1
|
Patil VS, Harish DR, Charla R, Vetrivel U, Jalalpure SS, Bhandare VV, Deshpande SH, Hegde HV, Roy S. Structural insights into modeling of hepatitis B virus reverse transcriptase and identification of its inhibitors from potential medicinal plants of Western Ghats: an in silico and in vitro study. J Biomol Struct Dyn 2023; 42:11731-11749. [PMID: 37811543 DOI: 10.1080/07391102.2023.2264400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/21/2023] [Indexed: 10/10/2023]
Abstract
The present study was proposed to model full-length HBV-RT and investigate the intermolecular interactions of known inhibitor and libraries of phytocompounds to probe the potential natural leads by in silico and in vitro studies. Homology modeling of RT was performed by Phyre2 and Modeller and virtual screening of ligands implemented through POAP pipeline. Molecular dynamics (MD) simulation (100 ns) and MM-GBSA calculations were performed using Schrodinger Desmond and Prime, respectively. Phytocompounds probable host protein targets gene set pathway enrichment and network analysis were executed by KEGG database and Cytoscape software. Prioritized plant extracts/enriched fraction LC-MS analysis was performed and along with pure compound, RT inhibitory activity, time-dependent HBsAg and HBeAg secretion, and intracellular HBV DNA, and pgRNA by qRT-PCR was performed in HepG2.2.15 cell line. Among the screened chemical library of 268 phytocompounds from 18 medicinal plants, 15 molecules from Terminalia chebula (6), Bidens pilosa (5), and Centella asiatica (4)) were identified as potential inhibitors of YMDD and RT1 motif of HBV-RT. MD simulation demonstrated stable interactions of 15 phytocompounds with HBV-RT, of which 1,2,3,4,6-Pentagalloyl Glucose (PGG) was identified as lead molecule. Out of 15 compounds, 11 were predicted to modulate 39 proteins and 15 molecular pathways associated with HBV infection. TCN and TCW (500 µg/mL) showed potent RT inhibition, decreased intracellular HBV DNA, and pgRNA, and time-dependent inhibition of HBsAg and HBeAg levels compared to PGG and Tenofovir Disoproxil Fumarate. We propose that the identified lead molecules from T. chebula as promising and cost-effective moieties for the management of HBV infection.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Vishal S Patil
- ICMR-National Institute of Traditional Medicine, Belagavi, Karnataka, India
- KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi, Karnataka, India
| | | | - Rajitha Charla
- ICMR-National Institute of Traditional Medicine, Belagavi, Karnataka, India
| | - Umashankar Vetrivel
- ICMR-National Institute of Traditional Medicine, Belagavi, Karnataka, India
- ICMR-National Institute for Research in Tuberculosis, Chennai, Tamil Nadu, India
| | - Sunil S Jalalpure
- KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi, Karnataka, India
| | - Vishwambhar Vishnu Bhandare
- ICMR-National Institute of Traditional Medicine, Belagavi, Karnataka, India
- Department of Microbiology, Shivaji University, Kolhapur, Maharashtra, India
| | - Sanjay H Deshpande
- ICMR-National Institute of Traditional Medicine, Belagavi, Karnataka, India
- Regional Centre for Biotechnology, NCR-Biotech Science Cluster, Faridabad, India
| | - Harsha V Hegde
- ICMR-National Institute of Traditional Medicine, Belagavi, Karnataka, India
| | - Subarna Roy
- ICMR-National Institute of Traditional Medicine, Belagavi, Karnataka, India
| |
Collapse
|
2
|
Randomized Double-Blind Placebo-Controlled Supplementation with Standardized Terminalia chebula Fruit Extracts Reduces Facial Sebum Excretion, Erythema, and Wrinkle Severity. J Clin Med 2023; 12:jcm12041591. [PMID: 36836126 PMCID: PMC9963432 DOI: 10.3390/jcm12041591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/30/2022] [Accepted: 02/12/2023] [Indexed: 02/19/2023] Open
Abstract
Terminalia chebula (TC) is a medicinal plant that exhibits antioxidant, anti-inflammatory, and antibacterial properties and that is widely used in Ayurveda and herbal formulations. However, the skin effects of TC as an oral supplement have not been studied. The objective of this study is to determine if oral TC fruit extract supplementation can modulate the skin's sebum production and reduce the appearance of wrinkles. A prospective double-blind placebo-controlled study was conducted on healthy females aged 25-65. Subjects were supplemented with an oral placebo or Terminalia chebula (250 mg capsule, Synastol TC) capsules twice daily for eight weeks. A facial image collection and analysis system was used to assess the facial appearance of wrinkle severity. Standardized, non-invasive tools were used to measure facial moisture, sebum production, transepidermal water loss, melanin index and erythema index. For those who had a baseline sebum excretion rate >80 ug/cm2, TC supplementation produced a significant decrease in forehead sebum excretion rate compared to the placebo at four weeks (-17 decrease vs. 20% increase, p = 0.07) and at eight weeks (-33% decrease vs. 29% increase, p < 0.01). Cheek erythema decreased by 2.2% at eight weeks, while the placebo treatment increased cheek erythema by 1.5% (p < 0.05). Facial wrinkles decreased by 4.3% in the TC group and increased by 3.9% in the placebo group after eight weeks of supplementation (p < 0.05). TC supplementation reduces facial sebum and improves the appearance of wrinkles. Future studies should consider evaluating oral TC as adjuvant therapy for acne vulgaris.
Collapse
|
3
|
Ramasamy M, Balasubramanian B, Punniyakotti P, Vijaya Anand A, Meyyazhagan A, Velayuthaprabhu S, Rengarajan RL, Issara U, Liu W. Cardio-protective effects of Terminalia catappa leaves and Terminalia chebula fruit extract in doxorubicin-induced cardiomyopathy in rats. Biomarkers 2022; 27:488-495. [PMID: 35400254 DOI: 10.1080/1354750x.2022.2064550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
INTRODUCTION The cardio-protective effects of Terminalia catappa and Terminalia chebula are well-recognized in Ayurveda for its antimicrobial, antidiabetic and antioxidant potentials. The present study evaluates the effects of T. catappa leaves (Tct.LE) and T. chebula fruits (Tce.FE) against doxorubicin (DOX)-induced rats through analysis of the cardiac biomarkers, tricarboxylic acid (TCA) cycle enzymes and respiratory chain enzymes for their cardio-protective properties. Materials and methods: This study includes 42 adult male Albino Wistar rats randomized into seven groups for 21-days. Groups were categorized as control; DOX (1.5 mg/kg) induced negative control; basal diet with 300 mg/kg of Tct.LE, with 300 mg/kg Tce.FE; DOX with 300 mg/kg of Tct.LE, Tce.FE, and propranolol (25mg/kg). Results and Discussion: The doses of 300 mg/kg of both plants have a significant effect on the TCA cycle, respiratory and lysosomal enzymes activity. The troponin levels are significantly reduced in plant treated group than the DOX-treated rats when compared with the control and propranolol treated group. Likewise, the increased level of creatine kinase-muscle/MB, creatine kinase and lipid profile in the DOX-treated animals were significantly reduced upon being treated with extracts. Conclusion: The cardio-protective activity of Tct.LE leaves and Tce.FE indicate its potential use in the management of cardiovascular diseases. CLINICAL SIGNIFICANCE The prevalence of cardiovascular disease is increasing day-by-day in this industrial world with leading cause of mortality and morbidity. Many researches are presently concentrated on the plant-based medicine due to its safety and free from side effects. Hence, the present study aims to document the potential cardio-protective benefits of Terminalia catappa and Terminalia chebula.
Collapse
Affiliation(s)
- Manikandan Ramasamy
- Department of Biochemistry, Shrimati Indira Gandhi College, Trichirappalli-620 002, Tamil Nadu, India
| | | | - Panneerselvam Punniyakotti
- Department of Biochemistry, Kanchi Shri Krishna College of Arts and Science, Kancheepuram-631 551, Tamil Nadu, India
| | - Arumugam Vijaya Anand
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore- 641 046, Tamil Nadu, India
| | - Arun Meyyazhagan
- Department of Obstetrics and Gynecology and Centre for Perinatal and Reproductive Medicine, University of Perugia, Perugia, Italy
| | | | | | - Utthapon Issara
- Division of Food Science and Technology Management, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi, 12110, Thailand
| | - Wenchao Liu
- Department of Animal Science, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, P. R. China
| |
Collapse
|
4
|
Wang H, Fowler MI, Messenger DJ, Ordaz-Ortiz JJ, Gu X, Shi S, Terry LA, Berry MJ, Lian G, Wang S. Inhibition of the intestinal postprandial glucose transport by gallic acid and gallic acid derivatives. Food Funct 2021; 12:5399-5406. [PMID: 33988204 DOI: 10.1039/d1fo01118a] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Inhibition of glucose uptake in the intestine through sodium-dependent glucose transporter 1 (SGLT1) or glucose transporter 2 (GLUT2) may be beneficial in controlling postprandial blood glucose levels. Gallic acid and ten of its derivatives were identified in the active fractions of Terminalia chebula Retz. fructus immaturus, a popular edible plant fruit which has previously been associated with the inhibition of glucose uptake. Gallic acid derivatives (methyl gallate, ethyl gallate, pentyl gallate, 3,4,6-tri-O-galloyl-β-d-glucose, and corilagin) showed good glucose transport inhibition with inhibitory rates of 72.1 ± 1.6%, 71.5 ± 1.4%, 79.9 ± 1.2%, 44.7 ± 1.2%, and 75.0 ± 0.7% at 5 mM d-glucose and/or 56.3 ± 2.3, 52.1 ± 3.2%, 70.2 ± 1.7%, 15.6 ± 1.6%, and 37.1 ± 0.8% at 25 mM d-glucose. However, only 3,4,6-tri-O-galloyl-β-d-glucose and corilagin were confirmed GLUT2-specific inhibitors. Whilst some tea flavonoids demonstrated minimal glucose transport inhibition, their gallic acid derivatives strongly inhibited transport effect with GLUT2 specificity. This suggests that gallic acid structures are crucial for glucose transport inhibition. Plants, such as T. chebula, which contain high levels of gallic acid and its derivatives, show promise as natural functional ingredients for inclusion in foods and drinks designed to control postprandial glucose levels.
Collapse
Affiliation(s)
- Huijun Wang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, P. R. China. and Unilever R&D Colworth, Colworth Science Park, Sharnbrook, Bedford MK44 1LQ, UK.
| | - Mark I Fowler
- Unilever R&D Colworth, Colworth Science Park, Sharnbrook, Bedford MK44 1LQ, UK.
| | - David J Messenger
- Unilever R&D Colworth, Colworth Science Park, Sharnbrook, Bedford MK44 1LQ, UK.
| | - Jose Juan Ordaz-Ortiz
- Plant Science Laboratory, Cranfield University, MK43 0AL, UK and National Laboratory of Genomics for Biodiversity, CINVESTAV IPN, 36824 Irapuato, Guanajuato, Mexico
| | - Xuelan Gu
- Unilever R&D Shanghai, 5/F, 66 Lin Xin Road, Shanghai 200335, P. R. China
| | - Songshan Shi
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, P. R. China.
| | - Leon A Terry
- Plant Science Laboratory, Cranfield University, MK43 0AL, UK
| | - Mark J Berry
- Unilever R&D Colworth, Colworth Science Park, Sharnbrook, Bedford MK44 1LQ, UK.
| | - Guoping Lian
- Unilever R&D Colworth, Colworth Science Park, Sharnbrook, Bedford MK44 1LQ, UK. and Department of Chemical and Process Engineering, University of Surrey, Guildford, GU2 7XH, UK
| | - Shunchun Wang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, P. R. China.
| |
Collapse
|
5
|
Mosaddeghi P, Eslami M, Farahmandnejad M, Akhavein M, Ranjbarfarrokhi R, Khorraminejad-Shirazi M, Shahabinezhad F, Taghipour M, Dorvash M, Sakhteman A, Zarshenas MM, Nezafat N, Mobasheri M, Ghasemi Y. A systems pharmacology approach to identify the autophagy-inducing effects of Traditional Persian medicinal plants. Sci Rep 2021; 11:336. [PMID: 33431946 PMCID: PMC7801619 DOI: 10.1038/s41598-020-79472-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 12/09/2020] [Indexed: 01/29/2023] Open
Abstract
Aging is correlated with several complex diseases, including type 2 diabetes, neurodegeneration diseases, and cancer. Identifying the nature of this correlation and treatment of age-related diseases has been a major subject of both modern and traditional medicine. Traditional Persian Medicine (TPM) embodies many prescriptions for the treatment of ARDs. Given that autophagy plays a critical role in antiaging processes, the present study aimed to examine whether the documented effect of plants used in TPM might be relevant to the induction of autophagy? To this end, the TPM-based medicinal herbs used in the treatment of the ARDs were identified from modern and traditional references. The known phytochemicals of these plants were then examined against literature for evidence of having autophagy inducing effects. As a result, several plants were identified to have multiple active ingredients, which indeed regulate the autophagy or its upstream pathways. In addition, gene set enrichment analysis of the identified targets confirmed the collective contribution of the identified targets in autophagy regulating processes. Also, the protein-protein interaction (PPI) network of the targets was reconstructed. Network centrality analysis of the PPI network identified mTOR as the key network hub. Given the well-documented role of mTOR in inhibiting autophagy, our results hence support the hypothesis that the antiaging mechanism of TPM-based medicines might involve autophagy induction. Chemoinformatics study of the phytochemicals using docking and molecular dynamics simulation identified, among other compounds, the cyclo-trijuglone of Juglans regia L. as a potential ATP-competitive inhibitor of mTOR. Our results hence, provide a basis for the study of TPM-based prescriptions using modern tools in the quest for developing synergistic therapies for ARDs.
Collapse
Affiliation(s)
- Pouria Mosaddeghi
- grid.412571.40000 0000 8819 4698Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran ,grid.412571.40000 0000 8819 4698Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, P.O. Box 71345-1583, Shiraz, Iran ,grid.412571.40000 0000 8819 4698Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran ,grid.412571.40000 0000 8819 4698Cellular and Molecular Medicine Student Research Group, School of Medicine, Shiraz University of Medical Science, Shiraz, Iran
| | - Mahboobeh Eslami
- grid.412571.40000 0000 8819 4698Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran ,grid.412571.40000 0000 8819 4698Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, P.O. Box 71345-1583, Shiraz, Iran
| | - Mitra Farahmandnejad
- grid.412571.40000 0000 8819 4698Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran ,grid.412571.40000 0000 8819 4698Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, P.O. Box 71345-1583, Shiraz, Iran ,grid.412571.40000 0000 8819 4698Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran ,grid.412571.40000 0000 8819 4698Cellular and Molecular Medicine Student Research Group, School of Medicine, Shiraz University of Medical Science, Shiraz, Iran
| | - Mahshad Akhavein
- grid.412571.40000 0000 8819 4698Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran ,grid.412571.40000 0000 8819 4698Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, P.O. Box 71345-1583, Shiraz, Iran ,grid.412571.40000 0000 8819 4698Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran ,grid.412571.40000 0000 8819 4698Cellular and Molecular Medicine Student Research Group, School of Medicine, Shiraz University of Medical Science, Shiraz, Iran
| | - Ratin Ranjbarfarrokhi
- grid.412571.40000 0000 8819 4698Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran ,grid.412571.40000 0000 8819 4698Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, P.O. Box 71345-1583, Shiraz, Iran ,grid.412571.40000 0000 8819 4698Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran ,grid.412571.40000 0000 8819 4698Cellular and Molecular Medicine Student Research Group, School of Medicine, Shiraz University of Medical Science, Shiraz, Iran
| | - Mohammadhossein Khorraminejad-Shirazi
- grid.412571.40000 0000 8819 4698Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran ,grid.412571.40000 0000 8819 4698Cellular and Molecular Medicine Student Research Group, School of Medicine, Shiraz University of Medical Science, Shiraz, Iran
| | - Farbod Shahabinezhad
- grid.412571.40000 0000 8819 4698Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran ,grid.412571.40000 0000 8819 4698Cellular and Molecular Medicine Student Research Group, School of Medicine, Shiraz University of Medical Science, Shiraz, Iran
| | - Mohammadjavad Taghipour
- grid.412571.40000 0000 8819 4698Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran ,grid.412571.40000 0000 8819 4698Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, P.O. Box 71345-1583, Shiraz, Iran ,grid.412571.40000 0000 8819 4698Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran ,grid.412571.40000 0000 8819 4698Cellular and Molecular Medicine Student Research Group, School of Medicine, Shiraz University of Medical Science, Shiraz, Iran
| | - Mohammadreza Dorvash
- grid.412571.40000 0000 8819 4698Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran ,grid.412571.40000 0000 8819 4698Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran ,grid.412571.40000 0000 8819 4698Cellular and Molecular Medicine Student Research Group, School of Medicine, Shiraz University of Medical Science, Shiraz, Iran
| | - Amirhossein Sakhteman
- grid.412571.40000 0000 8819 4698Department of Medicinal Chemistry, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran ,grid.9668.10000 0001 0726 2490Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Mohammad M. Zarshenas
- grid.412571.40000 0000 8819 4698Department of Phytopharmaceuticals (Traditional Pharmacy), School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran ,grid.412571.40000 0000 8819 4698Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Navid Nezafat
- grid.412571.40000 0000 8819 4698Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran ,grid.412571.40000 0000 8819 4698Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, P.O. Box 71345-1583, Shiraz, Iran
| | - Meysam Mobasheri
- grid.472338.9Department of Biotechnology, Faculty of Advanced Sciences and Technology, Tehran Islamic Azad University of Medical Sciences, Tehran, Iran ,Iranian Institute of New Sciences (IINS), Tehran, Iran
| | - Younes Ghasemi
- grid.412571.40000 0000 8819 4698Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran ,grid.412571.40000 0000 8819 4698Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, P.O. Box 71345-1583, Shiraz, Iran
| |
Collapse
|
6
|
Das G, Kim DY, Fan C, Gutiérrez-Grijalva EP, Heredia JB, Nissapatorn V, Mitsuwan W, Pereira ML, Nawaz M, Siyadatpanah A, Norouzi R, Sawicka B, Shin HS, Patra JK. Plants of the Genus Terminalia: An Insight on Its Biological Potentials, Pre-Clinical and Clinical Studies. Front Pharmacol 2020; 11:561248. [PMID: 33132909 PMCID: PMC7578430 DOI: 10.3389/fphar.2020.561248] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 09/07/2020] [Indexed: 12/16/2022] Open
Abstract
The evaluation and confirmation of healing properties of several plant species of genus Terminalia based on their traditional uses and the clinical claims are of utmost importance. Genus Terminalia has received more attention to assess and validate the therapeutic potential and clinical approval due to its immense folk medicinal and traditional applications. Various species of Terminalia genus are used in the form of herbal medicine and formulations, in treatment of diseases, including headache, fever, pneumonia, flu, geriatric, cancer, to improve memory, abdominal and back pain, cough and cold, conjunctivitis, diarrhea, heart disorder, leprosy, sexually transmitted diseases, and urinary tract disorders. These are reported to possess numerous biological properties, counting: antibacterial, antifungal, antiinflammatory, antiviral, antiretroviral, antioxidant, and antipa7rasitic. This current research review aims to update the detailed biological activities, pre-clinical and clinical studies of various extracts and secondary metabolites from several plant species under the genus Terminalia, along with information on the traditional uses and chemical composition to develop a promising strategy for their potential applications in the form of medicine or use in modern drug formulations for treating diseases like pneumonia, flu, and other types of viral infections or controlling human contagions.
Collapse
Affiliation(s)
- Gitishree Das
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University-Seoul, Goyangsi, South Korea
| | - Do-Yeong Kim
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University-Seoul, Goyangsi, South Korea
| | - Chen Fan
- Skin Research Institute of Singapore, Agency for Science, Technology and Research, A∗STAR, Singapore, Singapore
| | - Erick P. Gutiérrez-Grijalva
- Laboratorio de Alimentos Funcionales y Nutracéuticos, Cátedras CONACYT–Centro de Investigación en Alimentación y Desarrollo, Culiacán, México
| | - J. Basilio Heredia
- Laboratorio de Alimentos Funcionales y Nutracéuticos, Centro de Investigación en Alimentación y Desarrollo, Culiacán, México
| | - Veeranoot Nissapatorn
- School of Allied Health Sciences, Research Excellence Center for Innovation and Health Products (RECIHP) and World Union for Herbal Drugs Discovery (WUHeDD), Walailak University, Nakhon Si Thammarat, Thailand
| | - Watcharapong Mitsuwan
- School of Allied Health Sciences, Research Excellence Center for Innovation and Health Products (RECIHP) and World Union for Herbal Drugs Discovery (WUHeDD), Walailak University, Nakhon Si Thammarat, Thailand
| | - Maria Lourdes Pereira
- CICECO-Aveiro Institute of Materials and Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Muhammad Nawaz
- Department of Nano-Medicine Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Abolghasem Siyadatpanah
- Ferdows School of Paramedical and Health, Birjand University of Medical Sciences, Birjand, Iran
| | - Roghayeh Norouzi
- Department of Pathobiology, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Barbara Sawicka
- Faculty of Agrobioengineering, Department of Plant Production Technology and Commodities Science, University of Life Sciences in Lublin, Lublin, Poland
| | - Han-Seung Shin
- Department of Food Science & Biotechnology, Dongguk University-Seoul, Goyangsi, South Korea
| | - Jayanta Kumar Patra
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University-Seoul, Goyangsi, South Korea
| |
Collapse
|
7
|
Mathiyazhagan J, Kodiveri Muthukaliannan G. The role of mTOR and oral intervention of combined Zingiber officinale-Terminalia chebula extract in type 2 diabetes rat models. J Food Biochem 2020; 44:e13250. [PMID: 32462682 DOI: 10.1111/jfbc.13250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/20/2020] [Accepted: 03/31/2020] [Indexed: 11/29/2022]
Abstract
The present study examined the potential of Zingiber officinale-Terminalia chebula extract alone (ZO and TC) and in combination (ZOTC) against type 2 diabetes via downregulation of mechanistic target of rapamycin (mTOR). The 1:4 (ZOTC) ratio showed high cell survival percentage against the rat insulinoma cell line (RIN-5F) when compared to other possible ratios of ZOTC. Oral administration of ZO alone, TC alone, combined ZOTC (1:4), and the positive control metformin (Met) in fructose-streptozotocin (STZ) -induced diabetic rats showed reduced blood glucose levels, reduced insulin resistance (HOMA-IR), increased insulin levels, and increased pancreatic beta cell function (HOMA-β). ZOTC treatment in diabetic rats ameliorated the antioxidant status without affecting liver and serum parameters. Histological evaluation of the pancreas was performed to find pathological changes; the transcriptional and immunohistochemistry results showed reduced mTOR expression in the pancreas during ZOTC treatment. Conclusively, the results obtained suggest that ZOTC treatment against fructose-STZ-induced type 2 diabetes rat models can help regulate blood glucose, insulin levels, and normalize pancreatic β cell damage. PRACTICAL APPLICATIONS: Type 2 diabetes is a chronic metabolic disorder that affects a large number of populations worldwide. Zingiber officinale (ZO) and Terminalia chebula (TC) has been used in traditional medicine since ancient times against various ailments, including diabetes. In this study, we reported the effect of the combined ZOTC that showed significant blood glucose reduction and increased insulin levels via mTOR when compared to individual treatments. This finding is valuable for food technologists and alternative medicine practitioners to know the antidiabetic effect of the ZOTC combination.
Collapse
|
8
|
Abu-Serie MM, Habashy NH. Vitis vinifera polyphenols from seedless black fruit act synergistically to suppress hepatotoxicity by targeting necroptosis and pro-fibrotic mediators. Sci Rep 2020; 10:2452. [PMID: 32051531 PMCID: PMC7016101 DOI: 10.1038/s41598-020-59489-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 01/30/2020] [Indexed: 01/06/2023] Open
Abstract
Human is subjected from his surrounding to various hepatotoxins, which aggravates his liver. Nowadays, natural polyphenols have attracted great interest in health improvement, especially liver health. The present research, therefore, assessed the hepatotherapeutic potency of the isolated polyphenols (VVF1) from seedless (pulp and skin) black Vitis vinifera (VV) against CCl4-induced hepatotoxicity in vitro and in vivo. Further, VVF1 was fractionated into resveratrol-enriched (VVF2) and phenolics-enriched (VVF3) fractions to study (in vitro) the possible synergism of their coexistence. The highest content of phenolics in VVF1 displayed in vitro synergistic antioxidant and anti-hepatotoxic activities comparing to VVF2, VVF3, and silymarin (SM, reference drug). More importantly, it exhibited multiple in vivo regulatory functions via diminishing oxidative stress and inflammation, which in turn decreased necroptosis and pro-fibrotic mediators (mixed lineage kinase domain-like protein (MLKL), collagen type I alpha 1 chain (COL1A1), and transforming growth factor (TGF)-β1). In addition to these novel findings, VVF1 had higher anti-hepatotoxic potency than that of SM in most of the studied parameters. The histopathological analysis confirmed the improving role of VVF1 in the serious hepatic damage induced by CCl4. Thus, the synergistic functions of VVF1 polyphenols could be a promising new anti-hepatotoxic agent for targeting both necroptotic and profibrotic mediators.
Collapse
Affiliation(s)
- Marwa M Abu-Serie
- Department of Medical Biotechnology, Genetic Engineering, and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg EL-Arab, 21934, Alexandria, Egypt.
| | - Noha H Habashy
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt.
| |
Collapse
|
9
|
Chang Z, Zhang Q, Liang W, Zhou K, Jian P, She G, Zhang L. A Comprehensive Review of the Structure Elucidation of Tannins from Terminalia Linn. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2019; 2019:8623909. [PMID: 31885669 PMCID: PMC6925711 DOI: 10.1155/2019/8623909] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 10/29/2019] [Indexed: 12/17/2022]
Abstract
OBJECTIVES Tannins with complex structures are important plant resources, which are abundant in the genus Terminalia. Various Terminalia species have been playing an important role in traditional medicine system. A systematic scoping review of Terminalia Linn. research literature for tannins was conducted to summarize the structures of tannins and analysis fragmentation pathway characteristics, which could provide references for the structural analysis of tannins from Terminalia Linn. METHODS After an update of the literature search up to September 2018, the terms of Terminalia in all publications were analyzed. Electronic searches were conducted in scifinder and PubMed, and the information from 197 articles in all with regard to the tannin structure study was extracted. RESULTS The compounds of 82 tannins from the genus Terminalia were reviewed. According to the structural differences, they can be divided into three categories, hydrolysable tannins, condensed tannins, and complex tannins, respectively. The fragmentation pathways of 46 identified tannins were analyzed, and the fragmentation rules of tannins were speculated according to different types. CONCLUSION This review has attracted attention to the active substances in this species such as the tannins summarized in further study. How to improve the extraction and purification technology of tannins from genus Terminalia is an urgent problem to be solved.
Collapse
Affiliation(s)
- Zihao Chang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Qiunan Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Wenyi Liang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Kun Zhou
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Ping Jian
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Gaimei She
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Lanzhen Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| |
Collapse
|
10
|
Nootropic and Anti-Alzheimer's Actions of Medicinal Plants: Molecular Insight into Therapeutic Potential to Alleviate Alzheimer's Neuropathology. Mol Neurobiol 2018; 56:4925-4944. [PMID: 30414087 DOI: 10.1007/s12035-018-1420-2] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 10/29/2018] [Indexed: 12/21/2022]
Abstract
Medicinal plants are the backbone of modern medicine. In recent times, there is a great urge to discover nootropic medicinal plants to reverse cognitive dysfunction owing to their less adverse effects. Alzheimer's disease (AD) is an age-related neurodegenerative disorder characterized by the inevitable loss of cognitive function, memory and language impairment, and behavioral disturbances, which turn into gradually more severe. Alzheimer's has no current cure, but symptomatic treatments are available and research continues. The number of patients suffering from AD continues to rise and today, there is a worldwide effort under study to find better ways to alleviate Alzheimer's pathogenesis. In this review, the nootropic and anti-Alzheimer's potentials of 6 medicinal plants (i.e., Centella asiatica, Clitoria ternatea, Crocus sativus, Terminalia chebula, Withania somnifera, and Asparagus racemosus) were explored through literature review. This appraisal focused on available information about neuroprotective and anti-Alzheimer's use of these plants and their respective bioactive compounds/metabolites and associated effects in animal models and consequences of its use in human as well as proposed molecular mechanisms. This review progresses our existing knowledge to reveal the promising linkage of traditional medicine to halt AD pathogenesis. This analysis also avowed a new insight to search the promising anti-Alzheimer's drugs.
Collapse
|
11
|
Kopalli SR, Kang TB, Koppula S. Necroptosis inhibitors as therapeutic targets in inflammation mediated disorders - a review of the current literature and patents. Expert Opin Ther Pat 2016; 26:1239-1256. [PMID: 27568917 DOI: 10.1080/13543776.2016.1230201] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Recent studies have shown substantial interplay between the apoptosis and necroptosis pathways. Necroptosis, a form of programmed cell death, has been found to stimulate the immune system contributing to the pathophysiology of several inflammation-mediated disorders. Determining the contribution of necroptotic signaling pathways to inflammation may lead to the development of selective and specific molecular target implicated necroptosis inhibitors. Areas covered: This review summarizes the recently published and patented necroptosis inhibitors as therapeutic targets in inflammation-mediated disorders. The role of several necroptosis inhibitors, focusing on specific signaling molecules, was discussed with particular attention to inflammation-mediated disorders. Data was obtained from Espacenet®, WIPO®, USPTO® patent websites, and other relevant sources (2006-2016). Expert opinion: Necroptosis inhibitors hold promise for treatment of inflammation-mediated clinical conditions in which necroptotic cell death plays a major role. Although necroptosis inhibitors reviewed in this survey showed inhibitory effects against several inflammation-mediated disorders, only a few have passed to the stage of clinical testing and need extensive research for therapeutic practice. Revisiting the existing drugs and developing novel necroptosis inhibiting agents as well as understanding their mechanism are essential. A detailed study of necroptosis function in animal models of inflammation may provide us an alternative strategy for the development of drug-like necroptosis inhibitors.
Collapse
Affiliation(s)
| | - Tae-Bong Kang
- a College of Biomedical and Health Sciences , Konkuk University , Chungju , Republic of Korea
| | - Sushruta Koppula
- a College of Biomedical and Health Sciences , Konkuk University , Chungju , Republic of Korea
| |
Collapse
|