1
|
Malekmohammadi S, Mirbagheri SA. Scale-up single chamber of microbial fuel cell using agitator and sponge biocarriers. ENVIRONMENTAL TECHNOLOGY 2024; 45:2935-2943. [PMID: 37006176 DOI: 10.1080/09593330.2023.2197126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 03/18/2023] [Indexed: 06/19/2023]
Abstract
Despite the high efficiency of microbial fuel cells (MFCs), MFCs cannot be a suitable alternative for treatment plants because of insufficient power generation and tiny reactors. Additionally, the increased reactor size and MFC stack result in a reduction in production power and reverse voltage. In this study, a larger MFC with a volume of 1.5 L has been designed called LMFC. A conventional MFC, called SMFC, with a volume of 0.157 L, was constructed and compared with LMFC. Moreover, the designed LMFC can be integrated with other treatment systems and generate significant electricity. In order to evaluate MFC's ability to integrate with other treatment systems, the LMFC reactor was converted into MFC-MBBR by adding sponge biocarriers. A 9.5 percent increase in reactor volume resulted in a 60 percent increase in power density from 290 (SMFC) to 530 (LMFC). An agitator effect was also investigated for better mixing and circulating substrate, which positively affected the power density by about 18%. Compared with LMFCs, the reactor with biocarriers generated a 28% higher power density. The COD removal efficiency of SMFC, LMFC, and MFC-MBBR reactors after 24 h was 85, 66, and 83%, respectively. After 80 h of operation, the Coulombic efficiency of the SMFC, LMFC, and MFC-MBBR reactors was 20.9, 45.43, and 47.28%, respectively. The doubling of coulombic efficiency from SMFC to LMFC reactor shows the design's success. The reduction of COD removal efficiency in LMFC is the reason for integrating this reactor with other systems, which was compensated by adding biocarriers.
Collapse
Affiliation(s)
- Sima Malekmohammadi
- Department of Environmental Engineering, Faculty of Civil Engineering, K. N. Toosi University of Technology, Tehran, Iran
| | - Seyed Ahmad Mirbagheri
- Department of Environmental Engineering, Faculty of Civil Engineering, K. N. Toosi University of Technology, Tehran, Iran
| |
Collapse
|
2
|
Karamzadeh M, Kadivarian M, Mahmoodi P, Asefi SS, Taghipour A. Modeling and experimental investigation of the effect of carbon source on the performance of tubular microbial fuel cell. Sci Rep 2023; 13:11070. [PMID: 37422509 PMCID: PMC10329718 DOI: 10.1038/s41598-023-38215-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 07/05/2023] [Indexed: 07/10/2023] Open
Abstract
Microbial fuel cells (MFCs) serve two main purposes: clean energy production and wastewater treatment. This study examines the impact of different carbon sources on MFC performance and develops a mathematical model to replicate the polarization curve. The biological reactor employed three types of carbon sources: glucose as a simple feed, microcrystalline cellulose (MCC), and a slurry of the organic component of municipal solid waste (SOMSW) as complex feeds. The MFCs were operated in both open and closed circuit modes. The maximum open circuit voltages achieved were 695 mV for glucose, 550 mV for MCC, and 520 mV for SOMSW as substrates. The influence of the substrate in closed circuit mode was also investigated, resulting in maximum power densities of 172 mW/m2, 55.5 mW/m2, and 47.9 mW/m2 for glucose, MCC, and SOMSW as substrates, respectively. In the second section, a mathematical model was developed to depict the polarization curve while considering voltage losses, namely activation, ohmic, and concentration loss, with an average relative error (ARE) of less than 10%. The mathematical models demonstrated that the activation loss of voltage increased with the complexity of the substrate and reached its peak value when SOMSW was used as the substrate.
Collapse
Affiliation(s)
- Masoud Karamzadeh
- Department of Chemical Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Milad Kadivarian
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
| | - Peyman Mahmoodi
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Seyedeh Sajedeh Asefi
- Department of Chemical Engineering, Babol Noshirvani University of Technology, Babol, Iran
| | - Amirhossein Taghipour
- Department of Chemical Engineering, Babol Noshirvani University of Technology, Babol, Iran
| |
Collapse
|
3
|
Montegiove N, Calzoni E, Pelosi D, Gammaitoni L, Barelli L, Emiliani C, Di Michele A, Cesaretti A. Optimizing Covalent Immobilization of Glucose Oxidase and Laccase on PV15 Fluoropolymer-Based Bioelectrodes. J Funct Biomater 2022; 13:jfb13040270. [PMID: 36547530 PMCID: PMC9785612 DOI: 10.3390/jfb13040270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/16/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
Enzymatic biofuel cells (EBCs) represent a promising technology for biosensors, biodevices, and sustainable green energy applications, thanks to enzymes' high specificity and catalytic efficiency. Nevertheless, drawbacks such as limited output power and short lifetime have to be solved. Nowadays, research is addressed to the use of 3D electrode structures, but the high cost and the industrialization difficulties of such electrodes represent a key issue. The purpose of the paper is thus to describe the use of a low-cost commercial conductive polymer (Sigracell® PV15) as support for the covalent immobilization of glucose oxidase and laccase, for bioanode and biocathode fabrication, respectively. Efficient immobilization protocols were determined for the immobilized enzymes in terms of employed linkers and enzyme concentrations, resulting in significant enzymatic activities for units of area. The analysis focuses specifically on the optimization of the challenging immobilization of laccase and assessing its stability over time. In particular, an optimum activity of 23 mU/cm2 was found by immobilizing 0.18 mg/cm2 of laccase, allowing better performances, as for voltage output and electrochemical stability, and a direct electron transfer mechanism to be revealed for the fabricated biocathode. This study thus poses the basis for the viable development of low-cost functional EBC devices for biomedical applications.
Collapse
Affiliation(s)
- Nicolò Montegiove
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy
| | - Eleonora Calzoni
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy
- Centro di Eccellenza sui Materiali Innovativi Nanostrutturati (CEMIN), University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
| | - Dario Pelosi
- Department of Engineering, University of Perugia, Via G. Duranti 93, 06125 Perugia, Italy
| | - Luca Gammaitoni
- Department of Physics and Geology, University of Perugia, Via Pascoli, 06123 Perugia, Italy
| | - Linda Barelli
- Department of Engineering, University of Perugia, Via G. Duranti 93, 06125 Perugia, Italy
| | - Carla Emiliani
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy
- Centro di Eccellenza sui Materiali Innovativi Nanostrutturati (CEMIN), University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
| | - Alessandro Di Michele
- Department of Physics and Geology, University of Perugia, Via Pascoli, 06123 Perugia, Italy
| | - Alessio Cesaretti
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy
- Centro di Eccellenza sui Materiali Innovativi Nanostrutturati (CEMIN), University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
- Correspondence: ; Tel.: +39-075-5857436
| |
Collapse
|
4
|
James A. Ceramic-microbial fuel cell (C-MFC) for waste water treatment: A mini review. ENVIRONMENTAL RESEARCH 2022; 210:112963. [PMID: 35217013 DOI: 10.1016/j.envres.2022.112963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/10/2022] [Accepted: 02/13/2022] [Indexed: 06/14/2023]
Abstract
Microbial fuel cell (MFC) is a bio-electrochemical system that utilizes the activity of electrogenic bacteria to generate electricity. When wastewater is used as feed in MFC, its organic constituents are hydrolyzed and oxidized by the bacteria. Hence, this technology is a source of clean electricity while simultaneously treating wastewater. Over the years much research has been done to improve its efficiency as well as to reduce the cost of implementation and functioning. However, scalability and commercialization of this technology still faces several challenges. This mini review discusses the use of ceramics in MFCs using wastewater feed as a method of overcoming the current technological challenges. Ceramics can be used as separators, chassis or electrode, conferring facile chemical and structural stability. The material is low-cost, environment-friendly and easily available. Studies reporting stacked configurations have been mentioned, and those that have reported field studies and technology oriented practical applications. Critical analysis of the scalability of the use of ceramics for the dual purpose of electricity generation as well as wastewater treatment has been done in this review. Future research directives towards potential sustainable commercialization have also been mentioned. C-MFC is a promising technology and the primary aim of this review is to help enhance the knowledge base for the optimization of use of ceramics in MFC to achieve large-scale clean electricity generation and sewage treatment.
Collapse
Affiliation(s)
- Anina James
- Department of Zoology, Deen Dayal Upadhyaya College, University of Delhi, Dwarka Sector 3, Delhi, 110078, India.
| |
Collapse
|
5
|
Sharma R, Kumari R, Pant D, Malaviya P. Bioelectricity generation from human urine and simultaneous nutrient recovery: Role of Microbial Fuel Cells. CHEMOSPHERE 2022; 292:133437. [PMID: 34973250 DOI: 10.1016/j.chemosphere.2021.133437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 12/20/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
Urine is a 'valuable waste' that can be exploited to generate bioelectricity and recover key nutrients for producing NPK-rich biofertilizers. In recent times, improved and innovative waste management technologies have emerged to manage the rapidly increasing environmental pollution and to accomplish the goal of sustainable development. Microbial fuel cells (MFCs) have attracted the attention of environmentalists worldwide to treat human urine and produce power through bioelectrochemical reactions in presence of electroactive bacteria growing on the anode. The bacteria break down the complex organic matter present in urine into simpler compounds and release the electrons which flow through an external circuit generating current at the cathode. Many other useful products are harvested at the end of the process. So, in this review, an attempt has been made to synthesize the information on MFCs fuelled with urine to generate bioelectricity and recover value-added resources (nutrients), and their modifications to enhance productivity. Moreover, configuration and mode of system operation, and factors enhancing the performance of MFCs have been also presented.
Collapse
Affiliation(s)
- Rozi Sharma
- Department of Environmental Sciences, University of Jammu, Jammu, Jammu and Kashmir, India
| | - Rekha Kumari
- Department of Environmental Sciences, University of Jammu, Jammu, Jammu and Kashmir, India
| | - Deepak Pant
- Separation & Conversion Technology, Flemish Institute for Technological Research (VITO), Boeretang 200, Mol, 2400, Belgium
| | - Piyush Malaviya
- Department of Environmental Sciences, University of Jammu, Jammu, Jammu and Kashmir, India.
| |
Collapse
|
6
|
Walter XA, Madrid E, Gajda I, Greenman J, Ieropoulos I. Microbial fuel cell scale-up options: Performance evaluation of membrane ( c-MFC) and membrane-less ( s-MFC) systems under different feeding regimes. JOURNAL OF POWER SOURCES 2022; 520:230875. [PMID: 35125632 PMCID: PMC8795817 DOI: 10.1016/j.jpowsour.2021.230875] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/29/2021] [Accepted: 12/04/2021] [Indexed: 05/30/2023]
Abstract
In recent years, bioelectrochemical systems have advanced towards upscaling applications and tested during field trials, primarily for wastewater treatment. Amongst reported trials, two designs of urine-fed microbial fuel cells (MFCs) were tested successfully on a pilot scale as autonomous sanitation systems for decentralised area. These designs, known as ceramic MFCs ( c -MFCs) and self-stratifying MFCs ( s -MFC), have never been calibrated under similar conditions. Here, the most advanced versions of both designs were assembled and tested under similar feeding conditions. The performance and efficiency were evaluated under different hydraulic retention times (HRT), through chemical oxygen demand measures and polarisation experiments. Results show that c -MFCs displayed constant performance independently from the HRT (32.2 ± 3.9 W m-3) whilst displaying high energy conversion efficiency at longer HRT (NER COD = 2.092 ± 0.119 KWh.Kg COD -1, at 24h HRT). The s -MFC showed a correlation between performance and HRT. The highest performance was reached under short HRT (69.7 ± 0.4 W m-3 at 3h HRT), but the energy conversion efficiency was constant independently from the HRT (0.338 ± 0.029 KWh.Kg COD -1). The c -MFCs and s -MFCs similarly showed the highest volumetric efficiency under long HRT (65h) with NER V of 0.747 ± 0.010 KWh.m-3 and 0.825 ± 0.086 KWh.m-3, respectively. Overall, c -MFCs seems more appropriate for longer HRT and s -MFCs for shorter HRT.
Collapse
Affiliation(s)
- Xavier Alexis Walter
- Bristol BioEnergy Centre, Bristol Robotics Laboratory, T-Block, UWE, Coldharbour Lane, Bristol, BS16 1QY, UK
| | - Elena Madrid
- Bristol BioEnergy Centre, Bristol Robotics Laboratory, T-Block, UWE, Coldharbour Lane, Bristol, BS16 1QY, UK
| | - Iwona Gajda
- Bristol BioEnergy Centre, Bristol Robotics Laboratory, T-Block, UWE, Coldharbour Lane, Bristol, BS16 1QY, UK
| | - John Greenman
- Bristol BioEnergy Centre, Bristol Robotics Laboratory, T-Block, UWE, Coldharbour Lane, Bristol, BS16 1QY, UK
- Biological, Biomedical and Analytical Sciences, UWE, Coldharbour Lane, Bristol, BS16 1QY, UK
| | - Ioannis Ieropoulos
- Bristol BioEnergy Centre, Bristol Robotics Laboratory, T-Block, UWE, Coldharbour Lane, Bristol, BS16 1QY, UK
| |
Collapse
|
7
|
Merino Jimenez I, Brinson P, Greenman J, Ieropoulos I. Electronic faucet powered by low cost ceramic microbial fuel cells treating urine. JOURNAL OF POWER SOURCES 2021; 506:230004. [PMID: 34539048 PMCID: PMC8363936 DOI: 10.1016/j.jpowsour.2021.230004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 05/01/2021] [Accepted: 05/04/2021] [Indexed: 06/13/2023]
Abstract
Hygienic measures are extremely important to avoid the transmission of contagious viruses and diseases. The use of an electronic faucet increases the hygiene, encourages hand washing, avoids touching the faucet for opening and closing, and it saves water, since the faucet is automatically closed. The microbial fuel cell (MFC) technology has the capability to convert environmental waste into energy. The implementation of low cost ceramic MFCs into electronic interfaces integrated in toilets, would offer a compact powering system as well as an environmentally friendly small-scale treatment plant. In this work, the use of low cost ceramic MFCs to power an L20-E electronic faucet is presented for the first time. A single MFC was capable of powering an electronic faucet with an open/close cycle of 8.5 min, with 200 ml of urine. With a footprint of 360 cm3, the MFC could easily be integrated in a toilet. The possibility to power e-toilet components with MFCs offers a sustainable energy generation system. Other electronic components including an automatic flush, could potentially be powered by MFCs and contribute to the maintenance efficiency and hygiene of the public toilets, leading to a new generation of self-sustained energy recovering e-toilets.
Collapse
Affiliation(s)
- Irene Merino Jimenez
- Bristol BioEnergy Centre, Bristol Robotics Laboratory, University of the West of England, BS16 1QY, UK
| | - Patrick Brinson
- Bristol BioEnergy Centre, Bristol Robotics Laboratory, University of the West of England, BS16 1QY, UK
| | - John Greenman
- Bristol BioEnergy Centre, Bristol Robotics Laboratory, University of the West of England, BS16 1QY, UK
- Biological, Biomedical and Analytical Sciences, University of the West of England, BS16 1QY, UK
| | - Ioannis Ieropoulos
- Bristol BioEnergy Centre, Bristol Robotics Laboratory, University of the West of England, BS16 1QY, UK
- Biological, Biomedical and Analytical Sciences, University of the West of England, BS16 1QY, UK
| |
Collapse
|
8
|
Gajda I, You J, Mendis BA, Greenman J, Ieropoulos IA. Electrosynthesis, modulation, and self-driven electroseparation in microbial fuel cells. iScience 2021; 24:102805. [PMID: 34471855 PMCID: PMC8390849 DOI: 10.1016/j.isci.2021.102805] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Microbial electrosynthesis (MES) represents a sustainable platform that converts waste into resources, using microorganisms within an electrochemical cell. Traditionally, MES refers to the oxidation/reduction of a reactant at the electrode surface with externally applied potential bias. However, microbial fuel cells (MFCs) generate electrons that can drive electrochemical reactions at otherwise unbiased electrodes. Electrosynthesis in MFCs is driven by microbial oxidation of organic matter releasing electrons that force the migration of cationic species to the cathode. Here, we explore how electrosynthesis can coexist within electricity-producing MFCs thanks to electro-separation of cations, electroosmotic drag, and oxygen reduction within appropriately designed systems. More importantly, we report on a novel method of in situ modulation for electrosynthesis, through additional “pin” electrodes. Several MFC electrosynthesis modulating methods that adjust the electrode potential of each half-cell through the pin electrodes are presented. The innovative concept of electrosynthesis within the electricity producing MFCs provides a multidisciplinary platform converting waste-to-resources in a self-sustainable way.
Collapse
Affiliation(s)
- Iwona Gajda
- Bristol BioEnergy Centre, Bristol Robotics Laboratory, T-Block, Frenchay Campus, University of the West of England (UWE Bristol), Bristol BS16 1QY, UK
| | - Jiseon You
- Bristol BioEnergy Centre, Bristol Robotics Laboratory, T-Block, Frenchay Campus, University of the West of England (UWE Bristol), Bristol BS16 1QY, UK
| | - Buddhi Arjuna Mendis
- Bristol BioEnergy Centre, Bristol Robotics Laboratory, T-Block, Frenchay Campus, University of the West of England (UWE Bristol), Bristol BS16 1QY, UK
| | - John Greenman
- Bristol BioEnergy Centre, Bristol Robotics Laboratory, T-Block, Frenchay Campus, University of the West of England (UWE Bristol), Bristol BS16 1QY, UK
| | - Ioannis A Ieropoulos
- Bristol BioEnergy Centre, Bristol Robotics Laboratory, T-Block, Frenchay Campus, University of the West of England (UWE Bristol), Bristol BS16 1QY, UK
| |
Collapse
|
9
|
Merino-Jimenez I, Obata O, Pasternak G, Gajda I, Greenman J, Ieropoulos I. Effect of microbial fuel cell operation time on the disinfection efficacy of electrochemically synthesised catholyte from urine. Process Biochem 2021; 101:294-303. [PMID: 33664628 PMCID: PMC7893686 DOI: 10.1016/j.procbio.2020.10.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The MFC with the thickest ceramic membrane produced the best quality catholyte. MFC operation time contributes to the catholyte quality and killing properties. Catholyte from ceramic MFC (10 mm) reached pH 11 at day 42 and eradicated E. coli.
Microbial fuel cells (MFCs) offer an excellent solution to tackle some of the major challenges currently faced by humankind: sustainable energy sources, waste management and water stress. Besides treating wastewater and producing useful electricity from urine, ceramic MFCs can also generate biocidal catholyte in-situ. It has been proved that the electricity generation from the MFCs has a high impact in the catholyte composition. Therefore, the catholyte composition constantly changes while electricity is generated. However, these changes in catholyte composition with time has not yet been studied and that could highly contribute to the disinfection efficacy. In this work, the evolution of the catholyte generation and composition with the MFC operation time has been chemically and microbiologically evaluated, during 42 days. The results show an increase in pH and conductivity with the operation time, reaching pH 11.5. Flow cytometry and luminometer analyses of bioluminescent pathogenic E. coli exposed to the synthesised catholyte revealed killing properties against bacterial cells. A bio-electrochemical system, capable of electricity generation and simultaneous production of bactericidal catholyte from human urine is presented. The possibility to electrochemically generate in-situ a bacterial killing agent from urine, offers a great opportunity for water reuse and resource recovery for practical implementations.
Collapse
Affiliation(s)
- I Merino-Jimenez
- Laboratory of Microbial Electrochemical Systems, Faculty of Chemistry, Wroclaw University of Science and Technology, 50-370, Wroclaw, Poland.,Instituto de Microelectrónica de Barcelona, IMB-CNM (CSIC), Spanish National Research Council, C/ del Til·lers, Campus Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Barcelona, Spain
| | - O Obata
- Bristol BioEnergy Centre, Bristol Robotics Laboratory, University of the West of England, BS16 1QY, UK
| | - G Pasternak
- Laboratory of Microbial Electrochemical Systems, Faculty of Chemistry, Wroclaw University of Science and Technology, 50-370, Wroclaw, Poland.,Instituto de Microelectrónica de Barcelona, IMB-CNM (CSIC), Spanish National Research Council, C/ del Til·lers, Campus Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Barcelona, Spain
| | - I Gajda
- Bristol BioEnergy Centre, Bristol Robotics Laboratory, University of the West of England, BS16 1QY, UK
| | - J Greenman
- Biological, Biomedical and Analytical Sciences, University of the West of England, BS16 1QY, UK
| | - I Ieropoulos
- Bristol BioEnergy Centre, Bristol Robotics Laboratory, University of the West of England, BS16 1QY, UK.,Biological, Biomedical and Analytical Sciences, University of the West of England, BS16 1QY, UK
| |
Collapse
|
10
|
Mohamed A, Zmuda HM, Ha PT, Coats ER, Beyenal H. Large-scale switchable potentiostatically controlled/microbial fuel cell bioelectrochemical wastewater treatment system. Bioelectrochemistry 2020; 138:107724. [PMID: 33485135 DOI: 10.1016/j.bioelechem.2020.107724] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 10/22/2022]
Abstract
The treatment of municipal wastewater is an energy-intensive process, with the delivery of oxygen as an electron acceptor accounting for a significant share of the total energy consumption. Microbial communities growing on polarized electrodes can facilitate wastewater treatment processes by exchanging electrons with the electrodes. As a new approach, we combined the use of polarized electrodes with microbial fuel cells (MFCs) to develop a switchable dual-mode bioelectrochemical wastewater treatment system. In this system, we first enriched microbial communities on polarized anodes and cathodes. After enrichment, the system was switched to either a self-powered MFC (SP-MFC) mode or a potentiostatically controlled (PC) mode. The system was evaluated at the laboratory scale (260 L, 4 anode and cathode pairs) and the pilot scale (1200 L, 16 anode and cathode pairs). PC and SP-MFC systems showed improved COD removal relative to control (41.6 ± 3.5 and 38.4 ± 3.1 vs 28.8 ± 2.1 mg L-1 d-1, respectively). The laboratory-scale system was operated without biological or electrical interruption for one year. Finally, specific enrichment of active microbial communities was observed on PC anodes in comparison to mixed-operation and non-polarized control anodes. The combined PC and SP-MFC systems allowed us to develop a sustainable and failure-free bioelectrochemical wastewater treatment system.
Collapse
Affiliation(s)
- Abdelrhman Mohamed
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, USA
| | - Hannah M Zmuda
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, USA
| | - Phuc T Ha
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, USA
| | - Erik R Coats
- Department of Civil and Environmental Engineering, University of Idaho, Moscow, ID, USA
| | - Haluk Beyenal
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, USA.
| |
Collapse
|
11
|
|
12
|
Jiang Y, Liang Q, Chu N, Hao W, Zhang L, Zhan G, Li D, Zeng RJ. A slurry electrode integrated with membrane electrolysis for high-performance acetate production in microbial electrosynthesis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 741:140198. [PMID: 32574921 DOI: 10.1016/j.scitotenv.2020.140198] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/09/2020] [Accepted: 06/11/2020] [Indexed: 06/11/2023]
Abstract
Microbial electrosynthesis (MES) technology employs electrotrophic microbes as biocatalysts to produce chemicals from CO2. The application of a slurry electrode can enlarge the surface area to volume ratio, and membrane electrolysis (ME) for on-line extraction can solve the problem of product inhibition. This study constructed a novel dual-chamber ME-MES integrated system equipped with a slurry electrode, and the effect of concentration of powder-activated carbon (AC) in the catholyte on chemical production was also evaluated. The integrated system amended with 5 g L-1 AC produced up to 13.4 g L-1 acetate, showing a 179% increase compared with the control group without AC (4.8 g L-1). However, further increasing the AC concentration to 10 and 20 g L-1 resulted in decreased acetate production. A high concentration of AC showed higher antimicrobial activity to methanogens, as compared to acetogens. Amending AC exacerbated the process of electroosmosis. Also, amending AC with 0 to 10 g L-1 decreased the electrochemical losses via both the membrane and electrolyte. The chemical production using H2 or the electrode as electron donors showed a similar trend when amending AC. The present study provided important information for guiding future research to construct an efficient configuration of an MES bioreactor.
Collapse
Affiliation(s)
- Yong Jiang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Qinjun Liang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Na Chu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Wen Hao
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Lixia Zhang
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| | - Guoqiang Zhan
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| | - Daping Li
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Raymond Jianxiong Zeng
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| |
Collapse
|
13
|
Removal of Perfluorooctanoic Acid and Microcystins from Drinking Water by Electrocoagulation. J CHEM-NY 2020. [DOI: 10.1155/2020/1836264] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Perfluorooctanoic acid (PFOA) and microcystins are some of the well-known chemical contaminants in drinking water in the USA. Despite the availability of filtration technologies like ion-exchange resins, activated-carbon, and high-pressure membrane filters, these contaminants still remain widespread in the environment. In the present study, two innovative aspects of electrocoagulation techniques were tested, (a) cheap and easy-to-operate field-unit instead of hi-tech electrocoagulation and (b) reverse-polarity instead of conventional polarity, and applied to remove PFOA and microcystins from drinking water sources. The method presented here outperformed commercial activated-carbon filtration by nearly 40%. When the efficiency of electrocoagulation was examined in terms of voltage discharge, pH, and reverse-polarity, the results averaged 80% decontamination for individual treatment, while their combined effects produced 100% detoxification in 10–40 minutes, exceeding recently published results. The method shows great economic promise for water and wastewater treatment and chemical recycling.
Collapse
|
14
|
Gajda I, Obata O, Jose Salar-Garcia M, Greenman J, Ieropoulos IA. Long-term bio-power of ceramic microbial fuel cells in individual and stacked configurations. Bioelectrochemistry 2020; 133:107459. [PMID: 32126486 PMCID: PMC7132540 DOI: 10.1016/j.bioelechem.2020.107459] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/08/2020] [Accepted: 01/08/2020] [Indexed: 11/30/2022]
Abstract
In order to improve the potential of Microbial Fuel Cells (MFCs) as an applicable technology, the main challenge is to engineer practical systems for bioenergy production at larger scales and to test how the prototypes withstand the challenges occurring during the prolonged operation under constant feeding regime with real waste stream. This work presents the performance assessment of low-cost ceramic MFCs in the individual, stacked (modular) and modular cascade (3 modules) configurations during long term operation up to 19 months, utilising neat human urine as feedstock. During 1 year, the performance of the individual MFC units reached up to 1.56 mW (22.3 W/m3), exhibiting only 20% power loss on day 350 which was significantly smaller in comparison to conventional proton or cation exchange membranes. The stack module comprising 22 MFCs reached up to 21.4 mW (11.9 W/m3) showing power recovery to the initial output levels after 580 days, whereas the 3-module cascade reached up to 75 mW (13.9 W/m3) of power, showing 20% power loss on day 446. In terms of chemical oxygen demand (COD) removal, the 3-module cascade configuration achieved a cumulative reduction of >92%, which is higher than that observed in the single module (56%).
Collapse
Affiliation(s)
- Iwona Gajda
- Bristol BioEnergy Centre, Bristol Robotics Laboratory, University of the West of England, BS16 1QY, UK.
| | - Oluwatosin Obata
- Bristol BioEnergy Centre, Bristol Robotics Laboratory, University of the West of England, BS16 1QY, UK
| | - Maria Jose Salar-Garcia
- Bristol BioEnergy Centre, Bristol Robotics Laboratory, University of the West of England, BS16 1QY, UK
| | - John Greenman
- Bristol BioEnergy Centre, Bristol Robotics Laboratory, University of the West of England, BS16 1QY, UK; Centre For Research in Biosciences, University of the West of England, BS16 1QY, UK
| | - Ioannis A Ieropoulos
- Bristol BioEnergy Centre, Bristol Robotics Laboratory, University of the West of England, BS16 1QY, UK; Centre For Research in Biosciences, University of the West of England, BS16 1QY, UK.
| |
Collapse
|
15
|
Gajda I, Obata O, Greenman J, Ieropoulos IA. Electroosmotically generated disinfectant from urine as a by-product of electricity in microbial fuel cell for the inactivation of pathogenic species. Sci Rep 2020; 10:5533. [PMID: 32218453 PMCID: PMC7099033 DOI: 10.1038/s41598-020-60626-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 02/14/2020] [Indexed: 02/03/2023] Open
Abstract
This work presents a small scale and low cost ceramic based microbial fuel cell, utilising human urine into electricity, while producing clean catholyte into an initially empty cathode chamber through the process of electro-osmostic drag. It is the first time that the catholyte obtained as a by-product of electricity generation from urine was transparent in colour and reached pH>13 with high ionic conductivity values. The catholyte was collected and used ex situ as a killing agent for the inactivation of a pathogenic species such as Salmonella typhimurium, using a luminometer assay. Results showed that the catholyte solutions were efficacious in the inactivation of the pathogen organism even when diluted up to 1:10, resulting in more than 5 log-fold reduction in 4 min. Long-term impact of the catholyte on the pathogen killing was evaluated by plating Salmonella typhimurium on agar plates and showed that the catholyte possesses a long-term killing efficacy and continued to inhibit pathogen growth for 10 days.
Collapse
Affiliation(s)
- Iwona Gajda
- Bristol BioEnergy Centre, Bristol Robotics Laboratory, University of the West of England, Bristol, BS16 1QY, UK.
| | - Oluwatosin Obata
- Bristol BioEnergy Centre, Bristol Robotics Laboratory, University of the West of England, Bristol, BS16 1QY, UK
| | - John Greenman
- Bristol BioEnergy Centre, Bristol Robotics Laboratory, University of the West of England, Bristol, BS16 1QY, UK.,Biological, Biomedical and Analytical Sciences, University of the West of England, Bristol, BS16 1QY, UK
| | - Ioannis A Ieropoulos
- Bristol BioEnergy Centre, Bristol Robotics Laboratory, University of the West of England, Bristol, BS16 1QY, UK. .,Biological, Biomedical and Analytical Sciences, University of the West of England, Bristol, BS16 1QY, UK.
| |
Collapse
|
16
|
Santoro C, Garcia MJS, Walter XA, You J, Theodosiou P, Gajda I, Obata O, Winfield J, Greenman J, Ieropoulos I. Urine in Bioelectrochemical Systems: An Overall Review. ChemElectroChem 2020; 7:1312-1331. [PMID: 32322457 PMCID: PMC7161917 DOI: 10.1002/celc.201901995] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/05/2020] [Indexed: 12/18/2022]
Abstract
In recent years, human urine has been successfully used as an electrolyte and organic substrate in bioelectrochemical systems (BESs) mainly due of its unique properties. Urine contains organic compounds that can be utilised as a fuel for energy recovery in microbial fuel cells (MFCs) and it has high nutrient concentrations including nitrogen and phosphorous that can be concentrated and recovered in microbial electrosynthesis cells and microbial concentration cells. Moreover, human urine has high solution conductivity, which reduces the ohmic losses of these systems, improving BES output. This review describes the most recent advances in BESs utilising urine. Properties of neat human urine used in state-of-the-art MFCs are described from basic to pilot-scale and real implementation. Utilisation of urine in other bioelectrochemical systems for nutrient recovery is also discussed including proofs of concept to scale up systems.
Collapse
Affiliation(s)
- Carlo Santoro
- Bristol BioEnergy CentreBristol Robotics Laboratory, T-Block, UWEColdharbour LaneBristolBS16 1QYUK
| | - Maria Jose Salar Garcia
- Bristol BioEnergy CentreBristol Robotics Laboratory, T-Block, UWEColdharbour LaneBristolBS16 1QYUK
| | - Xavier Alexis Walter
- Bristol BioEnergy CentreBristol Robotics Laboratory, T-Block, UWEColdharbour LaneBristolBS16 1QYUK
| | - Jiseon You
- Bristol BioEnergy CentreBristol Robotics Laboratory, T-Block, UWEColdharbour LaneBristolBS16 1QYUK
| | - Pavlina Theodosiou
- Bristol BioEnergy CentreBristol Robotics Laboratory, T-Block, UWEColdharbour LaneBristolBS16 1QYUK
| | - Iwona Gajda
- Bristol BioEnergy CentreBristol Robotics Laboratory, T-Block, UWEColdharbour LaneBristolBS16 1QYUK
| | - Oluwatosin Obata
- Bristol BioEnergy CentreBristol Robotics Laboratory, T-Block, UWEColdharbour LaneBristolBS16 1QYUK
| | - Jonathan Winfield
- Bristol BioEnergy CentreBristol Robotics Laboratory, T-Block, UWEColdharbour LaneBristolBS16 1QYUK
| | - John Greenman
- Bristol BioEnergy CentreBristol Robotics Laboratory, T-Block, UWEColdharbour LaneBristolBS16 1QYUK
- Biological, Biomedical and Analytical Sciences, UWEColdharbour LaneBristolBS16 1QYUK
| | - Ioannis Ieropoulos
- Bristol BioEnergy CentreBristol Robotics Laboratory, T-Block, UWEColdharbour LaneBristolBS16 1QYUK
- Biological, Biomedical and Analytical Sciences, UWEColdharbour LaneBristolBS16 1QYUK
| |
Collapse
|
17
|
Gajda I, Greenman J, Santoro C, Serov A, Atanassov P, Melhuish C, Ieropoulos IA. Multi-functional microbial fuel cells for power, treatment and electro-osmotic purification of urine. JOURNAL OF CHEMICAL TECHNOLOGY AND BIOTECHNOLOGY (OXFORD, OXFORDSHIRE : 1986) 2019; 94:2098-2106. [PMID: 31423040 PMCID: PMC6686702 DOI: 10.1002/jctb.5792] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 07/26/2018] [Accepted: 07/31/2018] [Indexed: 05/05/2023]
Abstract
BACKGROUND In this work, a small-scale ceramic microbial fuel cell (MFC) with a novel type of metal-carbon-derived electrocatalyst containing iron and nicarbazin (Fe-NCB) was developed, to enhance electricity generation from neat human urine. Substrate oxidation at the anode provides energy for the separation of ions and recovery from urine without any chemical or external power additions. RESULTS The catalyst was shown to be effective in clear electrolyte synthesis of high pH, compared with a range of carbon-based metal-free materials. Polarisation curves of tested MFCs showed up to 53% improvement (44.8 W m-3) in performance with the use of Fe-NCB catalyst.Catholyte production rate and pH directly increased with power performance while the conductivity decreased showing visually clear extracted liquid in the best-performing MFCs. CONCLUSIONS Iron based catalyst Fe-NCB was shown to be a suitable electrocatalyst for the air-breathing cathode, improving power production from urine-fed MFCs. The results suggest electrochemical treatment through electro-osmotic drag while the electricity is produced and not consumed. Electro-osmotic production of clear catholyte is shown to extract water from urine against osmotic pressure. Recovering valuable resources from urine would help to transform energy intensive treatments to resource production, and will create opportunities for new technology development. © 2018 The Authors. Journal of Chemical Technology & Biotechnology published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Iwona Gajda
- Bristol BioEnergy Centre, Bristol Robotics LaboratoryDepartment of Engineering Design and Mathematics, University of the West of EnglandBristolUK
| | - John Greenman
- Bristol BioEnergy Centre, Bristol Robotics LaboratoryDepartment of Engineering Design and Mathematics, University of the West of EnglandBristolUK
- Department of Applied SciencesUniversity of the West of EnglandBristolUK
| | - Carlo Santoro
- Center for Micro‐Engineered Materials (CMEM), Department of Chemical and Biological EngineeringUniversity of New MexicoAlbuquerqueNMUSA
| | - Alexey Serov
- Center for Micro‐Engineered Materials (CMEM), Department of Chemical and Biological EngineeringUniversity of New MexicoAlbuquerqueNMUSA
| | - Plamen Atanassov
- Center for Micro‐Engineered Materials (CMEM), Department of Chemical and Biological EngineeringUniversity of New MexicoAlbuquerqueNMUSA
| | - Chris Melhuish
- Bristol BioEnergy Centre, Bristol Robotics LaboratoryDepartment of Engineering Design and Mathematics, University of the West of EnglandBristolUK
| | - Ioannis A Ieropoulos
- Bristol BioEnergy Centre, Bristol Robotics LaboratoryDepartment of Engineering Design and Mathematics, University of the West of EnglandBristolUK
- Department of Applied SciencesUniversity of the West of EnglandBristolUK
| |
Collapse
|
18
|
Winfield J, Greenman J, Ieropoulos I. Response of ceramic microbial fuel cells to direct anodic airflow and novel hydrogel cathodes. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY 2019; 44:15344-15354. [PMID: 31217664 PMCID: PMC6558992 DOI: 10.1016/j.ijhydene.2019.04.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 03/22/2019] [Accepted: 04/03/2019] [Indexed: 06/09/2023]
Abstract
The presence of air in the anode chamber of microbial fuel cells (MFCs) might be unavoidable in some applications. This study purposely exposed the anodic biofilm to air for sustained cycles using ceramic cylindrical MFCs. A method for improving oxygen uptake at the cathode by utilising hydrogel was also trialled. MFCs only dropped by 2 mV in response to the influx of air. At higher air-flow rates (up to 1.1 L/h) after 43-45 h, power did eventually decrease because chemical oxygen demand (COD) was being consumed (up to 96% reduction), but recovered immediately with fresh feedstock, highlighting no permanent damage to the biofilm. Two months after the application of hydrogel to the cathode chamber, MFC power increased 182%, due to better contact between cathode and ceramic surface. The results suggest a novel way of improving MFC performance using hydrogels, and demonstrates the robustness of the electro-active biofilm both during and following exposure to air.
Collapse
|
19
|
Zhu T, Jiang L, Li Y, Xie Z, Li Z, Lv L, Chen H, Zhao Z, Jiang L, Tang B, Huang H. Converting Thioether Waste into Organic Semiconductors by Carbon–Sulfur Bond Activation. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201901274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ting Zhu
- Center of Materials Science and Optoelectronics EngineeringCollege of Materials Science and Opto-Electronic Technology & CAS Center for Excellence in Topological Quantum Computation & CAS Key Laboratory of Vacuum PhysicUniversity of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Longfeng Jiang
- Key Laboratory of Organic SolidsBeijing National Laboratory for Molecular ScienceInstitute of ChemistryChinese Academy of Sciences Beijing 100190 P. R. China
| | - Ying Li
- Department of ChemistryThe Hong Kong University of Science and Technology, Clear Water Bay, Kowloon Hong Kong China
| | - Zengqi Xie
- School of Materials Science and EngineeringSouth China University of Technology Guangzhou 510640 China
| | - Zijie Li
- Center of Materials Science and Optoelectronics EngineeringCollege of Materials Science and Opto-Electronic Technology & CAS Center for Excellence in Topological Quantum Computation & CAS Key Laboratory of Vacuum PhysicUniversity of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Lei Lv
- Center of Materials Science and Optoelectronics EngineeringCollege of Materials Science and Opto-Electronic Technology & CAS Center for Excellence in Topological Quantum Computation & CAS Key Laboratory of Vacuum PhysicUniversity of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Hao Chen
- Center of Materials Science and Optoelectronics EngineeringCollege of Materials Science and Opto-Electronic Technology & CAS Center for Excellence in Topological Quantum Computation & CAS Key Laboratory of Vacuum PhysicUniversity of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Zhiyuan Zhao
- Key Laboratory of Organic SolidsBeijing National Laboratory for Molecular ScienceInstitute of ChemistryChinese Academy of Sciences Beijing 100190 P. R. China
| | - Lang Jiang
- Key Laboratory of Organic SolidsBeijing National Laboratory for Molecular ScienceInstitute of ChemistryChinese Academy of Sciences Beijing 100190 P. R. China
| | - Benzhong Tang
- Department of ChemistryThe Hong Kong University of Science and Technology, Clear Water Bay, Kowloon Hong Kong China
| | - Hui Huang
- Center of Materials Science and Optoelectronics EngineeringCollege of Materials Science and Opto-Electronic Technology & CAS Center for Excellence in Topological Quantum Computation & CAS Key Laboratory of Vacuum PhysicUniversity of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
20
|
Zhu T, Jiang L, Li Y, Xie Z, Li Z, Lv L, Chen H, Zhao Z, Jiang L, Tang B, Huang H. Converting Thioether Waste into Organic Semiconductors by Carbon–Sulfur Bond Activation. Angew Chem Int Ed Engl 2019; 58:5044-5048. [DOI: 10.1002/anie.201901274] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Indexed: 11/05/2022]
Affiliation(s)
- Ting Zhu
- Center of Materials Science and Optoelectronics EngineeringCollege of Materials Science and Opto-Electronic Technology & CAS Center for Excellence in Topological Quantum Computation & CAS Key Laboratory of Vacuum PhysicUniversity of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Longfeng Jiang
- Key Laboratory of Organic SolidsBeijing National Laboratory for Molecular ScienceInstitute of ChemistryChinese Academy of Sciences Beijing 100190 P. R. China
| | - Ying Li
- Department of ChemistryThe Hong Kong University of Science and Technology, Clear Water Bay, Kowloon Hong Kong China
| | - Zengqi Xie
- School of Materials Science and EngineeringSouth China University of Technology Guangzhou 510640 China
| | - Zijie Li
- Center of Materials Science and Optoelectronics EngineeringCollege of Materials Science and Opto-Electronic Technology & CAS Center for Excellence in Topological Quantum Computation & CAS Key Laboratory of Vacuum PhysicUniversity of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Lei Lv
- Center of Materials Science and Optoelectronics EngineeringCollege of Materials Science and Opto-Electronic Technology & CAS Center for Excellence in Topological Quantum Computation & CAS Key Laboratory of Vacuum PhysicUniversity of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Hao Chen
- Center of Materials Science and Optoelectronics EngineeringCollege of Materials Science and Opto-Electronic Technology & CAS Center for Excellence in Topological Quantum Computation & CAS Key Laboratory of Vacuum PhysicUniversity of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Zhiyuan Zhao
- Key Laboratory of Organic SolidsBeijing National Laboratory for Molecular ScienceInstitute of ChemistryChinese Academy of Sciences Beijing 100190 P. R. China
| | - Lang Jiang
- Key Laboratory of Organic SolidsBeijing National Laboratory for Molecular ScienceInstitute of ChemistryChinese Academy of Sciences Beijing 100190 P. R. China
| | - Benzhong Tang
- Department of ChemistryThe Hong Kong University of Science and Technology, Clear Water Bay, Kowloon Hong Kong China
| | - Hui Huang
- Center of Materials Science and Optoelectronics EngineeringCollege of Materials Science and Opto-Electronic Technology & CAS Center for Excellence in Topological Quantum Computation & CAS Key Laboratory of Vacuum PhysicUniversity of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
21
|
Ieropoulos I, Obata O, Pasternak G, Greenman J. Fate of three bioluminescent pathogenic bacteria fed through a cascade of urine microbial fuel cells. J Ind Microbiol Biotechnol 2019; 46:587-599. [PMID: 30796542 PMCID: PMC6510811 DOI: 10.1007/s10295-019-02153-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 02/12/2019] [Indexed: 12/27/2022]
Abstract
Microbial fuel cell (MFC) technology is currently gaining recognition as one of the most promising bioenergy technologies of the future. One aspect of this technology that has received little attention is the disinfection of effluents and the fate of pathogenic organisms that find their way into the waste stream. In this study, three independent trials were carried out to evaluate the fate of three bioluminescent pathogenic bacteria (Salmonella enterica serovar Typhimurium, Pseudomonas aeruginosa and Staphylococcus aureus) introduced into the anodic chamber of a urine-fed cascade of 9 MFCs with matured, electroactive biofilms. These are common examples of enteric human pathogens, which could contaminate urine or waste streams. The results showed that the average power generation in the closed circuit cascade reached 754 ± 16 µW, with an average pathogen log-fold reduction of 6.24 ± 0.63 compared to 2.01 ± 0.26 for the open circuit cascade for all three pathogens. The results suggest that the bio-electrochemical reactions associated with electricity generation were the primary driving force for the inactivation of the introduced pathogens. These findings show that pathogenic organisms introduced into waste streams could be inactivated by the power-generating process within the MFC cascade system, thereby preventing propagation and thus rendering the effluent safer for possible reuse.
Collapse
Affiliation(s)
- Ioannis Ieropoulos
- Bristol BioEnergy Centre, Bristol Robotics Laboratory, University of the West of England, Bristol, BS16 1QY, UK.
| | - Oluwatosin Obata
- Bristol BioEnergy Centre, Bristol Robotics Laboratory, University of the West of England, Bristol, BS16 1QY, UK.
| | - Grzegorz Pasternak
- Bristol BioEnergy Centre, Bristol Robotics Laboratory, University of the West of England, Bristol, BS16 1QY, UK
- Faculty of Chemistry Wroclaw, University of Science and Technology, Wyb. Wyspianskiego 27, 50-370, Wrocław, Poland
| | - John Greenman
- Bristol BioEnergy Centre, Bristol Robotics Laboratory, University of the West of England, Bristol, BS16 1QY, UK
- Biological, Biomedical and Analytical Sciences, University of the West of England, Bristol, BS16 1QY, UK
| |
Collapse
|
22
|
Bakonyi P, Koók L, Kumar G, Tóth G, Rózsenberszki T, Nguyen DD, Chang SW, Zhen G, Bélafi-Bakó K, Nemestóthy N. Architectural engineering of bioelectrochemical systems from the perspective of polymeric membrane separators: A comprehensive update on recent progress and future prospects. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.07.051] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
23
|
Gajda I, Stinchcombe A, Merino-Jimenez I, Pasternak G, Sanchez-Herranz D, Greenman J, Ieropoulos IA. Miniaturized Ceramic-Based Microbial Fuel Cell for Efficient Power Generation From Urine and Stack Development. FRONTIERS IN ENERGY RESEARCH 2018; 6:84. [PMID: 33409273 PMCID: PMC7705131 DOI: 10.3389/fenrg.2018.00084] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 08/06/2018] [Indexed: 05/05/2023]
Abstract
One of the challenges in Microbial Fuel Cell (MFC) technology is the improvement of the power output and the lowering of the cost required to scale up the system to reach usable energy levels for real life applications. This can be achieved by stacking multiple MFC units in modules and using cost effective ceramic as a membrane/chassis for the reactor architecture. The main aim of this work is to increase the power output efficiency of the ceramic based MFCs by compacting the design and exploring the ceramic support as the building block for small scale modular multi-unit systems. The comparison of the power output showed that the small reactors outperform the large MFCs by improving the power density reaching up to 20.4 W/m3 (mean value) and 25.7 W/m3 (maximum). This can be related to the increased surface-area-to-volume ratio of the ceramic membrane and a decreased electrode distance. The power performance was also influenced by the type and thickness of the ceramic separator as well as the total surface area of the anode electrode. The study showed that the larger anode electrode area gives an increased power output. The miniaturized design implemented in 560-units MFC stack showed an output up to 245 mW of power and increased power density. Such strategy would allow to utilize the energy locked in urine more efficiently, making MFCs more applicable in industrial and municipal wastewater treatment facilities, and scale-up-ready for real world implementation.
Collapse
Affiliation(s)
- Iwona Gajda
- Bristol Robotics Laboratory, Bristol BioEnergy Centre, University of the West of England, Bristol, United Kingdom
- Correspondence: Iwona Gajda Ioannis A. Ieropoulos
| | - Andrew Stinchcombe
- Bristol Robotics Laboratory, Bristol BioEnergy Centre, University of the West of England, Bristol, United Kingdom
| | - Irene Merino-Jimenez
- Bristol Robotics Laboratory, Bristol BioEnergy Centre, University of the West of England, Bristol, United Kingdom
| | - Grzegorz Pasternak
- Bristol Robotics Laboratory, Bristol BioEnergy Centre, University of the West of England, Bristol, United Kingdom
| | - Daniel Sanchez-Herranz
- Bristol Robotics Laboratory, Bristol BioEnergy Centre, University of the West of England, Bristol, United Kingdom
| | - John Greenman
- Bristol Robotics Laboratory, Bristol BioEnergy Centre, University of the West of England, Bristol, United Kingdom
- Department of Applied Sciences, University of the West of England, Bristol, United Kingdom
| | - Ioannis A. Ieropoulos
- Bristol Robotics Laboratory, Bristol BioEnergy Centre, University of the West of England, Bristol, United Kingdom
- Department of Applied Sciences, University of the West of England, Bristol, United Kingdom
- Correspondence: Iwona Gajda Ioannis A. Ieropoulos
| |
Collapse
|
24
|
Cid CA, Stinchcombe A, Ieropoulos I, Hoffmann MR. Urine microbial fuel cells in a semi-controlled environment for onsite urine pre-treatment and electricity production. JOURNAL OF POWER SOURCES 2018; 400:441-448. [PMID: 31007366 PMCID: PMC6472131 DOI: 10.1016/j.jpowsour.2018.08.051] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 08/10/2018] [Accepted: 08/13/2018] [Indexed: 05/21/2023]
Abstract
Microbial fuel cell (MFC) systems have the ability to oxidize organic matter and transfer electrons to an external circuit as electricity at voltage levels of <1 V. Urine has been shown to be an excellent feedstock for various MFC systems, particularly MFCs inoculated with activated sludge and with a terracotta ceramic membrane separating carbon-based electrodes. In this article, we studied a MFC system composed of two stacks of 32 individual cells each sharing the same anolyte. By combining the current produced by the 32 cells connected in parallel and by adding the potential of both stacks connected in series, an average power density of 23 mW m-2 was produced at an effective current density of 65 mA m-2 for more than 120 days. [NH3], TIC, COD, and TOC levels were monitored frequently to understand the chemical energy conversion to electricity as well as to determine the best electrical configuration of the stacks. Archaeal and bacterial populations on selected anode felts and in the anolyte of both stacks were investigated as well. Indicator microorganisms for bacterial waterborne diseases were measured in anolyte and catholyte compartments to evaluate the risk of reusing the catholyte in a non-regulated environment.
Collapse
Affiliation(s)
- Clement A. Cid
- Linde+Robinson Laboratories, California Institute of Technology, Pasadena, CA, USA
| | - Andrew Stinchcombe
- Bristol BioEnergy Centre, Bristol Robotics Laboratory, University of the West of England, BS16 1QY, UK
| | - Ioannis Ieropoulos
- Bristol BioEnergy Centre, Bristol Robotics Laboratory, University of the West of England, BS16 1QY, UK
- Corresponding author.
| | - Michael R. Hoffmann
- Linde+Robinson Laboratories, California Institute of Technology, Pasadena, CA, USA
| |
Collapse
|
25
|
Ieropoulos IA, You J, Gajda I, Greenman J. A New Method for Modulation, Control and Power Boosting in Microbial Fuel Cells. FUEL CELLS (WEINHEIM) 2018; 18:663-668. [PMID: 30853877 PMCID: PMC6392115 DOI: 10.1002/fuce.201800009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 04/26/2018] [Indexed: 06/09/2023]
Abstract
Microbial fuel cells (MFCs) are energy transducers, which through the metabolic reactions of facultative anaerobic microorganisms, transform the energy in organic matter directly into electricity. Extrinsic parameters such as hydraulic retention time, fuel quality (type and concentration) and physicochemical environment of electrodes and biofilms (e.g., temperature, pH, salinity, and redox), can all influence system efficiency. This work proposes that MFCs can be "fine-tuned" by adjustment of any of the physicochemical conditions including redox potential; in this context, an entirely novel method was investigated as a practical means of tuning, modulating and monitoring the redox potential within the electrode chambers. The method uses additional electrodes - known as 3rd and 4th-pins for anode and cathode chambers, respectively - which can be used in individual units, modules, cascades or stacks, for optimising the production of a large variety of chemicals, as well as biomass, water and power. The results have shown that the power output modulation resulted in an up to 79% and 33% increase, when connected via 3rd and 4th pins, respectively. Apart from power improvement, this study also demonstrated a method of open circuit potential (OCP) sensing, by using the same additional electrodes to both monitor and control the MFC signal in real time.
Collapse
Affiliation(s)
- I. A. Ieropoulos
- University of the West of EnglandBristol BioEnergy CentreBristol Robotics LaboratoryT‐Block, Frenchay CampusBS16 1QYBristolUK
| | - J. You
- University of the West of EnglandBristol BioEnergy CentreBristol Robotics LaboratoryT‐Block, Frenchay CampusBS16 1QYBristolUK
| | - I. Gajda
- University of the West of EnglandBristol BioEnergy CentreBristol Robotics LaboratoryT‐Block, Frenchay CampusBS16 1QYBristolUK
| | - J. Greenman
- University of the West of EnglandBristol BioEnergy CentreBristol Robotics LaboratoryT‐Block, Frenchay CampusBS16 1QYBristolUK
| |
Collapse
|
26
|
Gajda I, Greenman J, Ieropoulos IA. Recent advancements in real-world microbial fuel cell applications. CURRENT OPINION IN ELECTROCHEMISTRY 2018; 11:78-83. [PMID: 31417973 PMCID: PMC6686732 DOI: 10.1016/j.coelec.2018.09.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/20/2018] [Accepted: 09/25/2018] [Indexed: 05/09/2023]
Abstract
This short review focuses on the recent developments of the Microbial Fuel Cell (MFC) technology, its scale-up and implementation in real world applications. Microbial Fuel Cells produce (bio)energy from waste streams, which can reduce environmental pollution, but also decrease the cost of the treatment. Although the technology is still considered "new", it has a long history since its discovery, but it is only now that recent developments have allowed its implementation in real world settings, as a precursor to commercialisation.
Collapse
Affiliation(s)
- Iwona Gajda
- Bristol BioEnergy Centre, Bristol Robotics Laboratory, University of the West of England, BS16 1QY, UK
| | - John Greenman
- Bristol BioEnergy Centre, Bristol Robotics Laboratory, University of the West of England, BS16 1QY, UK
- Centre for Research in Biosciences, University of the West of England, BS16 1QY, UK
| | - Ioannis A. Ieropoulos
- Bristol BioEnergy Centre, Bristol Robotics Laboratory, University of the West of England, BS16 1QY, UK
- Centre for Research in Biosciences, University of the West of England, BS16 1QY, UK
| |
Collapse
|
27
|
Yousefi V, Mohebbi-Kalhori D, Samimi A. Application of layer-by-layer assembled chitosan/montmorillonite nanocomposite as oxygen barrier film over the ceramic separator of the microbial fuel cell. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.06.173] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
28
|
Biomedical waste management in Ayurveda hospitals - current practices and future prospectives. J Ayurveda Integr Med 2018; 10:214-221. [PMID: 29555257 PMCID: PMC6822148 DOI: 10.1016/j.jaim.2017.07.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 06/03/2017] [Accepted: 07/11/2017] [Indexed: 11/23/2022] Open
Abstract
Biomedical waste management is an integral part of traditional and contemporary system of health care. The paper focuses on the identification and classification of biomedical wastes in Ayurvedic hospitals, current practices of its management in Ayurveda hospitals and its future prospective. Databases like PubMed (1975–2017 Feb), Scopus (1960–2017), AYUSH Portal, DOAJ, DHARA and Google scholar were searched. We used the medical subject headings ‘biomedical waste’ and ‘health care waste’ for identification and classification. The terms ‘biomedical waste management’, ‘health care waste management’ alone and combined with ‘Ayurveda’ or ‘Ayurvedic’ for current practices and recent advances in the treatment of these wastes were used. We made a humble attempt to categorize the biomedical wastes from Ayurvedic hospitals as the available data about its grouping is very scarce. Proper biomedical waste management is the mainstay of hospital cleanliness, hospital hygiene and maintenance activities. Current disposal techniques adopted for Ayurveda biomedical wastes are – sewage/drains, incineration and land fill. But these methods are having some merits as well as demerits. Our review has identified a number of interesting areas for future research such as the logical application of bioremediation techniques in biomedical waste management and the usage of effective micro-organisms and solar energy in waste disposal.
Collapse
|
29
|
Santoro C, Flores-Cadengo C, Soavi F, Kodali M, Merino-Jimenez I, Gajda I, Greenman J, Ieropoulos I, Atanassov P. Ceramic Microbial Fuel Cells Stack: power generation in standard and supercapacitive mode. Sci Rep 2018. [PMID: 29459777 DOI: 10.1038/s41598-018-21404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023] Open
Abstract
In this work, a microbial fuel cell (MFC) stack containing 28 ceramic MFCs was tested in both standard and supercapacitive modes. The MFCs consisted of carbon veil anodes wrapped around the ceramic separator and air-breathing cathodes based on activated carbon catalyst pressed on a stainless steel mesh. The anodes and cathodes were connected in parallel. The electrolytes utilized had different solution conductivities ranging from 2.0 mScm-1 to 40.1 mScm-1, simulating diverse wastewaters. Polarization curves of MFCs showed a general enhancement in performance with the increase of the electrolyte solution conductivity. The maximum stationary power density was 3.2 mW (3.2 Wm-3) at 2.0 mScm-1 that increased to 10.6 mW (10.6 Wm-3) at the highest solution conductivity (40.1 mScm-1). For the first time, MFCs stack with 1 L operating volume was also tested in supercapacitive mode, where full galvanostatic discharges are presented. Also in the latter case, performance once again improved with the increase in solution conductivity. Particularly, the increase in solution conductivity decreased dramatically the ohmic resistance and therefore the time for complete discharge was elongated, with a resultant increase in power. Maximum power achieved varied between 7.6 mW (7.6 Wm-3) at 2.0 mScm-1 and 27.4 mW (27.4 Wm-3) at 40.1 mScm-1.
Collapse
Affiliation(s)
- Carlo Santoro
- Department of Chemical and Biological Engineering, Center for Micro-Engineered Materials (CMEM), University of New Mexico, Albuquerque, NM, 87131, USA.
| | - Cristina Flores-Cadengo
- Department of Chemical and Biological Engineering, Center for Micro-Engineered Materials (CMEM), University of New Mexico, Albuquerque, NM, 87131, USA
| | - Francesca Soavi
- Department of Chemistry "Giacomo Ciamician", Alma Mater Studiorum - Università di Bologna, Via Selmi, 2, 40126, Bologna, Italy
| | - Mounika Kodali
- Department of Chemical and Biological Engineering, Center for Micro-Engineered Materials (CMEM), University of New Mexico, Albuquerque, NM, 87131, USA
| | - Irene Merino-Jimenez
- Bristol BioEnergy Centre, Bristol Robotics Laboratory, T-Block, UWE, Coldharbour Lane, Bristol, BS16 1QY, UK
| | - Iwona Gajda
- Bristol BioEnergy Centre, Bristol Robotics Laboratory, T-Block, UWE, Coldharbour Lane, Bristol, BS16 1QY, UK
| | - John Greenman
- Bristol BioEnergy Centre, Bristol Robotics Laboratory, T-Block, UWE, Coldharbour Lane, Bristol, BS16 1QY, UK
- Biological, Biomedical and Analytical Sciences, UWE, Coldharbour Lane, Bristol, BS16 1QY, UK
| | - Ioannis Ieropoulos
- Bristol BioEnergy Centre, Bristol Robotics Laboratory, T-Block, UWE, Coldharbour Lane, Bristol, BS16 1QY, UK.
- Biological, Biomedical and Analytical Sciences, UWE, Coldharbour Lane, Bristol, BS16 1QY, UK.
| | - Plamen Atanassov
- Department of Chemical and Biological Engineering, Center for Micro-Engineered Materials (CMEM), University of New Mexico, Albuquerque, NM, 87131, USA
| |
Collapse
|
30
|
Santoro C, Flores-Cadengo C, Soavi F, Kodali M, Merino-Jimenez I, Gajda I, Greenman J, Ieropoulos I, Atanassov P. Ceramic Microbial Fuel Cells Stack: power generation in standard and supercapacitive mode. Sci Rep 2018; 8:3281. [PMID: 29459777 PMCID: PMC5818490 DOI: 10.1038/s41598-018-21404-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 01/24/2018] [Indexed: 12/03/2022] Open
Abstract
In this work, a microbial fuel cell (MFC) stack containing 28 ceramic MFCs was tested in both standard and supercapacitive modes. The MFCs consisted of carbon veil anodes wrapped around the ceramic separator and air-breathing cathodes based on activated carbon catalyst pressed on a stainless steel mesh. The anodes and cathodes were connected in parallel. The electrolytes utilized had different solution conductivities ranging from 2.0 mScm-1 to 40.1 mScm-1, simulating diverse wastewaters. Polarization curves of MFCs showed a general enhancement in performance with the increase of the electrolyte solution conductivity. The maximum stationary power density was 3.2 mW (3.2 Wm-3) at 2.0 mScm-1 that increased to 10.6 mW (10.6 Wm-3) at the highest solution conductivity (40.1 mScm-1). For the first time, MFCs stack with 1 L operating volume was also tested in supercapacitive mode, where full galvanostatic discharges are presented. Also in the latter case, performance once again improved with the increase in solution conductivity. Particularly, the increase in solution conductivity decreased dramatically the ohmic resistance and therefore the time for complete discharge was elongated, with a resultant increase in power. Maximum power achieved varied between 7.6 mW (7.6 Wm-3) at 2.0 mScm-1 and 27.4 mW (27.4 Wm-3) at 40.1 mScm-1.
Collapse
Affiliation(s)
- Carlo Santoro
- Department of Chemical and Biological Engineering, Center for Micro-Engineered Materials (CMEM), University of New Mexico, Albuquerque, NM, 87131, USA.
| | - Cristina Flores-Cadengo
- Department of Chemical and Biological Engineering, Center for Micro-Engineered Materials (CMEM), University of New Mexico, Albuquerque, NM, 87131, USA
| | - Francesca Soavi
- Department of Chemistry "Giacomo Ciamician", Alma Mater Studiorum - Università di Bologna, Via Selmi, 2, 40126, Bologna, Italy
| | - Mounika Kodali
- Department of Chemical and Biological Engineering, Center for Micro-Engineered Materials (CMEM), University of New Mexico, Albuquerque, NM, 87131, USA
| | - Irene Merino-Jimenez
- Bristol BioEnergy Centre, Bristol Robotics Laboratory, T-Block, UWE, Coldharbour Lane, Bristol, BS16 1QY, UK
| | - Iwona Gajda
- Bristol BioEnergy Centre, Bristol Robotics Laboratory, T-Block, UWE, Coldharbour Lane, Bristol, BS16 1QY, UK
| | - John Greenman
- Bristol BioEnergy Centre, Bristol Robotics Laboratory, T-Block, UWE, Coldharbour Lane, Bristol, BS16 1QY, UK
- Biological, Biomedical and Analytical Sciences, UWE, Coldharbour Lane, Bristol, BS16 1QY, UK
| | - Ioannis Ieropoulos
- Bristol BioEnergy Centre, Bristol Robotics Laboratory, T-Block, UWE, Coldharbour Lane, Bristol, BS16 1QY, UK.
- Biological, Biomedical and Analytical Sciences, UWE, Coldharbour Lane, Bristol, BS16 1QY, UK.
| | - Plamen Atanassov
- Department of Chemical and Biological Engineering, Center for Micro-Engineered Materials (CMEM), University of New Mexico, Albuquerque, NM, 87131, USA
| |
Collapse
|
31
|
Gajda I, Greenman J, Santoro C, Serov A, Melhuish C, Atanassov P, Ieropoulos IA. Improved power and long term performance of microbial fuel cell with Fe-N-C catalyst in air-breathing cathode. ENERGY (OXFORD, ENGLAND) 2018; 144:1073-1079. [PMID: 29456285 PMCID: PMC5807896 DOI: 10.1016/j.energy.2017.11.135] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 09/28/2017] [Accepted: 11/24/2017] [Indexed: 05/21/2023]
Abstract
Power output limitation is one of the main challenges that needs to be addressed for full-scale applications of the Microbial Fuel Cell (MFC) technology. Previous studies have examined electrochemical performance of different cathode electrodes including the development of novel iron based electrocatalysts, however the long-term investigation into continuously operating systems is rare. This work aims to study the application of platinum group metals-free (PGM-free) catalysts integrated into an air-breathing cathode of the microbial fuel cell operating on activated sewage sludge and supplemented with acetate as the carbon energy source. The maximum power density up to 1.3 Wm-2 (54 Wm-3) obtained with iron aminoantipyrine (Fe-AAPyr) catalyst is the highest reported in this type of MFC and shows stability and improvement in long term operation when continuously operated on wastewater. It also investigates the ability of this catalyst to facilitate water extraction from the anode and electroosmotic production of clean catholyte. The electrochemical kinetic extraction of catholyte in the cathode chamber shows correlation with power performance and produces a newly synthesised solution with a high pH > 13, suggesting caustic content. This shows an active electrolytic treatment of wastewater by active ionic and pH splitting in an electricity producing MFC.
Collapse
Affiliation(s)
- Iwona Gajda
- Bristol BioEnergy Centre, Bristol Robotics Laboratory, University of the West of England, BS16 1QY, UK
- Corresponding author. Bristol BioEnergy Centre, Bristol Robotics Laboratory, University of the West of England, BS16 1QY, UK.Bristol BioEnergy CentreBristol Robotics LaboratoryUniversity of the West of EnglandBS16 1QYUK
| | - John Greenman
- Bristol BioEnergy Centre, Bristol Robotics Laboratory, University of the West of England, BS16 1QY, UK
- Biological, Biomedical and Analytical Sciences, University of the West of England, BS16 1QY, UK
| | - Carlo Santoro
- Center for Micro-Engineered Materials (CMEM), Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, NM, USA
| | - Alexey Serov
- Center for Micro-Engineered Materials (CMEM), Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, NM, USA
| | - Chris Melhuish
- Bristol BioEnergy Centre, Bristol Robotics Laboratory, University of the West of England, BS16 1QY, UK
| | - Plamen Atanassov
- Center for Micro-Engineered Materials (CMEM), Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, NM, USA
| | - Ioannis A. Ieropoulos
- Bristol BioEnergy Centre, Bristol Robotics Laboratory, University of the West of England, BS16 1QY, UK
- Biological, Biomedical and Analytical Sciences, University of the West of England, BS16 1QY, UK
- Corresponding author. Bristol BioEnergy Centre, Bristol Robotics Laboratory, University of the West of England, BS16 1QY, UK.Bristol BioEnergy CentreBristol Robotics LaboratoryUniversity of the West of EnglandBS16 1QYUK
| |
Collapse
|
32
|
Daud SM, Daud WRW, Kim BH, Somalu MR, Bakar MHA, Muchtar A, Jahim JM, Lim SS, Chang IS. Comparison of performance and ionic concentration gradient of two-chamber microbial fuel cell using ceramic membrane (CM) and cation exchange membrane (CEM) as separators. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2017.10.118] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
33
|
Christiaens MER, Gildemyn S, Matassa S, Ysebaert T, De Vrieze J, Rabaey K. Electrochemical Ammonia Recovery from Source-Separated Urine for Microbial Protein Production. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:13143-13150. [PMID: 29112388 DOI: 10.1021/acs.est.7b02819] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Conventional plant and meat protein production have low nitrogen usage efficiencies and high energy needs. Microbial protein (MP) is an alternative that offers higher nitrogen conversion efficiencies with low energy needs if nitrogen is recovered from a concentrated waste source such as source-separated urine. An electrochemical cell (EC) was optimized for ammonia recovery as NH3/H2 gas mixtures usable for MP production. Undiluted hydrolyzed urine was fed to the caustic-generating cathode compartment for ammonia stripping with redirection to the anode compartment for additional ammonium extraction. Using synthetic urine at 48 A m-2 the nitrogen removal efficiency reached 91.6 ± 2.1%. Tests with real urine at 20 A m-2, achieved 87.1 ± 6.0% and 68.4 ± 14.6% requiring 5.8 and 13.9 kWh kg N-1 recovered, via absorption in acid or MP medium, respectively. Energy savings through accompanying electrolytic H2 and O2 production were accounted for. Subsequently, MP was grown in fed-batch on MP medium with conventional NH4+ or urine-derived NH3 yielding 3.74 ± 1.79 and 4.44 ± 1.59 g CDW L-1, respectively. Dissolution of gaseous NH3 in MP medium maintained neutral pH in the MP reactor preventing caustic addition and thus salt accumulation. Urine-nitrogen could thus be valorized as MP via electrochemical ammonia recovery.
Collapse
Affiliation(s)
- Marlies E R Christiaens
- Center for Microbial Ecology and Technology (CMET), Ghent University , Coupure Links 653, B-9000 Gent, Belgium
| | - Sylvia Gildemyn
- Center for Microbial Ecology and Technology (CMET), Ghent University , Coupure Links 653, B-9000 Gent, Belgium
| | - Silvio Matassa
- Center for Microbial Ecology and Technology (CMET), Ghent University , Coupure Links 653, B-9000 Gent, Belgium
| | - Tess Ysebaert
- Center for Microbial Ecology and Technology (CMET), Ghent University , Coupure Links 653, B-9000 Gent, Belgium
| | - Jo De Vrieze
- Center for Microbial Ecology and Technology (CMET), Ghent University , Coupure Links 653, B-9000 Gent, Belgium
| | - Korneel Rabaey
- Center for Microbial Ecology and Technology (CMET), Ghent University , Coupure Links 653, B-9000 Gent, Belgium
| |
Collapse
|
34
|
Santoro C, Kodali M, Kabir S, Soavi F, Serov A, Atanassov P. Three-dimensional graphene nanosheets as cathode catalysts in standard and supercapacitive microbial fuel cell. JOURNAL OF POWER SOURCES 2017; 356:371-380. [PMID: 28717262 PMCID: PMC5465940 DOI: 10.1016/j.jpowsour.2017.03.135] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 03/25/2017] [Accepted: 03/28/2017] [Indexed: 05/21/2023]
Abstract
Three-dimensional graphene nanosheets (3D-GNS) were used as cathode catalysts for microbial fuel cells (MFCs) operating in neutral conditions. 3D-GNS catalysts showed high performance towards oxygen electroreduction in neutral media with high current densities and low hydrogen peroxide generation compared to activated carbon (AC). 3D-GNS was incorporated into air-breathing cathodes based on AC with three different loadings (2, 6 and 10 mgcm-2). Performances in MFCs showed that 3D-GNS had the highest performances with power densities of 2.059 ± 0.003 Wm-2, 1.855 ± 0.007 Wm-2 and 1.503 ± 0.005 Wm-2 for loading of 10, 6 and 2 mgcm-2 respectively. Plain AC had the lowest performances (1.017 ± 0.009 Wm-2). The different cathodes were also investigated in supercapacitive MFCs (SC-MFCs). The addition of 3D-GNS decreased the ohmic losses by 14-25%. The decrease in ohmic losses allowed the SC-MFC with 3D-GNS (loading 10 mgcm-2) to have the maximum power (Pmax) of 5.746 ± 0.186 Wm-2. At 5 mA, the SC-MFC featured an "apparent" capacitive response that increased from 0.027 ± 0.007 F with AC to 0.213 ± 0.026 F with 3D-GNS (loading 2 mgcm-2) and further to 1.817 ± 0.040 F with 3D-GNS (loading 10 mgcm-2).
Collapse
Affiliation(s)
- Carlo Santoro
- Department of Chemical and Biological Engineering, Center Micro-Engineered Materials (CMEM), MSC01 1120 University of New Mexico, Albuquerque, NM, 87131, USA
| | - Mounika Kodali
- Department of Chemical and Biological Engineering, Center Micro-Engineered Materials (CMEM), MSC01 1120 University of New Mexico, Albuquerque, NM, 87131, USA
| | - Sadia Kabir
- Department of Chemical and Biological Engineering, Center Micro-Engineered Materials (CMEM), MSC01 1120 University of New Mexico, Albuquerque, NM, 87131, USA
| | - Francesca Soavi
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum Universita’ di Bologna, Via Selmi 2, 40126, Bologna, Italy
| | - Alexey Serov
- Department of Chemical and Biological Engineering, Center Micro-Engineered Materials (CMEM), MSC01 1120 University of New Mexico, Albuquerque, NM, 87131, USA
| | - Plamen Atanassov
- Department of Chemical and Biological Engineering, Center Micro-Engineered Materials (CMEM), MSC01 1120 University of New Mexico, Albuquerque, NM, 87131, USA
| |
Collapse
|
35
|
Ieropoulos I, Pasternak G, Greenman J. Urine disinfection and in situ pathogen killing using a Microbial Fuel Cell cascade system. PLoS One 2017; 12:e0176475. [PMID: 28463976 PMCID: PMC5413022 DOI: 10.1371/journal.pone.0176475] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 04/11/2017] [Indexed: 11/19/2022] Open
Abstract
Microbial Fuel Cells (MFCs) are emerging as an effective means of treating different types of waste including urine and wastewater. However, the fate of pathogens in an MFC-based system remains unknown, and in this study we investigated the effect of introducing the enteric pathogen Salmonella enterica serovar enteritidis in an MFC cascade system. The MFCs continuously fed with urine showed high disinfecting potential. As part of two independent trials, during which the bioluminescent S. enteritidis strain was introduced into the MFC cascade, the number of viable counts and the level of bioluminescence were reduced by up to 4.43±0.04 and 4.21±0.01 log-fold, respectively. The killing efficacy observed for the MFCs operating under closed-circuit conditions, were higher by 1.69 and 1.72 log-fold reduction than for the open circuit MFCs, in both independent trials. The results indicated that the bactericidal properties of a well performing anode were dependent on power performance and the oxidation-reduction potential recorded for the MFCs. This is the first time that the fate of pathogenic bacteria has been investigated in continuously operating MFC systems.
Collapse
Affiliation(s)
- Ioannis Ieropoulos
- Bristol BioEnergy Centre, Bristol Robotics Laboratory, University of the West of England, Bristol, United Kingdom
- * E-mail:
| | - Grzegorz Pasternak
- Bristol BioEnergy Centre, Bristol Robotics Laboratory, University of the West of England, Bristol, United Kingdom
- Centre for Integrative Biology CIBIO, University of Trento, Povo, Trentino, Italy
| | - John Greenman
- Bristol BioEnergy Centre, Bristol Robotics Laboratory, University of the West of England, Bristol, United Kingdom
| |
Collapse
|
36
|
Kodali M, Santoro C, Serov A, Kabir S, Artyushkova K, Matanovic I, Atanassov P. Air Breathing Cathodes for Microbial Fuel Cell using Mn-, Fe-, Co- and Ni-containing Platinum Group Metal-free Catalysts. Electrochim Acta 2017; 231:115-124. [PMID: 28413228 PMCID: PMC5384433 DOI: 10.1016/j.electacta.2017.02.033] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2022]
Abstract
The oxygen reduction reaction (ORR) is one of the major factors that is limiting the overall performance output of microbial fuel cells (MFC). In this study, Platinum Group Metal-free (PGM-free) ORR catalysts based on Fe, Co, Ni, Mn and the same precursor (Aminoantipyrine, AAPyr) were synthesized using identical sacrificial support method (SSM). The catalysts were investigated for their electrochemical performance, and then integrated into an air-breathing cathode to be tested in "clean" environment and in a working microbial fuel cell (MFC). Their performances were also compared to activated carbon (AC) based cathode under similar conditions. Results showed that the addition of Mn, Fe, Co and Ni to AAPyr increased the performances compared to AC. Fe-AAPyr showed the highest open circuit potential (OCP) that was 0.307 ± 0.001 V (vs. Ag/AgCl) and the highest electrocatalytic activity at pH 7.5. On the contrary, AC had an OCP of 0.203 ± 0.002 V (vs. Ag/AgCl) and had the lowest electrochemical activity. In MFC, Fe-AAPyr also had the highest output of 251 ± 2.3 μWcm-2, followed by Co-AAPyr with 196 ± 1.5 μWcm-2, Ni-AAPyr with 171 ± 3.6 μWcm-2, Mn-AAPyr with 160 ± 2.8 μWcm-2 and AC 129 ± 4.2 μWcm-2. The best performing catalyst (Fe-AAPyr) was then tested in MFC with increasing solution conductivity from 12.4 mScm-1 to 63.1 mScm-1. A maximum power density of 482 ± 5 μWcm-2 was obtained with increasing solution conductivity, which is one of the highest values reported in the field.
Collapse
Affiliation(s)
- Mounika Kodali
- Center Micro-Engineered Materials (CMEM), Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, NM, USA
| | - Carlo Santoro
- Center Micro-Engineered Materials (CMEM), Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, NM, USA
| | - Alexey Serov
- Center Micro-Engineered Materials (CMEM), Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, NM, USA
| | - Sadia Kabir
- Center Micro-Engineered Materials (CMEM), Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, NM, USA
| | - Kateryna Artyushkova
- Center Micro-Engineered Materials (CMEM), Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, NM, USA
| | - Ivana Matanovic
- Center Micro-Engineered Materials (CMEM), Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, NM, USA.,Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Plamen Atanassov
- Center Micro-Engineered Materials (CMEM), Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, NM, USA
| |
Collapse
|
37
|
Merino Jimenez I, Greenman J, Ieropoulos I. Electricity and catholyte production from ceramic MFCs treating urine. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY 2017; 42:1791-1799. [PMID: 28280287 PMCID: PMC5328024 DOI: 10.1016/j.ijhydene.2016.09.163] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The use of ceramics as low cost membrane materials for Microbial Fuel Cells (MFCs) has gained increasing interest, due to improved performance levels in terms of power and catholyte production. The catholyte production in ceramic MFCs can be attributed to a combination of water or hydrogen peroxide formation from the oxygen reduction reaction in the cathode, water diffusion and electroosmotic drag through the ion exchange membrane. This study aims to evaluate, for the first time, the effect of ceramic wall/membrane thickness, in terms of power, as well as catholyte production from MFCs using urine as a feedstock. Cylindrical MFCs were assembled with fine fire clay of different thicknesses (2.5, 5 and 10 mm) as structural and membrane materials. The power generated increased when the membrane thickness decreased, reaching 2.1 ± 0.19 mW per single MFC (2.5 mm), which was 50% higher than that from the MFCs with the thickest membrane (10 mm). The amount of catholyte collected also decreased with the wall thickness, whereas the pH increased. Evidence shows that the catholyte composition varies with the wall thickness of the ceramic membrane. The possibility of producing different quality of catholyte from urine opens a new field of study in water reuse and resource recovery for practical implementation.
Collapse
Affiliation(s)
- Irene Merino Jimenez
- Bristol BioEnergy Centre, Bristol Robotics Laboratory, University of the West of England, BS16 1QY, UK
- Corresponding author. Fax: +44 (0)1173283960.
| | - John Greenman
- Bristol BioEnergy Centre, Bristol Robotics Laboratory, University of the West of England, BS16 1QY, UK
- Biological, Biomedical and Analytical Sciences, University of the West of England, BS16 1QY, UK
| | - Ioannis Ieropoulos
- Bristol BioEnergy Centre, Bristol Robotics Laboratory, University of the West of England, BS16 1QY, UK
- Corresponding author. Fax: +44 (0)1173283960.
| |
Collapse
|
38
|
Engineering of Microbial Electrodes. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2017; 167:135-180. [PMID: 28864879 DOI: 10.1007/10_2017_16] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This chapter provides an overview of the current state-of-the-art in the engineering of microbial electrodes for application in microbial electrosynthesis. First, important functional aspects and requirements of basic materials for microbial electrodes are introduced, including the meaningful benchmarking of electrode performance, a comparison of electrode materials, and methods to improve microbe-electrode interaction. Suitable current collectors and composite materials that combine different functionalities are also discussed. Subsequently, the chapter focuses on the design of macroscopic electrode structures. Aspects such as mass transfer and electrode topology are touched upon, and a comparison of the performance of microbial electrodes relevant for practical application is provided. The chapter closes with an overall conclusion and outlook, highlighting the future prospects and challenges for the engineering of microbial electrodes toward practical application in the field of microbial electrosynthesis. Graphical Abstract.
Collapse
|