Laboratoire de Développement des Gonades, UMRE008 Stabilité Génétique Cellules Souches et Radiations, Commissariat à l'Energie Atomique et Aux Énergies Alternatives, Institut de Biologie François Jacob, 92265, Fontenay-aux-Roses, France
| | - Leïla Maouche-Chrétien
- Laboratoire des Mécanismes Moléculaires et Cellulaires des Maladies Hématologiques et leurs Implications Thérapeutiques; INSERM U 1163, Institut IMAGINE, Paris, France.
- Division des Thérapies Innovantes, CEA, Institut de Biologie François Jacob, 92260, Fontenay-aux-Roses, France.
| | - Lucie Tosca
- AP-HP, Université Paris-Saclay-Hôpital Antoine Béclère, Service d'Histologie, Embryologie et Cytogénétique, 92140, Clamart, France
- Faculté de Médecine, Université Paris-Saclay, 94270, Le Kremlin-Bicêtre, France
- Laboratoire de Développement des Gonades, UMRE008 Stabilité Génétique Cellules Souches et Radiations, Commissariat à l'Energie Atomique et Aux Énergies Alternatives, Institut de Biologie François Jacob, 92265, Fontenay-aux-Roses, France
| |
Collapse
|
6
|
Sou IF, Hamer G, Tee WW, Vader G, McClurg UL. Cancer and meiotic gene expression: Two sides of the same coin? Curr Top Dev Biol 2022; 151:43-68. [PMID: 36681477 DOI: 10.1016/bs.ctdb.2022.06.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Meiosis increases genetic diversity in offspring by generating genetically unique haploid gametes with reshuffled chromosomes. This process requires a specialized set of meiotic proteins, which facilitate chromosome recombination and segregation. However, re-expression of meiotic proteins in mitosis can have catastrophic oncogenic consequences and aberrant expression of meiotic proteins is a common occurrence in human tumors. Mechanistically, re-activation of meiotic genes in cancer promotes oncogenesis likely because cancers-conversely to healthy mitosis-are fueled by genetic instability which promotes tumor evolution, and evasion of immune response and treatment pressure. In this review, we explore similarities between meiotic and cancer cells with a particular focus on the oncogenic activation of meiotic genes in cancer. We emphasize the role of histones and their modifications, DNA methylation, genome organization, R-loops and the availability of distal enhancers.
Collapse
Affiliation(s)
- Ieng Fong Sou
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom; Chromatin Dynamics and Disease Epigenetics Group, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Geert Hamer
- Center for Reproductive Medicine, Reproductive Biology Laboratory, Amsterdam Reproduction and Development Research Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Wee-Wei Tee
- Chromatin Dynamics and Disease Epigenetics Group, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Gerben Vader
- Center for Reproductive Medicine, Reproductive Biology Laboratory, Amsterdam Reproduction and Development Research Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands; Section of Oncogenetics, Department of Human Genetics, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands; Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - Urszula Lucja McClurg
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom.
| |
Collapse
|
7
|
Fang F, Iaquinta PJ, Xia N, Liu L, Diao L, Reijo Pera RA. Transcriptional control of human gametogenesis. Hum Reprod Update 2022; 28:313-345. [PMID: 35297982 PMCID: PMC9071081 DOI: 10.1093/humupd/dmac002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 11/22/2021] [Indexed: 11/14/2022] Open
Abstract
The pathways of gametogenesis encompass elaborate cellular specialization accompanied by precise partitioning of the genome content in order to produce fully matured spermatozoa and oocytes. Transcription factors are an important class of molecules that function in gametogenesis to regulate intrinsic gene expression programs, play essential roles in specifying (or determining) germ cell fate and assist in guiding full maturation of germ cells and maintenance of their populations. Moreover, in order to reinforce or redirect cell fate in vitro, it is transcription factors that are most frequently induced, over-expressed or activated. Many reviews have focused on the molecular development and genetics of gametogenesis, in vivo and in vitro, in model organisms and in humans, including several recent comprehensive reviews: here, we focus specifically on the role of transcription factors. Recent advances in stem cell biology and multi-omic studies have enabled deeper investigation into the unique transcriptional mechanisms of human reproductive development. Moreover, as methods continually improve, in vitro differentiation of germ cells can provide the platform for robust gain- and loss-of-function genetic analyses. These analyses are delineating unique and shared human germ cell transcriptional network components that, together with somatic lineage specifiers and pluripotency transcription factors, function in transitions from pluripotent stem cells to gametes. This grand theme review offers additional insight into human infertility and reproductive disorders that are linked predominantly to defects in the transcription factor networks and thus may potentially contribute to the development of novel treatments for infertility.
Collapse
Affiliation(s)
- Fang Fang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Phillip J Iaquinta
- Division of Research, Economic Development, and Graduate Education, California Polytechnic State University, San Luis Obispo, CA, USA
| | - Ninuo Xia
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Lei Liu
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Lei Diao
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Renee A Reijo Pera
- Division of Research, Economic Development, and Graduate Education, California Polytechnic State University, San Luis Obispo, CA, USA
- McLaughlin Research Institute, Great Falls, MT, USA
| |
Collapse
|
8
|
Hong TK, Song JH, Lee SB, Do JT. Germ Cell Derivation from Pluripotent Stem Cells for Understanding In Vitro Gametogenesis. Cells 2021; 10:cells10081889. [PMID: 34440657 PMCID: PMC8394365 DOI: 10.3390/cells10081889] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 02/07/2023] Open
Abstract
Assisted reproductive technologies (ARTs) have developed considerably in recent years; however, they cannot rectify germ cell aplasia, such as non-obstructive azoospermia (NOA) and oocyte maturation failure syndrome. In vitro gametogenesis is a promising technology to overcome infertility, particularly germ cell aplasia. Early germ cells, such as primordial germ cells, can be relatively easily derived from pluripotent stem cells (PSCs); however, further progression to post-meiotic germ cells usually requires a gonadal niche and signals from gonadal somatic cells. Here, we review the recent advances in in vitro male and female germ cell derivation from PSCs and discuss how this technique is used to understand the biological mechanism of gamete development and gain insight into its application in infertility.
Collapse
|
9
|
Kurek M, Albalushi H, Hovatta O, Stukenborg JB. Human Pluripotent Stem Cells in Reproductive Science-a Comparison of Protocols Used to Generate and Define Male Germ Cells from Pluripotent Stem Cells. Int J Mol Sci 2020; 21:ijms21031028. [PMID: 32033159 PMCID: PMC7038013 DOI: 10.3390/ijms21031028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/30/2020] [Accepted: 02/01/2020] [Indexed: 12/17/2022] Open
Abstract
Globally, fertility-related issues affect around 15% of couples. In 20%–30% of cases men are solely responsible, and they contribute in around 50% of all cases. Hence, understanding of in vivo germ-cell specification and exploring different angles of fertility preservation and infertility intervention are considered hot topics nowadays, with special focus on the use of human pluripotent stem cells (hPSCs) as a source of in vitro germ-cell generation. However, the generation of male germ cells from hPSCs can currently be considered challenging, making a judgment on the real perspective of these innovative approaches difficult. Ever since the first spontaneous germ-cell differentiation studies, using human embryonic stem cells, various strategies, including specific co-cultures, gene over-expression, and addition of growth factors, have been applied for human germ-cell derivation. In line with the variety of differentiation methods, the outcomes have ranged from early and migratory primordial germ cells up to post-meiotic spermatids. This variety of culture approaches and cell lines makes comparisons between protocols difficult. Considering the diverse strategies and outcomes, we aim in this mini-review to summarize the literature regarding in vitro derivation of human male germ cells from hPSCs, while keeping a particular focus on the culture methods, growth factors, and cell lines used.
Collapse
Affiliation(s)
- Magdalena Kurek
- NORDFERTIL Research Lab Stockholm, Childhood Cancer Research Unit, Department of Women’s and Children’s Health, Karolinska Institutet, and Karolinska University Hospital, 17164 Solna, Sweden; (M.K.); (H.A.)
| | - Halima Albalushi
- NORDFERTIL Research Lab Stockholm, Childhood Cancer Research Unit, Department of Women’s and Children’s Health, Karolinska Institutet, and Karolinska University Hospital, 17164 Solna, Sweden; (M.K.); (H.A.)
- College of Medicine and Health Sciences, Sultan Qaboos University, 123 Muscat, Oman
| | - Outi Hovatta
- Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet and University Hospital Karolinska Institutet, 141 52 Huddinge, Sweden;
| | - Jan-Bernd Stukenborg
- NORDFERTIL Research Lab Stockholm, Childhood Cancer Research Unit, Department of Women’s and Children’s Health, Karolinska Institutet, and Karolinska University Hospital, 17164 Solna, Sweden; (M.K.); (H.A.)
- Correspondence: ; Tel.: +46-8524-82788
| |
Collapse
|
10
|
Medrano JV, Vilanova-Pérez T, Fornés-Ferrer V, Navarro-Gomezlechon A, Martínez-Triguero ML, García S, Gómez-Chacón J, Povo I, Pellicer A, Andrés MM, Novella-Maestre E. Influence of temperature, serum, and gonadotropin supplementation in short- and long-term organotypic culture of human immature testicular tissue. Fertil Steril 2019; 110:1045-1057.e3. [PMID: 30396549 DOI: 10.1016/j.fertnstert.2018.07.018] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 07/06/2018] [Accepted: 07/18/2018] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To study how temperature, serum, and gonadotropin supplementation affect the organotypic culture of human immature testicular tissue (ITT) in vitro. DESIGN Experimental basic science study. SETTING Reproductive biology laboratory. PATIENT(S) ITT from 4 boys with cancer that had testicular tissue cryopreserved as part of their fertility preservation treatment. INTERVENTION(S) In vitro organotypic culture of ITT, exposed to different temperatures (37°C vs. 34°C), serum (fetal bovine serum [FBS] vs. Knockout Serum Replacement [KOS]), and gonadotropin supplementation (with and without FSH and LH). MAIN OUTCOME MEASURE(S) Characterization of the tissue was performed at days 0, 14, and 70 with the use of reverse-transcription quantitative polymerase chain reaction, terminal deoxynucleotide transferase-mediated dUTP nick-end labeling, histologic analysis by means of hematoxylin-eosin staining, and immunohistochemical staining. Hormonal secretion was determined at days 3, 14, 28, and 70 by means of immunofluorescent assay. RESULT(S) The 37°C conditions showed an accelerated loss of tubular morphology and higher intratubular apoptosis. KOS supplementation triggered the up-regulation of STAR, SOX9, DAZL, DDX4, PLZF, and UTF1, the percentage of SOX9+/androgen receptor (AR)-positive mature Sertoli cells at day 14, and testosterone secretion. Gonadotropin supplementation increased the numbers of both undifferentiated UTF1+ spermatogonia and premeiotic VASA+/SYCP3+ spermatogonia at day 14, and the number of SOX9+ Sertoli cells at day 70. The low SOX9+/AR+ colocalization, the disorganized pattern of ZO-1, and the progressive decrease of antimüllerian hormone secretion indicated inefficient Sertoli cell maturation in vitro. CONCLUSION(S) The 34°C condition in KOS showed the best results for the survival of both spermatogonia and Sertoli cells. FSH/LH supplementation also improved long-term survival of Sertoli cells and the maturation of spermatogonia up to meiotic initiation in short-term culture.
Collapse
Affiliation(s)
- Jose V Medrano
- Instituto de Investigación Sanitaria La Fe, Valencia, Spain.
| | | | | | | | | | - Sofía García
- Instituto de Investigación Sanitaria La Fe, Valencia, Spain; Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | | | - Ivan Povo
- Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Antonio Pellicer
- Instituto de Investigación Sanitaria La Fe, Valencia, Spain; Fundación IVI, Valencia, Spain
| | - María M Andrés
- Instituto de Investigación Sanitaria La Fe, Valencia, Spain; Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Edurne Novella-Maestre
- Instituto de Investigación Sanitaria La Fe, Valencia, Spain; Hospital Universitario y Politécnico La Fe, Valencia, Spain
| |
Collapse
|
11
|
Ortega I, García-Velasco JA, Pellicer A. Ovarian manipulation in ART: going beyond physiological standards to provide best clinical outcomes. J Assist Reprod Genet 2018; 35:1751-1762. [PMID: 30056596 DOI: 10.1007/s10815-018-1258-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 07/03/2018] [Indexed: 12/11/2022] Open
Abstract
Current knowledge on ovarian physiology has challenged the traditional concept of folliculogenesis, creating the basis for novel ovarian stimulation protocols in assisted reproduction technology. The purpose of this review was to evaluate the efficacy of novel clinical interventions that could aid clinicians in individualizing their protocols to patients' characteristics and personal situations. We conducted a literature review of the available evidence on new approaches for ovarian stimulation from both retrospective and prospective studies in the PubMed database. Here, we present some of the most important interventions, including follicle growth in the gonadotropin-independent and dependent stage, manipulation of estradiol production throughout ovarian stimulation, control of mid-cycle gonadotropin surges, and luteal phase support after different stimulation protocols and trigger agents. The latest research on IVF has moved physicians away from the classical physiology, allowing the development of new strategies to decouple organ functions from the female reproductive system and challenging the traditional concept of IVF.
Collapse
Affiliation(s)
- Israel Ortega
- IVI-Madrid, Madrid, Spain. .,Instituto de Investigación Sanitaria La Fé, Valencia, Spain.
| | - Juan A García-Velasco
- IVI-Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria La Fé, Valencia, Spain.,Rey Juan Carlos University, Madrid, Spain.,IdiPAZ, Madrid, Spain
| | - Antonio Pellicer
- Instituto de Investigación Sanitaria La Fé, Valencia, Spain.,Rey Juan Carlos University, Madrid, Spain.,IdiPAZ, Madrid, Spain.,IVI-Roma, Rome, Italy
| |
Collapse
|
12
|
Medrano JV, Andrés MDM, García S, Herraiz S, Vilanova-Pérez T, Goossens E, Pellicer A. Basic and Clinical Approaches for Fertility Preservation and Restoration in Cancer Patients. Trends Biotechnol 2018; 36:199-215. [DOI: 10.1016/j.tibtech.2017.10.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 10/13/2017] [Accepted: 10/18/2017] [Indexed: 12/20/2022]
|
13
|
Alves-Lopes JP, Stukenborg JB. Testicular organoids: a new model to study the testicular microenvironment in vitro? Hum Reprod Update 2017; 24:176-191. [PMID: 29281008 DOI: 10.1093/humupd/dmx036] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 11/20/2017] [Accepted: 11/27/2017] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND In recent decades, a broad range of strategies have been applied to model the testicular microenvironment in vitro. These models have been utilized to study testicular physiology and development. However, a system that allows investigations into testicular organogenesis and its impact in the spermatogonial stem-cell (SSC) niche in vitro has not been developed yet. Recently, the creation of tissue-specific organ-like structures called organoids has resurged, helping researchers to answer scientific questions that previous in vitro models could not help to elucidate. So far, a small number of publications have concerned the generation of testicular organoids and their application in the field of reproductive medicine and biology. OBJECTIVE AND RATIONALE Here, we aim to elucidate whether testicular organoids might be useful in answering current scientific questions about the regulation and function of the SSC niche as well as germ cell proliferation and differentiation, and whether or not the existing in vitro models are already sufficient to address them. Moreover, we would like to discuss how an organoid system can be a better solution to address these prominent scientific problems in our field, by the creation of a rationale parallel to those in other areas where organoid systems have been successfully utilized. SEARCH METHODS We comprehensively reviewed publications regarding testicular organoids and the methods that most closely led to the formation of these organ-like structures in vitro by searching for the following terms in both PubMed and the Web of Science database: testicular organoid, seminiferous tubule 3D culture, Sertoli cell 3D culture, testicular cord formation in vitro, testicular morphogenesis in vitro, germ cell 3D culture, in vitro spermatogenesis, testicular de novo morphogenesis, seminiferous tubule de novo morphogenesis, seminiferous tubule-like structures, testicular in vitro model and male germ cell niche in vitro, with no restrictions to any publishing year. The inclusion criteria were based on the relation with the main topic (i.e. testicular organoids, testicular- and seminiferous-like structures as in vitro models), methodology applied (i.e. in vitro culture, culture dimensions (2D, 3D), testicular cell suspension or fragments) and outcome of interest (i.e. organization in vitro). Publications about grafting of testicular tissue, germ-cell transplantation and female germ-cell culture were excluded. OUTCOMES The application of organoid systems is making its first steps in the field of reproductive medicine and biology. A restricted number of publications have reported and characterized testicular organoids and even fewer have denominated such structures by this method. However, we detected that a clear improvement in testicular cell reorganization is recognized when 3D culture conditions are utilized instead of 2D conditions. Depending on the scientific question, testicular organoids might offer a more appropriate in vitro model to investigate testicular development and physiology because of the easy manipulation of cell suspensions (inclusion or exclusion of a specific cell population), the fast reorganization of these structures and the controlled in vitro conditions, to the same extent as with other organoid strategies reported in other fields. WIDER IMPLICATIONS By way of appropriate research questions, we might use testicular organoids to deepen our basic understanding of testicular development and the SSC niche, leading to new methodologies for male infertility treatment.
Collapse
Affiliation(s)
- João Pedro Alves-Lopes
- Department of Women's and Children's Health, NORDFERTIL Research Lab Stockholm, Paediatric Endocrinology Unit, Q2:08, Karolinska Institutet and Karolinska University Hospital, SE-17176 Stockholm, Sweden
| | - Jan-Bernd Stukenborg
- Department of Women's and Children's Health, NORDFERTIL Research Lab Stockholm, Paediatric Endocrinology Unit, Q2:08, Karolinska Institutet and Karolinska University Hospital, SE-17176 Stockholm, Sweden
| |
Collapse
|
14
|
Bhartiya D, Anand S, Patel H, Parte S. Making gametes from alternate sources of stem cells: past, present and future. Reprod Biol Endocrinol 2017; 15:89. [PMID: 29145898 PMCID: PMC5691385 DOI: 10.1186/s12958-017-0308-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 10/30/2017] [Indexed: 02/06/2023] Open
Abstract
Infertile couples including cancer survivors stand to benefit from gametes differentiated from embryonic or induced pluripotent stem (ES/iPS) cells. It remains challenging to convert human ES/iPS cells into primordial germ-like cells (PGCLCs) en route to obtaining gametes. Considerable success was achieved in 2016 to obtain fertile offspring starting with mouse ES/iPS cells, however the specification of human ES/iPS cells into PGCLCs in vitro is still not achieved. Human ES cells will not yield patient-specific gametes unless and until hES cells are derived by somatic cell nuclear transfer (therapeutic cloning) whereas iPS cells retain the residual epigenetic memory of the somatic cells from which they are derived and also harbor genomic and mitochondrial DNA mutations. Thus, they may not be ideal starting material to produce autologus gametes, especially for aged couples. Pluripotent, very small embryonic-like stem cells (VSELs) have been reported in adult tissues including gonads, are relatively quiescent in nature, survive oncotherapy and can be detected in aged, non-functional gonads. Being developmentally equivalent to PGCs (natural precursors to gametes), VSELs spontaneously differentiate into gametes in vitro. It is also being understood that gonadal stem cells niche is compromised by oncotherapy and with age. Improving the gonadal somatic niche could regenerate non-functional gonads from endogenous VSELs to restore fertility. Niche cells (Sertoli/mesenchymal cells) can be directly transplanted and restore gonadal function by providing paracrine support to endogenous VSELs. This strategy has been successful in several mice studies already and resulted in live birth in a woman with pre-mature ovarian failure.
Collapse
Affiliation(s)
- Deepa Bhartiya
- Stem Cell Biology Department, ICMR-National Institute for Research in Reproductive Health, Jehangir Merwanji Street, Parel, Mumbai, 400 012, India.
| | - Sandhya Anand
- Stem Cell Biology Department, ICMR-National Institute for Research in Reproductive Health, Jehangir Merwanji Street, Parel, Mumbai, 400 012, India
| | - Hiren Patel
- Stem Cell Biology Department, ICMR-National Institute for Research in Reproductive Health, Jehangir Merwanji Street, Parel, Mumbai, 400 012, India
| | - Seema Parte
- Stem Cell Biology Department, ICMR-National Institute for Research in Reproductive Health, Jehangir Merwanji Street, Parel, Mumbai, 400 012, India
| |
Collapse
|
15
|
Abstract
Azoospermia, the absence of any sperm cells from the ejaculated semen, poses a real challenge to the fertility urologist. While there are options to create happy families for azoospermic couples, such as the use of donor sperm and adoption, most couples still want to have genetically related offspring. Advances in urology, gynecology, and fertility laboratory technologies allow surgical sperm retrieval in azoospermic men and achievement of live births for many, but not all azoospermic couples. At present, there are extensive research efforts in several directions to create new fertility options by creating "artificial sperm cells." While these new horizons are exciting, there are significant obstacles that must be overcome before such innovative solutions can be offered to azoospermic couples. The present review article defines the problem, describes the theoretical basis for creation of artificial genetically related sperm cells, and provides an update on current successes and challenges in the long tortuous path to achieve the ultimate goal: enabling every azoospermic couple to have their own genetically related offspring. Hopefully, these research efforts will ripen in the foreseeable future, resulting in the ability to create artificial sperm cells and provide such couples with off-the-shelf solutions and fulfilling their desire to parent genetically related healthy babies.
Collapse
Affiliation(s)
| | - Raanan Tal
- Neuro-Urology Unit, Rambam Health Care Campus, Haifa, Israel
| |
Collapse
|
16
|
Simon C. Why should patients experience infertility or poor outcomes before using assisted reproductive technologies? Fertil Steril 2017; 107:878-879. [PMID: 28366414 DOI: 10.1016/j.fertnstert.2017.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 03/03/2017] [Indexed: 11/30/2022]
Affiliation(s)
- Carlos Simon
- Department of Obstetrics & Gynecology, School of Medicine, Valencia University/INCLIVA/IVI and Igenomix, Valencia, Spain; and Department of Obstetrics & Gynecology, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
17
|
Fang J, Wei Y, Lv C, Peng S, Zhao S, Hua J. CD61 promotes the differentiation of canine ADMSCs into PGC-like cells through modulation of TGF-β signaling. Sci Rep 2017; 7:43851. [PMID: 28256590 PMCID: PMC5335555 DOI: 10.1038/srep43851] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 01/30/2017] [Indexed: 12/18/2022] Open
Abstract
Previous studies have shown that CD61 (integrin-β3) promotes the differentiation of human umbilical cord mesenchymal stem cells (hUC-MSCs) into germ-like cells. However, the mechanism remains unclear. In this study, we showed that overexpression of CD61 in canine adipose-derived mesenchymal stem cells (cADMSCs) promotes their differentiation into primordial germ cell (PGC)-like cells. Quantitative real-time PCR, immunocytochemistry and western blot detected higher levels of PGC-specific markers in CD61-overexpressed cADMSCs compared with those in control cells. Moreover, phosphorylation of Smad2, a downstream mediator of transforming growth factor beta (TGF-β), was increased in CD61-overexpressed cADMSCs than that in control cells. However, the expression of PGC-specific markers was downregulated in cADMSCs treated with a TGF-β inhibitor. These results suggested that CD61 could induce cADMSCs to differentiate into PGC-like cells by relying on the activation of TGF-β pathway. ADMSCs possess a considerable potential in treating the infertility of rare animal species.
Collapse
Affiliation(s)
- Jia Fang
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering &Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yudong Wei
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering &Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Changrong Lv
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering &Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Sha Peng
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering &Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Shanting Zhao
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering &Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jinlian Hua
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering &Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
18
|
Ishikura Y, Yabuta Y, Ohta H, Hayashi K, Nakamura T, Okamoto I, Yamamoto T, Kurimoto K, Shirane K, Sasaki H, Saitou M. In Vitro Derivation and Propagation of Spermatogonial Stem Cell Activity from Mouse Pluripotent Stem Cells. Cell Rep 2016; 17:2789-2804. [DOI: 10.1016/j.celrep.2016.11.026] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 09/23/2016] [Accepted: 11/02/2016] [Indexed: 01/11/2023] Open
|
19
|
Canovas S, Campos R, Aguilar E, Cibelli JB. Progress towards human primordial germ cell specification in vitro. Mol Hum Reprod 2016; 23:4-15. [PMID: 27798275 DOI: 10.1093/molehr/gaw069] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 09/28/2016] [Indexed: 12/13/2022] Open
Abstract
Primordial germ cells (PGCs) have long been considered the link between one generation and the next. PGC specification begins in the early embryo as a result of a highly orchestrated combination of transcriptional and epigenetic mechanisms. Understanding the molecular events that lead to proper PGC development will facilitate the development of new treatments for human infertility as well as species conservation. This article describes the latest, most relevant findings about the mechanisms of PGC formation, emphasizing human PGC. It also discusses our own laboratory's progress in using transdifferentiation protocols to derive human PGCs (hPGCs). Our preliminary results arose from our pursuit of a sequential hPGC induction strategy that starts with the repression of lineage-specific factors in the somatic cell, followed by the reactivation of germ cell-related genes using specific master regulators, which can indeed reactivate germ cell-specific genes in somatic cells. While it is still premature to assume that fully functional human gametes can be obtained in a dish, our results, together with those recently published by others, provide strong evidence that generating their precursors, PGCs, is within reach.
Collapse
Affiliation(s)
- S Canovas
- LARCEL, Centro Andaluz de Nanomedicina y Biotecnología (BIONAND), C/Severo Ochoa 35, Malaga 29590, Spain
| | - R Campos
- LARCEL, Centro Andaluz de Nanomedicina y Biotecnología (BIONAND), C/Severo Ochoa 35, Malaga 29590, Spain
| | - E Aguilar
- LARCEL, Centro Andaluz de Nanomedicina y Biotecnología (BIONAND), C/Severo Ochoa 35, Malaga 29590, Spain
| | - J B Cibelli
- LARCEL, Centro Andaluz de Nanomedicina y Biotecnología (BIONAND), C/Severo Ochoa 35, Malaga 29590, Spain .,Department of Physiology and Department of Animal Science, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|