1
|
Li A, Ward JM, Tian K, Yu J, She S, Hou C, Guo H, Nic Chormaic S, Wang P. Evaporation characteristics of Er 3+-doped silica fiber and its application in the preparation of whispering gallery mode lasers. OPTICS EXPRESS 2024; 32:3912-3921. [PMID: 38297601 DOI: 10.1364/oe.509662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/01/2023] [Indexed: 02/02/2024]
Abstract
In this work, the concentration of rare-earth ions in doped silica whispering gallery lasers (WGLs) is controlled by evaporation. The fabrication of WGLs is used to experimentally evaluate the evaporation rate (mol/μm) and ratio (mol/mol) of erbium and silica lost from a doped fiber during heating. Fixed lengths of doped silica fiber are spliced to different lengths of undoped fiber and then evaporated by feeding into the focus of a CO2 laser. During evaporation, erbium ions are precipitated in the doped silica fiber to control the erbium concentration in the remaining SiO2, which is melted into a microsphere. By increasing the length of the undoped section, a critical point is reached where effectively no ions remain in the glass microsphere. The critical point is found using the spectra of the whispering gallery modes in microspheres with equal sizes. From the critical point, it is estimated that, for a given CO2 laser power, 6.36 × 10-21 mol of Er3+ is lost during the evaporation process for every cubic micron of silica fiber. This is equivalent to 1.74 × 10-7 mol of Er3+ lost per mol of SiO2 evaporated. This result facilitates the control of the doping concentration in WGLs and provides insight into the kinetics of laser-induced evaporation of doped silica.
Collapse
|
2
|
Towards a Glass New World: The Role of Ion-Exchange in Modern Technology. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11104610] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Glasses, in their different forms and compositions, have special properties that are not found in other materials. The combination of transparency and hardness at room temperature, combined with a suitable mechanical strength and excellent chemical durability, makes this material indispensable for many applications in different technological fields (as, for instance, the optical fibres which constitute the physical carrier for high-speed communication networks as well as the transducer for a wide range of high-performance sensors). For its part, ion-exchange from molten salts is a well-established, low-cost technology capable of modifying the chemical-physical properties of glass. The synergy between ion-exchange and glass has always been a happy marriage, from its ancient historical background for the realisation of wonderful artefacts, to the discovery of novel and fascinating solutions for modern technology (e.g., integrated optics). Getting inspiration from some hot topics related to the application context of this technique, the goal of this critical review is to show how ion-exchange in glass, far from being an obsolete process, can still have an important impact in everyday life, both at a merely commercial level as well as at that of frontier research.
Collapse
|
3
|
Toropov N, Cabello G, Serrano MP, Gutha RR, Rafti M, Vollmer F. Review of biosensing with whispering-gallery mode lasers. LIGHT, SCIENCE & APPLICATIONS 2021; 10:42. [PMID: 33637696 PMCID: PMC7910454 DOI: 10.1038/s41377-021-00471-3] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 01/04/2021] [Accepted: 01/09/2021] [Indexed: 05/04/2023]
Abstract
Lasers are the pillars of modern optics and sensing. Microlasers based on whispering-gallery modes (WGMs) are miniature in size and have excellent lasing characteristics suitable for biosensing. WGM lasers have been used for label-free detection of single virus particles, detection of molecular electrostatic changes at biointerfaces, and barcode-type live-cell tagging and tracking. The most recent advances in biosensing with WGM microlasers are described in this review. We cover the basic concepts of WGM resonators, the integration of gain media into various active WGM sensors and devices, and the cutting-edge advances in photonic devices for micro- and nanoprobing of biological samples that can be integrated with WGM lasers.
Collapse
Affiliation(s)
- Nikita Toropov
- Department of Physics and Astronomy, Living Systems Institute, University of Exeter, Exeter, EX4 4QD, UK.
| | - Gema Cabello
- Department of Physics and Astronomy, Living Systems Institute, University of Exeter, Exeter, EX4 4QD, UK
| | - Mariana P Serrano
- Departamento de Química, Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas, Universidad Nacional de La Plata, La Plata, 1900, Argentina
| | - Rithvik R Gutha
- Department of Physics and Astronomy, Living Systems Institute, University of Exeter, Exeter, EX4 4QD, UK
| | - Matías Rafti
- Departamento de Química, Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas, Universidad Nacional de La Plata, La Plata, 1900, Argentina
| | - Frank Vollmer
- Department of Physics and Astronomy, Living Systems Institute, University of Exeter, Exeter, EX4 4QD, UK.
| |
Collapse
|
4
|
Yu J, Zhang J, Wang R, Li A, Zhang M, Wang S, Wang P, Ward JM, Nic Chormaic S. A tellurite glass optical microbubble resonator. OPTICS EXPRESS 2020; 28:32858-32868. [PMID: 33114961 DOI: 10.1364/oe.406256] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/08/2020] [Indexed: 06/11/2023]
Abstract
We present a method for making microbubble whispering gallery resonators (WGRs) from tellurite, which is a soft glass, using a CO2 laser. The customized fabrication process permits us to process glasses with low melting points into microbubbles with loaded quality factors as high as 2.3 × 106. The advantage of soft glasses is that they provide a wide range of refractive index, thermo-optical, and optomechanical properties. The temperature and air pressure dependent optical characteristics of both passive and active tellurite microbubbles are investigated. For passive tellurite microbubbles, the measured temperature and air pressure sensitivities are 4.9 GHz/K and 7.1 GHz/bar, respectively. The large thermal tuning rate is due to the large thermal expansion coefficient of 1.9 × 10-5 K-1 of the tellurite microbubble. In the active Yb3+-Er3+ co-doped tellurite microbubbles, C-band single-mode lasing with a threshold of 1.66 mW is observed with a 980 nm pump and a maximum wavelength tuning range of 1.53 nm is obtained. The sensitivity of the laser output frequency to pressure changes is 6.5 GHz/bar. The microbubbles fabricated using this method have a low eccentricity and uniform wall thickness, as determined from electron microscope images and the optical spectra. The compound glass microbubbles described herein have the potential for a wide range of applications, including sensing, nonlinear optics, tunable microcavity lasers, and integrated photonics.
Collapse
|
5
|
Chen Z, Guo Z, Mu X, Li Q, Wu X, Fu HY. Packaged microbubble resonator optofluidic flow rate sensor based on Bernoulli Effect. OPTICS EXPRESS 2019; 27:36932-36940. [PMID: 31873464 DOI: 10.1364/oe.27.036932] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
A novel flow sensor based on dynamic fluid pressure changing in a packaged microbubble resonator without additional modification on its structure has been proposed and experimentally demonstrated. The results of sensing performance under both tunable laser source and broadband light source are presented. The flow rate sensitivity can reach up to 0.0196 pm / (µL/min). The fluid pressure variation caused by Bernoulli Effect is also analyzed theoretically.
Collapse
|
6
|
Chen X, Sun T, Wang F. Lanthanide-Based Luminescent Materials for Waveguide and Lasing. Chem Asian J 2019; 15:21-33. [PMID: 31746524 DOI: 10.1002/asia.201901447] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/19/2019] [Indexed: 11/10/2022]
Abstract
Microlasers and waveguides have wide applications in the fields of photonics and optoelectronics. Lanthanide-doped luminescent materials featuring large Stokes/anti-Stokes shift, long excited-state lifetime as well as sharp emission bandwidth are excellent optical components for photonic applications. In the past few years, great progress has been made in the design and fabrication of lanthanide-based waveguides and lasers at the micrometer length scale. Waveguide structures and microcavities can be fabricated from lanthanide-doped amorphous materials through top-down process. Alternatively, lanthanide-doped organic compounds featuring large absorption cross-section can self-assemble into low-dimensional structures of well-defined size and morphology. In recent years, lanthanide-doped crystalline structures displaying highly tunable excitation and emission properties have emerged as promising waveguide and lasing materials, which substantially extends the range of lasing wavelength. In this minireview, we discuss recent advances in lanthanide-based luminescent materials that are designed for waveguide and lasing applications. We also attempt to highlight challenging problems of these materials that obstacle further development of this field.
Collapse
Affiliation(s)
- Xian Chen
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Tianying Sun
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR, China.,City University of Hong Kong, Shenzhen Research Institute, Shenzhen, 518057, China
| | - Feng Wang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR, China.,City University of Hong Kong, Shenzhen Research Institute, Shenzhen, 518057, China
| |
Collapse
|
7
|
Tang SJ, Liu Z, Qian YJ, Shi K, Sun Y, Wu C, Gong Q, Xiao YF. A Tunable Optofluidic Microlaser in a Photostable Conjugated Polymer. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1804556. [PMID: 30311273 DOI: 10.1002/adma.201804556] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 09/02/2018] [Indexed: 05/11/2023]
Abstract
The optofluidic laser has become an important platform for biological sensing and medical diagnosis. To date, fluorescent dyes and proteins have been widely utilized as gain materials for biological analysis due to their good biocompatibility, but the limited photostability restricts their reliability and sensitivity. Here, an optofluidic microlaser with an ultralow threshold down to 7.8 µJ cm-2 in the ultrahigh-Q whispering-gallery microcavity, which is filled with a biocompatible conjugated polymer, is demonstrated. This conjugated polymer exhibits a significant enhancement in the lasing stability compared with a typical laser dye (Nile red). In the experiment, after 20 min of illumination with the excitation intensity of 23.2 MW cm-2 , the lasing intensity of the conjugated polymer experiences a decrease of less than 10%, while the lasing feature of Nile red completely disappears. Additionally, by mechanically stretching the resonator, the lasing frequency can be fine-tuned with the range of about 2 nm, exceeding the free spectral range of the resonator.
Collapse
Affiliation(s)
- Shui-Jing Tang
- State Key Laboratory for Mesoscopic Physics and School of Physics, Peking University, Beijing, 100871, P. R. China
- Collaborative Innovation Center of Quantum Matter, Beijing, 100871, P. R. China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Shanxi, Taiyuan, 030006, P. R. China
| | - Zhihe Liu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, P. R. China
| | - Yan-Jun Qian
- State Key Laboratory for Mesoscopic Physics and School of Physics, Peking University, Beijing, 100871, P. R. China
- Collaborative Innovation Center of Quantum Matter, Beijing, 100871, P. R. China
| | - Kebin Shi
- State Key Laboratory for Mesoscopic Physics and School of Physics, Peking University, Beijing, 100871, P. R. China
- Collaborative Innovation Center of Quantum Matter, Beijing, 100871, P. R. China
| | - Yujie Sun
- School of Life Sciences, Peking University, Beijing, 100871, P. R. China
| | - Changfeng Wu
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Qihuang Gong
- State Key Laboratory for Mesoscopic Physics and School of Physics, Peking University, Beijing, 100871, P. R. China
- Collaborative Innovation Center of Quantum Matter, Beijing, 100871, P. R. China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Shanxi, Taiyuan, 030006, P. R. China
| | - Yun-Feng Xiao
- State Key Laboratory for Mesoscopic Physics and School of Physics, Peking University, Beijing, 100871, P. R. China
- Collaborative Innovation Center of Quantum Matter, Beijing, 100871, P. R. China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Shanxi, Taiyuan, 030006, P. R. China
| |
Collapse
|
8
|
Gorajoobi SB, Murugan GS, Zervas MN. Design of rare-earth-doped microbottle lasers. OPTICS EXPRESS 2018; 26:26339-26354. [PMID: 30469723 DOI: 10.1364/oe.26.026339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 09/12/2018] [Indexed: 06/09/2023]
Abstract
Coupling strength in taper-coupled microbottle resonators can be tuned by offsetting the taper along the resonator profile, similar to controlling the air-gap in microsphere excitation, and hence, achieve desired coupling characteristics for a specific mode. Such flexibility makes microbottles attractive and adaptable laser cavities. In this paper, lasing characteristics of Yb3+-doped microbottle laser (MBL) coupled to tapered fiber are theoretically investigated. It is demonstrated that desired lasing characteristics for a particular mode are achievable by controlling the taper-resonator coupling, intrinsic quality factor (Q) and dopant concentration. Although, high Q whispering gallery cavities provide high internal powers, which is favorable especially for low gain materials, they lack high output powers. Hence, care should be taken in designing MBLs to attain the highest possible output power. Here, we address such issues, and optimized the required resonator parameters (for both pump and signal) for a low threshold pump power, high efficiency and desired lasing wavelength.
Collapse
|
9
|
Lu Q, Chen X, Xie S, Wu X. Controllable and selective single-mode lasing in polymer microbottle resonator. OPTICS EXPRESS 2018; 26:20183-20191. [PMID: 30119332 DOI: 10.1364/oe.26.020183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 07/16/2018] [Indexed: 06/08/2023]
Abstract
We report a single-mode dye-doped polymer microbottle resonator (MBR) laser. The selective single-mode lasing from different order whispering gallery modes is achieved by precisely controlling the axial and radial coupling position between a tapered nanofiber and an MBR, respectively. The side-mode suppression ratio is above 20 dB. By doping different fluorescence dyes into the MBR, single-mode lasers at various colors are demonstrated.
Collapse
|
10
|
Feng Z, Bai L. Advances of Optofluidic Microcavities for Microlasers and Biosensors. MICROMACHINES 2018; 9:mi9030122. [PMID: 30424056 PMCID: PMC6187242 DOI: 10.3390/mi9030122] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 03/02/2018] [Accepted: 03/06/2018] [Indexed: 01/06/2023]
Abstract
Optofluidic microcavities with high Q factor have made rapid progress in recent years by using various micro-structures. On one hand, they are applied to microfluidic lasers with low excitation thresholds. On the other hand, they inspire the innovation of new biosensing devices with excellent performance. In this article, the recent advances in the microlaser research and the biochemical sensing field will be reviewed. The former will be categorized based on the structures of optical resonant cavities such as the Fabry⁻Pérot cavity and whispering gallery mode, and the latter will be classified based on the working principles into active sensors and passive sensors. Moreover, the difficulty of single-chip integration and recent endeavors will be briefly discussed.
Collapse
Affiliation(s)
- Zhiqing Feng
- College of Physics and Materials Engineering, Dalian Nationalities University, Dalian 116600, China.
| | - Lan Bai
- College of Mechanical and Electronic Engineering, Dalian Nationalities University, Dalian 116600, China.
| |
Collapse
|
11
|
Lei F, Yang Y, Ward JM, Nic Chormaic S. Pump induced lasing suppression in Yb:Er-doped microlasers. OPTICS EXPRESS 2017; 25:24679-24689. [PMID: 29041414 DOI: 10.1364/oe.25.024679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
A pump source is one of the essential prerequisites in order to achieve lasing in a system, and, in most cases, a stronger pump leads to higher laser power at the output. However, this behavior may be suppressed if two pump beams are used. In this work, we show that lasing around the 1600 nm band can be suppressed completely if two pumps, at wavelengths of 980 nm and 1550 nm, are applied simultaneously to an Yb:Er-doped microlaser, whereas it can be revived by switching one of them off. This phenomenon can be explained by assuming that the presence of one pump (980 nm) changes the role of the other pump (1550 nm); more specifically, the 1550 nm pump starts to consume the population inversion instead of increasing it when the 980 nm pump power exceeds a certain value. As a result, the two pump fields lead to a closed-loop transition within the gain medium (i.e., the erbium ions). This study unveils an interplay similar to coherence effects between different pump pathways, thereby providing a reference for designing the laser pump, and may have applications in lasing control.
Collapse
|
12
|
Sumetsky M. Lasing microbottles. LIGHT, SCIENCE & APPLICATIONS 2017; 6:e17102. [PMID: 30167210 PMCID: PMC6061904 DOI: 10.1038/lsa.2017.102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 06/05/2017] [Accepted: 06/06/2017] [Indexed: 05/25/2023]
Affiliation(s)
- Misha Sumetsky
- Aston Institute of Photonic Technologies, Aston University, Birmingham B4 7ET, UK
| |
Collapse
|
13
|
Heylman KD, Knapper KA, Horak EH, Rea MT, Vanga SK, Goldsmith RH. Optical Microresonators for Sensing and Transduction: A Materials Perspective. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1700037. [PMID: 28627118 DOI: 10.1002/adma.201700037] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 03/01/2017] [Indexed: 05/27/2023]
Abstract
Optical microresonators confine light to a particular microscale trajectory, are exquisitely sensitive to their microenvironment, and offer convenient readout of their optical properties. Taken together, this is an immensely attractive combination that makes optical microresonators highly effective as sensors and transducers. Meanwhile, advances in material science, fabrication techniques, and photonic sensing strategies endow optical microresonators with new functionalities, unique transduction mechanisms, and in some cases, unparalleled sensitivities. In this progress report, the operating principles of these sensors are reviewed, and different methods of signal transduction are evaluated. Examples are shown of how choice of materials must be suited to the analyte, and how innovations in fabrication and sensing are coupled together in a mutually reinforcing cycle. A tremendously broad range of capabilities of microresonator sensors is described, from electric and magnetic field sensing to mechanical sensing, from single-molecule detection to imaging and spectroscopy, from operation at high vacuum to in live cells. Emerging sensing capabilities are highlighted and put into context in the field. Future directions are imagined, where the diverse capabilities laid out are combined and advances in scalability and integration are implemented, leading to the creation of a sensor unparalleled in sensitivity and information content.
Collapse
Affiliation(s)
- Kevin D Heylman
- Department of Chemistry, University of Wisconsin, 1101 University Ave, Madison, WI, 53706, USA
| | - Kassandra A Knapper
- Department of Chemistry, University of Wisconsin, 1101 University Ave, Madison, WI, 53706, USA
| | - Erik H Horak
- Department of Chemistry, University of Wisconsin, 1101 University Ave, Madison, WI, 53706, USA
| | - Morgan T Rea
- Department of Chemistry, University of Wisconsin, 1101 University Ave, Madison, WI, 53706, USA
| | - Sudheer K Vanga
- Department of Chemistry, University of Wisconsin, 1101 University Ave, Madison, WI, 53706, USA
| | - Randall H Goldsmith
- Department of Chemistry, University of Wisconsin, 1101 University Ave, Madison, WI, 53706, USA
| |
Collapse
|
14
|
Murphy RMJ, Lei F, Ward JM, Yang Y, Chormaic SN. All-optical nanopositioning of high-Q silica microspheres. OPTICS EXPRESS 2017; 25:13101-13106. [PMID: 28788847 DOI: 10.1364/oe.25.013101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 05/17/2017] [Indexed: 06/07/2023]
Abstract
A tunable, all-optical, coupling method is realised for a high-Q silica microsphere and an optical waveguide. By means of a novel optical nanopositioning method, induced thermal expansion of an asymmetric microsphere stem for laser powers up to 211 mW is observed and used to fine tune the microsphere-waveguide coupling. Microcavity displacements ranging from (0.61 ± 0.13) - (3.49 ± 0.13) μm and nanometer scale sensitivities varying from (2.81 ± 0.08) - (17.08 ± 0.76) nm/mW, with an apparent linear dependency of coupling distance on stem laser heating, are obtained. Using this method, the coupling is altered such that the different coupling regimes are achieved.
Collapse
|
15
|
Farnesi D, Righini G, Nunzi Conti G, Soria S. Efficient frequency generation in phoXonic cavities based on hollow whispering gallery mode resonators. Sci Rep 2017; 7:44198. [PMID: 28266641 PMCID: PMC5339817 DOI: 10.1038/srep44198] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 02/03/2017] [Indexed: 11/09/2022] Open
Abstract
We report on nonlinear optical effects on phoxonic cavities based on hollow whispering gallery mode resonators pumped with a continuous wave laser. We observed stimulated scattering effects such as Brillouin and Raman, Kerr effects such as degenerated and non-degenerated four wave mixing, and dispersive wave generation. These effects happened concomitantly. Hollow resonators give rise to a very rich nonlinear scenario due to the coexistence of several family modes.
Collapse
Affiliation(s)
- Daniele Farnesi
- CNR-IFAC- Institute of Applied Physics, Sesto Fiorentino, 50019, Italy.,Centro Studi e Ricerche "E. Fermi", Rome, 00184, Italy
| | - Giancarlo Righini
- CNR-IFAC- Institute of Applied Physics, Sesto Fiorentino, 50019, Italy.,Centro Studi e Ricerche "E. Fermi", Rome, 00184, Italy
| | | | - Silvia Soria
- CNR-IFAC- Institute of Applied Physics, Sesto Fiorentino, 50019, Italy
| |
Collapse
|
16
|
Aktaş O. Chalcogenide microresonators tailored to distinct morphologies by the shaping of glasses on silica tapers. OPTICS LETTERS 2017; 42:907-910. [PMID: 28248328 DOI: 10.1364/ol.42.000907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Production of chalcogenide (As2Se3) microresonators in sphere, loop, and bottle morphologies by the shaping of glasses at appropriate temperatures between cleaved silica tapers is reported. The quality factors exceed QS=6.2×105, QB=6.7×105, and QL=1.6×104 for the sphere, bottle, and loop microresonators, respectively. All-optical thermally assisted tuning with a rate of 0.61 nm/mW is demonstrated for a bottle microcavity pumped via a silica taper at a wavelength of 670 nm. This technique enables practical and robust in situ production of chalcogenide microresonators thermally spliced to silica fibers in several morphologies with a wide tuning range of size.
Collapse
|
17
|
Zhou ZH, Zou CL, Chen Y, Shen Z, Guo GC, Dong CH. Broadband tuning of the optical and mechanical modes in hollow bottle-like microresonators. OPTICS EXPRESS 2017; 25:4046-4053. [PMID: 28241612 DOI: 10.1364/oe.25.004046] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
In this paper, we report the mechanical tuning of the optical and mechanical modes in the hollow bottle-like microresonator (BLMR). The optical modes with a quality factor of 1.55 × 108 and mechanical modes with a quality factor of 2.5 × 103 were demonstrated in such microresonators. By stretching the microresonator, the optical modes can be tuned over one free spectral range, as large as 917 GHz (~ 7.3 nm). Meanwhile, the range of frequency tuning of mechanical modes can be as large as 1 MHz, which is about 2.9% of the mode frequency. This effective approach to tune the optomechanical cavity can be used for the tunable photon-phonon conversion and the synchronization of mechanical oscillators in separated optomechanical systems.
Collapse
|
18
|
Yang Y, Lei F, Kasumie S, Xu L, Ward JM, Yang L, Nic Chormaic S. Tunable erbium-doped microbubble laser fabricated by sol-gel coating. OPTICS EXPRESS 2017; 25:1308-1313. [PMID: 28158014 DOI: 10.1364/oe.25.001308] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
In this work, we show that the application of a sol-gel coating renders a microbubble whispering gallery resonator into an active device. During the fabrication of the resonator, a thin layer of erbium-doped sol-gel is applied to a tapered microcapillary, then a microbubble with a wall thickness of 1.3 μm is formed with the rare earth ions diffused into its wall. The doped microbubble is pumped at 980 nm and lases in the emission band of the Er3+ ions at 1535 nm. The laser wavelength can be shifted by aerostatic pressure tuning of the whispering gallery modes of the microbubble. Up to 240 pm tuning is observed with 2 bar of applied pressure. We also show that the doped microbubble could be used as a compact, tunable laser source.
Collapse
|
19
|
Bianucci P. Optical Microbottle Resonators for Sensing. SENSORS 2016; 16:s16111841. [PMID: 27827834 PMCID: PMC5134500 DOI: 10.3390/s16111841] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 10/27/2016] [Accepted: 10/31/2016] [Indexed: 01/29/2023]
Abstract
Whispering gallery mode (WGM) optical microresonators have been shown to be the basis for sensors able to detect minute changes in their environment. This has made them a well-established platform for highly sensitive physical, chemical, and biological sensors. Microbottle resonators (MBR) are a type of WGM optical microresonator. They share characteristics with other, more established, resonator geometries such as cylinders and spheres, while presenting their unique spectral signature and other distinguishing features. In this review, we discuss recent advances in the theory and fabrication of different kinds of MBRs, including hollow ones, and their application to optofluidic sensing.
Collapse
Affiliation(s)
- Pablo Bianucci
- Department of Physics, Concordia University, Montral, QC H4B 1R6, Canada.
| |
Collapse
|