1
|
Cai H, Li J, Ran L, Chen Y, Teng H. Mps1-Targeted Molecular Design of Melatonin for Broad-Spectrum Antifungal Agent Discovery. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 39370610 DOI: 10.1021/acs.jafc.4c04150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Melatonin, a multifunctional class of natural products, has demonstrated antifungal activity, making it a promising candidate for developing antifungal agents. The mitogen-activated protein kinase (Mps1) within fungal pathogens has a target inhibitory effect of melatonin in fungi. We use a virtual screening strategy to design melatonin derivatives based on the melatonin-Mps1 targeting model. Of these, a multiflorane-substitution compound M-12 emerges as a potent antifungal agent, exhibiting broad-spectrum efficacy against eight phytopathogenic fungal species, and effectively reduces the severity of tomato gray mold, Fusarium head blight in wheat, Sclerotinia stem rot in rape, and peach brown rot. M-12 half-maximal effective concentration values (5.50 μM against Botrytis cinerea, 5.21 μM against Fusarium graminearum, 10.6 μM against Rhizoctonia solani, and 9.02 μM against Sclerotinia sclerotiorum) are better than those of commercial broad-spectrum fungicide azoxystrobin (55.0, 23.2, 46.5, and 17.7 μM, respectively). Antifungal activity of enantiomer (S)-M-12 (5.02 μM) is significantly greater than its (R)-enantiomer (23.6 μM) against B. cinerea. Molecular docking and transcriptome analysis reveal that M-12 achieves its antifungal effects by inhibiting Mps1 kinase, thereby suppressing fungal growth and virulence.
Collapse
Affiliation(s)
- Huanyu Cai
- College of Chemistry, Huazhong Agricultural University, Wuhan 430070, China
| | - Jie Li
- College of Chemistry, Huazhong Agricultural University, Wuhan 430070, China
| | - Lu Ran
- College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
| | - Yu Chen
- College of Chemistry, Huazhong Agricultural University, Wuhan 430070, China
| | - Huailong Teng
- College of Chemistry, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
2
|
Fan L, Zhang B, Ning M, Quan S, Guo C, Cui K, Chen L, Yan M, Ren X. Responses of transcriptome and metabolome in peanut leaves to dibutyl phthalate during whole growth period. FRONTIERS IN PLANT SCIENCE 2024; 15:1448971. [PMID: 39372850 PMCID: PMC11452913 DOI: 10.3389/fpls.2024.1448971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/30/2024] [Indexed: 10/08/2024]
Abstract
Introduction The application of agricultural film mulching technology has significantly contributed to increasing crop yield and income, but the pollution caused by residual film has seriously affected agricultural production and the natural environment. Agricultural film is commonly employed to enhance the yield of peanuts; its use may lead to excessive dibutyl phthalate (DBP) residues in peanut kernels. But, limited investigations have been conducted on the regulatory mechanism of peanut leaves in response to DBP exposure throughout the entire growth period. Methods To bridge this knowledge gap, we investigated the differences in transcriptome and metabolome of peanut leaves under DBP stress. Results According to visual observations, the results of morphological response showed that the growth of peanut plants was significantly inhibited from seedling to pod stage under DBP treatment. Transcriptomic analysis results showed that the genes AH19G05510 (LRR receptor-like serine threonine-protein kinase) and AH20G31870 (disease resistance), belonging to the FAR1 family and bZIP family respectively, may be key genes involved in the resistance to DBP stress throughout its growth stages. Metabolomic analysis results showed that during the initial stage of DBP stress, the key metabolites in peanut leaves response to stress were carboxylic acids and derivatives, as well as fatty acyls. As peanut growth progressed, flavonoids gradually became more prominent in the resistance to DBP stress. By integrating metabolomics and transcriptomics analysis, we have identified that purine metabolism during seedling and flowering stages, as well as the flavone and flavonol biosynthesis pathways during pod and maturity stages, played a crucial role in response to DBP stress. Discussion These findings not only provide valuable key gene and metabolic information for studying anti-plasticizer pollution throughout the entire growth period of peanuts, but also offer reference for enhancing crop resistance to plasticizer pollution through genetic modification and metabolic regulation.
Collapse
Affiliation(s)
- Lixia Fan
- Institute of Quality Standard and Testing Technology for Agro-products, Shandong Academy of Agricultural Sciences, Jinan, China
- Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, China
| | - Bingchun Zhang
- Institute of Quality Standard and Testing Technology for Agro-products, Shandong Academy of Agricultural Sciences, Jinan, China
- Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, China
| | - Mingxiao Ning
- Institute of Quality Standard and Testing Technology for Agro-products, Shandong Academy of Agricultural Sciences, Jinan, China
- Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, China
| | | | - Changying Guo
- Institute of Quality Standard and Testing Technology for Agro-products, Shandong Academy of Agricultural Sciences, Jinan, China
- Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, China
| | - Kai Cui
- Institute of Quality Standard and Testing Technology for Agro-products, Shandong Academy of Agricultural Sciences, Jinan, China
- Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, China
| | - Lu Chen
- Institute of Quality Standard and Testing Technology for Agro-products, Shandong Academy of Agricultural Sciences, Jinan, China
- Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, China
| | - Mengmeng Yan
- Institute of Quality Standard and Testing Technology for Agro-products, Shandong Academy of Agricultural Sciences, Jinan, China
- Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, China
| | - Xianfeng Ren
- Institute of Quality Standard and Testing Technology for Agro-products, Shandong Academy of Agricultural Sciences, Jinan, China
- Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, China
| |
Collapse
|
3
|
Guo X, Yang Z, Zhang J, Hua J, Luo S. Adaptation of Ustilago maydis to phenolic and alkaloid responsive metabolites in maize B73. FRONTIERS IN PLANT SCIENCE 2024; 15:1369074. [PMID: 39100087 PMCID: PMC11294074 DOI: 10.3389/fpls.2024.1369074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 06/27/2024] [Indexed: 08/06/2024]
Abstract
The adaptation of pathogenic fungi to plant-specialized metabolites is necessary for their survival and reproduction. The biotrophic fungus Ustilago maydis can cause maize smut and produce tumors in maize (Zea mays), resulting in reduced maize yield and significant economic losses. Qualitative analysis using UPLC-MS/MS revealed that the infection of maize variety B73 with U. maydis resulted in increased levels of phytohormones, phenolics, and alkaloids in maize seedling tissues. However, correlation analysis showed that nearly all compounds in the mechanical damage group were significantly negatively correlated with the shoot growth indexes of maize B73. The correlation coefficients of 2-hydroxy-7-methoxy-1,4-benzoxazin-3-one (HMBOA) and maize B73 shoot length and shoot weight were r = -0.56 (p < 0.01) and r = -0.75 (p < 0.001), respectively. In the inoculation group, these correlations weakened, with the correlation coefficients between HMBOA and maize B73 shoot length and shoot weight being r = 0.02 and r = -0.1, respectively. The correlation coefficients between 6-methoxy-2-benzoxazolinone (MBOA) and the shoot weight were r = -0.73 (p < 0.001) and r = -0.15 in the mechanical damage group and inoculation group, respectively. These findings suggest that increased concentrations of these compounds are more positively associated with mechanical damage than with U. maydis infection. At high concentrations, most of these compounds had an inhibitory effect on U. maydis. This study investigated the ability of U. maydis to regulate various compounds, including phytohormones, phenolic acids, and alkaloids in maize B73, providing evidence that U. maydis has adapted to the specialized metabolites produced by maize B73.
Collapse
Affiliation(s)
| | | | | | - Juan Hua
- Engineering Research Center of Protection and Utilization of Plant Resources, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | | |
Collapse
|
4
|
Ji Y, Hu L, Xiong W, Wang Y, Yang F, Shi M, Zhang H, Shao J, Lu C, Fang D, Deng H, Bian Z, Tang G, Liu S, Fan Z, Liu S. Highly sensitive time-resolved fluoroimmunoassay for the quantitative onsite detection of Alternaria longipes in tobacco. J Appl Microbiol 2022; 132:1250-1259. [PMID: 34312955 DOI: 10.1111/jam.15233] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/05/2021] [Accepted: 07/19/2021] [Indexed: 12/20/2022]
Abstract
AIMS Alternaria longipes is a causal agent of brown spot of tobacco, which remains a serious threat to tobacco production. Herein, we established a detection method for A. longipes in tobacco samples based on the principle of time-resolved fluoroimmunoassay, in order to fulfil the requirement of rapid, sensitive and accurate detection in situ. METHODS AND RESULTS A monoclonal antibody against A. longipes was generated, and its purity and titration were assessed using western blot and ELISA. The size of europium (III) nanospheres was measured to confirm successful antibody conjugation. The method described here can detect A. longipes protein lysates as low as 0.78 ng ml-1 , with recovery rates ranging from 85.96% to 99.67% in spiked tobacco. The specificity was also confirmed using a panel of microorganisms. CONCLUSIONS The fluorescent strips allow rapid and sensitive onsite detection of A. longipes in tobacco samples, with high accuracy, specificity, and repeatability. SIGNIFICANCE AND IMPACT OF THE STUDY This novel detection method provides convenience of using crude samples without complex procedures, and therefore allows rapid onsite detection by end users and quick responses towards A. longipes, which is critical for disease control and elimination of phytopathogens.
Collapse
Affiliation(s)
- Yuan Ji
- China National Tobacco Quality Supervision and Test Center, Zhengzhou, China
| | - Liwei Hu
- Zhengzhou Tobacco Research Institute of China National Tobacco Corporation, Zhengzhou, China
| | - Wei Xiong
- Sichuan Tobacco Quality Supervision and Testing Station, Chengdu, China
| | - Ying Wang
- China National Tobacco Quality Supervision and Test Center, Zhengzhou, China
| | - Fei Yang
- China National Tobacco Quality Supervision and Test Center, Zhengzhou, China
| | - Mowen Shi
- China National Tobacco Quality Supervision and Test Center, Zhengzhou, China
| | - Haiyan Zhang
- Sichuan Tobacco Quality Supervision and Testing Station, Chengdu, China
| | - Jimin Shao
- Sichuan Tobacco Quality Supervision and Testing Station, Chengdu, China
| | - Canhua Lu
- Yunnan Academy of Tobacco Agricultural Sciences of China National Tobacco Corporation, Kunming, China
| | - Dunhuang Fang
- Yunnan Academy of Tobacco Agricultural Sciences of China National Tobacco Corporation, Kunming, China
| | - Huimin Deng
- China National Tobacco Quality Supervision and Test Center, Zhengzhou, China
| | - Zhaoyang Bian
- China National Tobacco Quality Supervision and Test Center, Zhengzhou, China
| | - Gangling Tang
- China National Tobacco Quality Supervision and Test Center, Zhengzhou, China
| | - Shili Liu
- Department of Medical Microbiology, School of Basic Medical Science, Shandong University, Jinan, China
| | - Ziyan Fan
- China National Tobacco Quality Supervision and Test Center, Zhengzhou, China
| | - Shanshan Liu
- China National Tobacco Quality Supervision and Test Center, Zhengzhou, China
| |
Collapse
|
5
|
Liu L, Chen F, Chen S, Fang W, Liu Y, Guan Z. Dual species dynamic transcripts reveal the interaction mechanisms between Chrysanthemum morifolium and Alternaria alternata. BMC Genomics 2021; 22:523. [PMID: 34243707 PMCID: PMC8268330 DOI: 10.1186/s12864-021-07709-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 05/12/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Chrysanthemum (Chrysanthemum morifolium) black spot disease caused by Alternaria alternata is one of the plant's most destructive diseases. Dual RNA-seq was performed to simultaneously assess their transcriptomes to analyze the potential interaction mechanism between the two species, i.e., host and pathogen. RESULTS C. morifolium and A. alternata were subjected to dual RNA-seq at 1, 12, and 24 h after inoculation, and differential expression genes (DEGs) in both species were identified. This analysis confirmed 153,532 DEGs in chrysanthemum and 14,932 DEGs in A. alternata, which were involved in plant-fungal interactions and phytohormone signaling. Fungal DEGs such as toxin synthesis related enzyme and cell wall degrading enzyme genes played important roles during chrysanthemum infection. Moreover, a series of key genes highly correlated with the early, middle, or late infection stage were identified, together with the regulatory network of key genes annotated in the Plant Resistance Genes database (PRGdb) or Pathogen-Host Interactions database (PHI-base). Highly correlated genes were identified at the late infection stage, expanding our understanding of the interplay between C. morifolium and A. alternata. Additionally, six DEGs each from chrysanthemum and A. alternata were selected for quantitative real-time PCR (qRT-PCR) assays to validate the RNA-seq output. CONCLUSIONS Collectively, data obtained in this study enriches the resources available for research into the interactions that exist between chrysanthemum and A. alternata, thereby providing a theoretical basis for the development of new chrysanthemum cultivars with resistance to pathogen.
Collapse
Affiliation(s)
- Lina Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, College of Horticulture, National Forestry and Grassland Administration, Nanjing Agricultural University, 210095, Nanjing, China
| | - Fadi Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, College of Horticulture, National Forestry and Grassland Administration, Nanjing Agricultural University, 210095, Nanjing, China
| | - Sumei Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, College of Horticulture, National Forestry and Grassland Administration, Nanjing Agricultural University, 210095, Nanjing, China
| | - Weimin Fang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, College of Horticulture, National Forestry and Grassland Administration, Nanjing Agricultural University, 210095, Nanjing, China
| | - Ye Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, College of Horticulture, National Forestry and Grassland Administration, Nanjing Agricultural University, 210095, Nanjing, China.
| | - Zhiyong Guan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, College of Horticulture, National Forestry and Grassland Administration, Nanjing Agricultural University, 210095, Nanjing, China.
| |
Collapse
|
6
|
Xu Y, Cai D, Zhang H, Gao L, Yang Y, Gao J, Li Y, Yang C, Ji Z, Yu J, Chen S. Enhanced production of iturin A in Bacillus amyloliquefaciens by genetic engineering and medium optimization. Process Biochem 2020. [DOI: 10.1016/j.procbio.2019.11.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
7
|
Liu H, Chen J, Xia Z, An M, Wu Y. Effects of ε-poly-l-lysine on vegetative growth, pathogenicity and gene expression of Alternaria alternata infecting Nicotiana tabacum. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 163:147-153. [PMID: 31973852 DOI: 10.1016/j.pestbp.2019.11.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 11/04/2019] [Accepted: 11/06/2019] [Indexed: 06/10/2023]
Abstract
Microbial secondary metabolites produced by Streptomyces are applied to control plant diseases. ε-poly-l-lysine (ε-PL) is a non-toxic food preservative, but the potential application of ε-PL as a microbial fungicide in agriculture has rarely been reported. In this study, Alternaria alternata (A. alternata) was used to reveal the effect and mode of action for ε-PL on the plant pathogenic fungi. The results showed that ε-PL effectively inhibited necrotic-lesion development caused by A. alternata on tobacco. Mycelial growth was also significantly inhibited in vitro by 100 μg/ml ε-PL using in vitro analysis. Moreover, 25 μg/ml ε-PL inhibited spore germination and induced abnormal morphological development of A. alternata hyphae. To clarify the molecular-genetic antifungal mechanisms, we selected several crucial genes involved in the development and pathogenesis of A. alternata and studied their expression regulated by ε-PL. Results of real-time quantitative PCR showed that a mycelium morphology and pathogenic process related cyclic adenosine monophosphate protein (cAMP) dependent protein kinase A (PKA), Alternaria alternata cAMP-dependent protein kinase catalytic subunit (AAPK1) and the early infection-related glyceraldehyde-3-phosphate dehydrogenase (GAPDH) were down-regulated after ε-PL treatment. The results provide novel insights for the application of ε-PL in the control of plant diseases caused by A. alternata.
Collapse
Affiliation(s)
- He Liu
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
| | - Jianguang Chen
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
| | - Zihao Xia
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
| | - Mengnan An
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, Liaoning, China.
| | - Yuanhua Wu
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, Liaoning, China.
| |
Collapse
|
8
|
Sadhu A, Moriyasu Y, Acharya K, Bandyopadhyay M. Nitric oxide and ROS mediate autophagy and regulate Alternaria alternata toxin-induced cell death in tobacco BY-2 cells. Sci Rep 2019; 9:8973. [PMID: 31222105 PMCID: PMC6586778 DOI: 10.1038/s41598-019-45470-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 05/09/2019] [Indexed: 11/25/2022] Open
Abstract
Synergistic interaction of nitric oxide (NO) and reactive oxygen species (ROS) is essential to initiate cell death mechanisms in plants. Though autophagy is salient in either restricting or promoting hypersensitivity response (HR)-related cell death, the crosstalk between the reactive intermediates and autophagy during hypersensitivity response is paradoxical. In this investigation, the consequences of Alternaria alternata toxin (AaT) in tobacco BY-2 cells were examined. At 3 h, AaT perturbed intracellular ROS homeostasis, altered antioxidant enzyme activities, triggered mitochondrial depolarization and induced autophagy. Suppression of autophagy by 3-Methyladenine caused a decline in cell viability in AaT treated cells, which indicated the vital role of autophagy in cell survival. After 24 h, AaT facilitated Ca2+ influx with an accumulation of reactive oxidant intermediates and NO, to manifest necrotic cell death. Inhibition of NO accumulation by 2-(4-Carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO) decreased the level of necrotic cell death, and induced autophagy, which suggests NO accumulation represses autophagy and facilitates necrotic cell death at 24 h. Application of N-acetyl-L-cysteine at 3 h, confirmed ROS to be the key initiator of autophagy, and together with cPTIO for 24 h, revealed the combined effects of NO and ROS is required for necrotic HR cell death.
Collapse
Affiliation(s)
- Abhishek Sadhu
- Plant Molecular Cytogenetics Laboratory, Centre of Advanced Study, Department of Botany, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, West Bengal, India
| | - Yuji Moriyasu
- Graduate School of Science and Engineering, Saitama University, Shimo-Okubo 255, Saitama, 338-8570, Japan
| | - Krishnendu Acharya
- Molecular and Applied Mycology and Plant Pathology Laboratory, Centre of Advanced Study, Department of Botany, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, West Bengal, India
| | - Maumita Bandyopadhyay
- Plant Molecular Cytogenetics Laboratory, Centre of Advanced Study, Department of Botany, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, West Bengal, India.
| |
Collapse
|
9
|
Zhao Z, Li Y, Zhao S, Zhang J, Zhang H, Fu B, He F, Zhao M, Liu P. Transcriptome Analysis of Gene Expression Patterns Potentially Associated with Premature Senescence in Nicotiana tabacum L. Molecules 2018; 23:E2856. [PMID: 30400189 PMCID: PMC6278766 DOI: 10.3390/molecules23112856] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 10/26/2018] [Accepted: 10/29/2018] [Indexed: 01/21/2023] Open
Abstract
Senescence affects the remobilization of nutrients and adaption of the plant to the environment. Combined stresses can result in premature senescence in plants which exist in the field. In this study, transcriptomic analysis was performed on mature leaves and leaves in three stages of premature senescence to understand the molecular mechanism. With progressive premature senescence, a declining chlorophyll (chl) content and an increasing malonaldehyde (MDA) content were observed, while plasmolysis and cell nucleus pyknosis occurred, mitochondria melted, thylakoid lamellae were dilated, starch grains in chloroplast decreased, and osmiophilic granules increased gradually. Moreover, in total 69 common differentially expressed genes (DEGs) in three stages of premature senescing leaves were found, which were significantly enriched in summarized Gene Ontology (GO) terms of membrane-bounded organelle, regulation of cellular component synthesis and metabolic and biosynthetic processes. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis suggested that the plant hormone signal transduction pathway was significantly enriched. The common DEGs and four senescence-related pathways, including plant hormone signal transduction, porphyrin and chlorophyll metabolism, carotenoid biosynthesis, and regulation of autophagy were selected to be discussed further. This work aimed to provide potential genes signaling and modulating premature senescence as well as the possible dynamic network of gene expression patterns for further study.
Collapse
Affiliation(s)
- Zhe Zhao
- College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China.
| | - Yifan Li
- College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China.
| | - Songchao Zhao
- College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China.
| | - Jiawen Zhang
- College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China.
| | - Hong Zhang
- College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China.
| | - Bo Fu
- College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China.
| | - Fan He
- College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China.
| | - Mingqin Zhao
- College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China.
| | - Pengfei Liu
- College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China.
| |
Collapse
|
10
|
Transcriptomics Analysis of the Chinese Pear Pathotype of Alternaria alternata Gives Insights into Novel Mechanisms of HSAF Antifungal Activities. Int J Mol Sci 2018; 19:ijms19071841. [PMID: 29932128 PMCID: PMC6073358 DOI: 10.3390/ijms19071841] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 06/06/2018] [Accepted: 06/06/2018] [Indexed: 12/11/2022] Open
Abstract
Alternaria alternata (Fries) Keissler is a lethal pear pathogen that causes leaf black spot disease of pear in Southern China. Heat-stable activity factor (HSAF) is a polycyclic tetramate macrolactam (PTM) produced by Lysobacter enzymogenes and many other microbes with a broad-spectrum antifungal activity against many filamentous fungi. In this study, we evaluated the antifungal effect of HSAF against A. alternata and proposed its antifungal mechanism in A. alternata. We report that HSAF inhibited the mycelial growth of A. alternata in a dose-dependent manner. Transcriptomics analysis revealed that HSAF treatment resulted in an expression alteration of a wide range of genes, with 3729 genes being up-regulated, and 3640 genes being down-regulated. Furthermore, we observed that HSAF treatment disrupted multiple signaling networks and essential cellular metabolisms in A. alternata, including the AMPK signaling pathway, sphingolipid metabolism and signaling pathway, carbon metabolism and the TCA (tricarboxylic acid) cycle, cell cycle, nitrogen metabolism, cell wall synthesis and a key hub protein phosphatase 2A (PP2A). These observations suggest that HSAF breaches metabolism networks and ultimately induces increased thickness of the cell wall and apoptosis in A. alternata. The improved understanding of the antifungal mechanism of HSAF against filamentous fungi will aid in the future identification of the direct interaction target of HSAF and development of HSAF as a novel bio-fungicide.
Collapse
|
11
|
Transcriptome and miRNA analyses of the response to Corynespora cassiicola in cucumber. Sci Rep 2018; 8:7798. [PMID: 29773833 PMCID: PMC5958113 DOI: 10.1038/s41598-018-26080-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 05/04/2018] [Indexed: 01/11/2023] Open
Abstract
Cucumber (Cucumis sativus L.) target leaf spot (TLS), which is caused by the fungus Corynespora cassiicola (C. cassiicola), seriously endangers the production of cucumber. In this assay, we performed comprehensive sequencing of the transcriptome and microRNAs (miRNAs) of a resistant cucumber (Jinyou 38) during C. cassiicola inoculation using the Illumina NextSeq 500 platform. The possible genes related to the response to C. cassiicola were associated with plant hormones, transcription factors, primary metabolism, Ca2+ signaling pathways, secondary metabolism and defense genes. In total, 150 target genes of these differentially expressed miRNAs were predicted by the bioinformatic analysis. By analyzing the function of the target genes, several candidate miRNAs that may be related to the response to C. cassiicola stress were selected. We also predicted 7 novel miRNAs and predicted their target genes. Moreover, the expression patterns of the candidate genes and miRNAs were tested by quantitative real-time RT-PCR. According to the analysis, genes and miRNAs associated with secondary metabolism, particularly the phenylpropanoid biosynthesis pathway, may play a major role in the resistance to C. cassiicola stress in cucumber. These results offer a foundation for future studies exploring the mechanism and key genes of resistance to cucumber TLS.
Collapse
|
12
|
Yang J, Yin ZQ, Kang ZT, Liu CJ, Yang JK, Yao JH, Luo YY. Transcriptomic profiling of Alternaria longipes invasion in tobacco reveals pathogenesis regulated by AlHK1, a group III histidine kinase. Sci Rep 2017; 7:16083. [PMID: 29167535 PMCID: PMC5700128 DOI: 10.1038/s41598-017-16401-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 11/12/2017] [Indexed: 11/08/2022] Open
Abstract
Tobacco brown spot, caused by Alternaria species, is a devastating tobacco disease. To explore the role of a group III histidine kinase (AlHK1) on A. longipes pathogenesis, the invasion progress of A. longipes was monitored. We found that the wild-type strain C-00 invaded faster than the AlHK1-disrupted strain HK∆4 in the early and middle infection stages and the reverse trend occurred in the late infection stage. Then, eight invasion transcriptomes were performed using RNA-Seq and 205 shared, 505 C-00 and 222 HK∆4 specific differentially expressed genes (DEGs) were identified. The annotation results showed seven antioxidant activity genes were specifically identified in the HKΔ4 DEGs. A subsequent experiment confirmed that HKΔ4 was more resistant to low concentrations oxidative stress than C-00. In addition, the results from 1) statistics for the number of DEGs, GO enriched terms, DEGs in clusters with rising trends, and 2) analyses of the expression patterns of some DEGs relevant for osmoadaptation and virulence showed that changes in C-00 infection existed mainly in the early and middle stages, while HKΔ4 infection arose mainly in the late stage. Our results reveal firstly the pathogenesis of A. longipes regulated by AlHK1 and provide useful insights into the fungal-plant interactions.
Collapse
Affiliation(s)
- Juan Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Zhi-Qun Yin
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Zi-Teng Kang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Chen-Jian Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Jin-Kui Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650091, China
| | - Jian-Hua Yao
- Yunnan Academy of Tobacco Science, Kunming, 650106, China
| | - Yi-Yong Luo
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China.
| |
Collapse
|
13
|
Yang JK, Tong ZJ, Fang DH, Chen XJ, Zhang KQ, Xiao BG. Transcriptomic profile of tobacco in response to Phytophthora nicotianae infection. Sci Rep 2017; 7:401. [PMID: 28341825 PMCID: PMC5428407 DOI: 10.1038/s41598-017-00481-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 02/27/2017] [Indexed: 11/24/2022] Open
Abstract
Black shank, caused by Phytophthora nicotianae (P. nicotianae), is a serious disease of cultivated tobacco (Nicotiana tabacum) worldwide. The interactions between tobacco and P. nicotianae are complex and the outcomes of the interactions depend on the tobacco genotype, P. nicotianae strain, and environmental conditions. In this study, we used RNA-sequencing (RNA-Seq) to investigate and compare transcriptional changes in the stems of tobacco upon inoculation with P. nicotianae strain race 0. We used two tobacco varieties: RBST (named from resistance to black shank and tobacco mosaic virus), which was resistant to the P. nicotianae strain race 0, and Honghuadajinyuan (HD), which was susceptible to P. nicotianae race 0. Samples were collected 12 and 72-hour post inoculation (hpi). Analysis of differentially expressed genes (DEGs) and significantly enriched GO terms indicated that several basic defense mechanisms were suppressed in both varieties, which included response to wounding (GO: 0009611), and defense response to fungus (GO: 0050832). We also found some genes that may especially be related to mechanisms of resistance in RBST, such as the one encoding a chitinase. These results will provide a valuable resource for understanding the interactions between P. nicotianae and tobacco plants.
Collapse
Affiliation(s)
- Jian-Kang Yang
- Key Laboratory of Tobacco Biotechnological Breeding, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, 650021, China
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, Yunnan University, Kunming, 650021, China
- Department of Biochemistry and Molecular Biology, Dali University, Dali, 671000, China
| | - Zhi-Jun Tong
- Key Laboratory of Tobacco Biotechnological Breeding, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, 650021, China
| | - Dun-Huang Fang
- Key Laboratory of Tobacco Biotechnological Breeding, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, 650021, China
| | - Xue-Jun Chen
- Key Laboratory of Tobacco Biotechnological Breeding, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, 650021, China
| | - Ke-Qin Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, Yunnan University, Kunming, 650021, China
| | - Bing-Guang Xiao
- Key Laboratory of Tobacco Biotechnological Breeding, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, 650021, China.
| |
Collapse
|
14
|
Li L, Zhao J, Zhao Y, Lu X, Zhou Z, Zhao C, Xu G. Comprehensive investigation of tobacco leaves during natural early senescence via multi-platform metabolomics analyses. Sci Rep 2016; 6:37976. [PMID: 27897248 PMCID: PMC5126694 DOI: 10.1038/srep37976] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 11/03/2016] [Indexed: 01/20/2023] Open
Abstract
Senescence is the final stage of leaf growth and development. Many different physiological activities occur during this process. A comprehensive metabolomics analysis of tobacco middle leaves at 5 different developmental stages was implemented through multi-platform methods based on liquid chromatography, capillary electrophoresis and gas chromatography coupled with mass spectrometry. In total, 412 metabolites were identified, including pigments, sterols, lipids, amino acids, polyamines, sugars and secondary metabolites. Dramatic metabolic changes were observed. Firstly, membrane degradation and chlorophyll down-regulation occurred after the 50% flower bud stage. Levels of major membrane lipids decreased, including those of the glycolipids in chloroplast thylakoids and phospholipids in membrane envelopes. Clear decreases in free sterols and acylated sterol glucosides were detected along with the accumulation of sterol esters. The accumulation of alkaloids was found. The amino acid levels were significantly decreased, particularly those of N-rich amino acids (glutamine and asparagine), thus reflecting N translocation. Subsequently, the antioxidant system was activated. Sugar alcohols and polyphenols accumulated when the lower leaves turned yellow. These results comprehensively revealed the metabolic changes that occur during tobacco leaf development and senescence under natural conditions.
Collapse
Affiliation(s)
- Lili Li
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jieyu Zhao
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanni Zhao
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xin Lu
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhihui Zhou
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chunxia Zhao
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guowang Xu
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|