1
|
Badoum ES, Kouraogo L, Diarra A, Ouattara D, Nebie I, Ouedraogo A, Tiono AB, Sirima SB. Force of Infection (FOI) and Multiplicity of Infection (MOI) in Plasmodium falciparum Infected Children Aged 1.5-12 Years Living in the Malaria Endemic Area of Banfora, Burkina Faso. Pathogens 2024; 13:883. [PMID: 39452754 PMCID: PMC11510140 DOI: 10.3390/pathogens13100883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/28/2024] [Accepted: 10/02/2024] [Indexed: 10/26/2024] Open
Abstract
The aim of this study was to explore molecular measures of P. falciparum malaria burden (FOI and MOI) in the context of seasonal malaria chemoprevention. We analyzed malaria cases collected as part of a longitudinal cohort study. The cohort included P. falciparum-negative children aged 1.5 to 12, as confirmed by PCR 21 days after a radical cure using DHA-PQ or AS. Children were followed up for six months using active and passive case detection methods. At each visit, dried blood spots and blood smears were collected by finger prick, along with clinical data. Parasite DNA was extracted and analyzed by nested PCR for detection and genotyping of P. falciparum parasites. A total of 458 P. falciparum isolates collected during follow-up from October 2020 to March 2021 were genotyped. During the follow-up, children contracted 1.05 (95% IC [0.81-1.30]) new P. falciparum infections/child/time of exposure, and the MOI value was 3.00 (SD 1.60). Age is a protective factor (IRR: 0.74; 95% CI: 0.61, 0.90) against the occurrence of an episode of malaria, unlike an increase in MOI (IRR: 1.63; 95% CI: 1.04, 1.99), which is a favorable factor (p < 0.05). This study confirms the reduction in malaria transmission in our study area, probably due to the massive deployment of control tools.
Collapse
Affiliation(s)
- Emilie S. Badoum
- Groupe de Recherche Action en Santé (GRAS), Ouagadougou 06 BP 10248, Burkina Faso; (L.K.); (A.D.); (D.O.); (I.N.); (A.O.); (A.B.T.); (S.B.S.)
| | | | | | | | | | | | | | | |
Collapse
|
2
|
Zhan Q, Tiedje KE, Day KP, Pascual M. From multiplicity of infection to force of infection for sparsely sampled Plasmodium falciparum populations at high transmission. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.02.12.24302148. [PMID: 38853963 PMCID: PMC11160831 DOI: 10.1101/2024.02.12.24302148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
High multiplicity of infection or MOI, the number of genetically distinct parasite strains co-infecting a single human host, characterizes infectious diseases including falciparum malaria at high transmission. It accompanies high asymptomatic Plasmodium falciparum prevalence despite high exposure, creating a large transmission reservoir challenging intervention. High MOI and asymptomatic prevalence are enabled by immune evasion of the parasite achieved via vast antigenic diversity. Force of infection or FOI, the number of new infections acquired by an individual host over a given time interval, is the dynamic sister quantity of MOI, and a key epidemiological parameter for monitoring the impact of antimalarial interventions and assessing vaccine or drug efficacy in clinical trials. FOI remains difficult, expensive, and labor-intensive to accurately measure, especially in high-transmission regions, whether directly via cohort studies or indirectly via the fitting of epidemiological models to repeated cross-sectional surveys. We propose here the application of queuing theory to obtain FOI on the basis of MOI, in the form of either a two-moment approximation method or Little's law. We illustrate these methods with MOI estimates obtained under sparse sampling schemes with the recently proposed " v a r coding" method, based on sequences of the v a r multigene family encoding for the major variant surface antigen of the blood stage of malaria infection. The methods are evaluated with simulation output from a stochastic agent-based model, and are applied to an interrupted time-series study from Bongo District in northern Ghana before and immediately after a three-round transient indoor residual spraying (IRS) intervention. We incorporate into the sampling of the simulation output, limitations representative of those encountered in the collection of field data, including under-sampling of v a r genes, missing data, and usage of antimalarial drug treatment. We address these limitations in MOI estimates with a Bayesian framework and an imputation bootstrap approach. We demonstrate that both proposed methods give good and consistent FOI estimates across various simulated scenarios. Their application to the field surveys shows a pronounced reduction in annual FOI during intervention, of more than 70%. The proposed approach should be applicable to the many geographical locations where cohort or cross-sectional studies with regular and frequent sampling are lacking but single-time-point surveys under sparse sampling schemes are available, and for MOI estimates obtained in different ways. They should also be relevant to other pathogens of humans, wildlife and livestock whose immune evasion strategies are based on large antigenic variation resulting in high multiplicity of infection.
Collapse
Affiliation(s)
- Qi Zhan
- Committee on Genetics, Genomics and Systems Biology, The University of Chicago, Chicago, IL, USA
| | - Kathryn E. Tiedje
- Department of Microbiology and Immunology, Bio21 Institute and Peter Doherty Institute, The University of Melbourne, Melbourne, Australia
| | - Karen P. Day
- Department of Microbiology and Immunology, Bio21 Institute and Peter Doherty Institute, The University of Melbourne, Melbourne, Australia
| | - Mercedes Pascual
- Department of Biology, New York University, New York, NY, USA
- Department of Environmental Studies, New York University, New York, NY, USA
- Santa Fe Institute, Santa Fe, NM, USA
| |
Collapse
|
3
|
Opute AO, Akinkunmi JA, Funsho AO, Obaniyi AK, Anifowoshe AT. Genetic diversity of Plasmodium falciparum isolates in Nigeria. A review. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2022. [DOI: 10.1186/s43042-022-00340-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
The complexity of infection in malaria-endemic areas is exacerbated by the presence of genetically diverse Plasmodium falciparum strains. There is a risk that more virulent or drug-resistant versions of the disease may arise. Therefore, we reviewed most reported molecular markers that have been detailed to date in Nigeria.
Main body of the abstract
In this review, we have summarized the genetic diversity of P. falciparum in Nigeria using the two well-reported genes (msp1 and msp2) as genetic diversity biomarkers. The review includes the findings obtained from research conducted in all major geopolitical regions of the country. We found that MSP-2 infection complexity is generally moderate to high in the North-central region. However, in the South-West, there were several regions where the multiplicity of infection (MOI) was either low or extremely high.
Conclusion
Understanding how Nigeria's malaria situation fits into various reports on P. falciparum genetic variation can improve treatment and immunization options. This review will be helpful for future treatment strategies that would be tailored to the specific needs of Nigeria's malaria-endemic populations.
Collapse
|
4
|
Declines in prevalence alter the optimal level of sexual investment for the malaria parasite Plasmodium falciparum. Proc Natl Acad Sci U S A 2022; 119:e2122165119. [PMID: 35867831 PMCID: PMC9335338 DOI: 10.1073/pnas.2122165119] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Like most human pathogens, the malaria parasite Plasmodium falciparum experiences strong selection pressure from public health interventions such as drug treatment. While most commonly studied in the context of drug targets and related pathways, parasite adaptation to control measures likely extends to phenotypes beyond drug resistance. Here, we use modeling to explore how control measures can reduce levels of within-host competition between P. falciparum genotypes and favor higher rates of sexual investment. We validate these predictions with longitudinally sampled genomic data from French Guiana during a period of malaria decline and find that the most strongly selected genes are enriched for transcription factors involved in commitment to and development of the parasite’s sexual gametocyte form. Successful infectious disease interventions can result in large reductions in parasite prevalence. Such demographic change has fitness implications for individual parasites and may shift the parasite’s optimal life history strategy. Here, we explore whether declining infection rates can alter Plasmodium falciparum’s investment in sexual versus asexual growth. Using a multiscale mathematical model, we demonstrate how the proportion of polyclonal infections, which decreases as parasite prevalence declines, affects the optimal sexual development strategy: Within-host competition in multiclone infections favors a greater investment in asexual growth whereas single-clone infections benefit from higher conversion to sexual forms. At the same time, drug treatment also imposes selection pressure on sexual development by shortening infection length and reducing within-host competition. We assess these models using 148 P. falciparum parasite genomes sampled in French Guiana over an 18-y period of intensive intervention (1998 to 2015). During this time frame, multiple public health measures, including the introduction of new drugs and expanded rapid diagnostic testing, were implemented, reducing P. falciparum malaria cases by an order of magnitude. Consistent with this prevalence decline, we see an increase in the relatedness among parasites, but no single clonal background grew to dominate the population. Analyzing individual allele frequency trajectories, we identify genes that likely experienced selective sweeps. Supporting our model predictions, genes showing the strongest signatures of selection include transcription factors involved in the development of P. falciparum’s sexual gametocyte form. These results highlight how public health interventions impose wide-ranging selection pressures that affect basic parasite life history traits.
Collapse
|
5
|
Ndiaye YD, Hartl DL, McGregor D, Badiane A, Fall FB, Daniels RF, Wirth DF, Ndiaye D, Volkman SK. Genetic surveillance for monitoring the impact of drug use on Plasmodium falciparum populations. Int J Parasitol Drugs Drug Resist 2021; 17:12-22. [PMID: 34333350 PMCID: PMC8342550 DOI: 10.1016/j.ijpddr.2021.07.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/24/2021] [Accepted: 07/07/2021] [Indexed: 11/23/2022]
Abstract
The use of antimalarial drugs is an effective strategy in the fight against malaria. However, selection of drug resistant parasites is a constant threat to the continued use of this approach. Antimalarial drugs are used not only to treat infections but also as part of population-level strategies to reduce malaria transmission toward elimination. While there is strong evidence that the ongoing use of antimalarial drugs increases the risk of the emergence and spread of drug-resistant parasites, it is less clear how population-level use of drug-based interventions like seasonal malaria chemoprevention (SMC) or mass drug administration (MDA) may contribute to drug resistance or loss of drug efficacy. Critical to sustained use of drug-based strategies for reducing the burden of malaria is the surveillance of population-level signals related to transmission reduction and resistance selection. Here we focus on Plasmodium falciparum and discuss the genetic signatures of a parasite population that are correlated with changes in transmission and related to drug pressure and resistance as a result of drug use. We review the evidence for MDA and SMC contributing to malaria burden reduction and drug resistance selection and examine the use and impact of these interventions in Senegal. Throughout we consider best strategies for ongoing surveillance of both population and resistance signals in the context of different parasite population parameters. Finally, we propose a roadmap for ongoing surveillance during population-level drug-based interventions to reduce the global malaria burden.
Collapse
Affiliation(s)
| | | | - David McGregor
- Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| | | | - Fatou Ba Fall
- Programme National de Lutte Contre le Paludisme, Senegal.
| | - Rachel F Daniels
- Harvard T.H. Chan School of Public Health, Boston, MA, USA; The Broad Institute, Cambridge, MA, USA.
| | - Dyann F Wirth
- Harvard T.H. Chan School of Public Health, Boston, MA, USA; The Broad Institute, Cambridge, MA, USA.
| | | | - Sarah K Volkman
- Harvard T.H. Chan School of Public Health, Boston, MA, USA; The Broad Institute, Cambridge, MA, USA; Simmons University, Boston, MA, USA.
| |
Collapse
|
6
|
Whitlock AOB, Juliano JJ, Mideo N. Immune selection suppresses the emergence of drug resistance in malaria parasites but facilitates its spread. PLoS Comput Biol 2021; 17:e1008577. [PMID: 34280179 PMCID: PMC8321109 DOI: 10.1371/journal.pcbi.1008577] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 07/29/2021] [Accepted: 06/04/2021] [Indexed: 12/23/2022] Open
Abstract
Although drug resistance in Plasmodium falciparum typically evolves in regions of low transmission, resistance spreads readily following introduction to regions with a heavier disease burden. This suggests that the origin and the spread of resistance are governed by different processes, and that high transmission intensity specifically impedes the origin. Factors associated with high transmission, such as highly immune hosts and competition within genetically diverse infections, are associated with suppression of resistant lineages within hosts. However, interactions between these factors have rarely been investigated and the specific relationship between adaptive immunity and selection for resistance has not been explored. Here, we developed a multiscale, agent-based model of Plasmodium parasites, hosts, and vectors to examine how host and parasite dynamics shape the evolution of resistance in populations with different transmission intensities. We found that selection for antigenic novelty (“immune selection”) suppressed the evolution of resistance in high transmission settings. We show that high levels of population immunity increased the strength of immune selection relative to selection for resistance. As a result, immune selection delayed the evolution of resistance in high transmission populations by allowing novel, sensitive lineages to remain in circulation at the expense of the spread of a resistant lineage. In contrast, in low transmission settings, we observed that resistant strains were able to sweep to high population prevalence without interference. Additionally, we found that the relationship between immune selection and resistance changed when resistance was widespread. Once resistance was common enough to be found on many antigenic backgrounds, immune selection stably maintained resistant parasites in the population by allowing them to proliferate, even in untreated hosts, when resistance was linked to a novel epitope. Our results suggest that immune selection plays a role in the global pattern of resistance evolution. Drug resistance in the malaria parasite, Plasmodium falciparum, presents an ongoing public health challenge, but aspects of its evolution are poorly understood. Although antimalarial resistance is common worldwide, it can typically be traced to just a handful of evolutionary origins. Counterintuitively, although Sub Saharan Africa bears 90% of the global malaria burden, resistance typically originates in regions where transmission intensity is low. In high transmission regions, infections are genetically diverse, and hosts have significant standing adaptive immunity, both of which are known to suppress the frequency of resistance within infections. However, interactions between immune-driven selection, transmission intensity, and resistance have not been investigated. Using a multiscale, agent-based model, we found that high transmission intensity slowed the evolution of resistance via its effect on host population immunity. High host immunity strengthened selection for antigenic novelty, interfering with selection for resistance and allowing sensitive lineages to suppress resistant lineages in untreated hosts. However, once resistance was common in the circulating parasite population, immune selection maintained it in the population at a high prevalence. Our findings provide a novel explanation for observations about the origin of resistance and suggest that adaptive immunity is a critical component of selection.
Collapse
Affiliation(s)
| | - Jonathan J. Juliano
- Division of Infectious Diseases, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Nicole Mideo
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, Canada
| |
Collapse
|
7
|
Oyedeji SI, Bassi PU, Oyedeji SA, Ojurongbe O, Awobode HO. Genetic diversity and complexity of Plasmodium falciparum infections in the microenvironment among siblings of the same household in North-Central Nigeria. Malar J 2020; 19:338. [PMID: 32938438 PMCID: PMC7493857 DOI: 10.1186/s12936-020-03415-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 09/10/2020] [Indexed: 11/10/2022] Open
Abstract
Background Plasmodium falciparum parasites are known to exhibit extensive genetic diversity in areas of high transmission intensity and infected individuals in such communities often harbour several complex mixtures of parasite clones with different genetic characteristics. However, in the micro-environment, the extent of genetic diversity of P. falciparum parasites remain largely unknown. In this study therefore, the complexity of P. falciparum infections in households was investigated among symptomatic siblings, living under the same roof in north-central Nigeria. Methods Children were enrolled into the study if they were at least two from a household and presented with symptoms of uncomplicated malaria. Clinical malaria was confirmed by light microscopy of Giemsa-stained thick and thin blood films. Genomic DNA was isolated from blood spots on filter paper. Molecular characterization of P. falciparum isolates was done by allele-specific nested PCR of the highly polymorphic merozoite surface protein-2 (msp-2) gene. Results Ninety-three children from 43 households were enrolled into this study. A total of 26 different msp-2 alleles were identified from 215 fragments (range: 180–480 bp). Majority of the isolates [65.6% (n = 61)] were polyclonal infections consisting of 2–6 clones and were significantly more common with the FC27 allelic family (p = 0.036). The multiplicity of infection (MOI) per household ranged from 1.0 to 4.5 while the overall MOI in the study population was 2.31. The pattern of distribution of msp-2 allele types among the households fell into two categories: households where both msp-2 allele types (FC27 and 3D7) were present; households where only one msp-2 allele type (FC27 or 3D7) was present. Majority of the households [88.4% (n = 38)], had both msp-2 allele types but they were disproportionately distributed among the children while in a few households [11.6% (n = 5)], all the children were infected with only one type of msp-2 allele. Conclusion These findings showed that P. falciparum isolates exhibit remarkable degree of genetic diversity in the micro-environment and are composed mainly of multiclonal infections, which is an indication of a high ongoing parasite transmission. This suggests that the micro-environment is an important area of focus for malaria control interventions and for evaluating intervention programmes.
Collapse
Affiliation(s)
- Segun Isaac Oyedeji
- Molecular Genetics and Parasitology Unit, Department of Animal & Environmental Biology, Federal University Oye-Ekiti, Oye-Ekiti, Nigeria.
| | - Peter Usman Bassi
- Department of Pharmacology and Therapeutics, University of Abuja, Abuja, Nigeria
| | | | - Olusola Ojurongbe
- Department of Medical Microbiology and Parasitology, Ladoke Akintola University of Technology, Osogbo, Nigeria
| | | |
Collapse
|
8
|
Dable MT, Tano KD, Ouattara M, Silue KD, Menan EIH, Yavo W. Ex vivo efficacy of selective chalcone derivatives on reference strains and field isolates of Plasmodium falciparum. Pathog Glob Health 2020; 113:359-363. [PMID: 31910738 DOI: 10.1080/20477724.2019.1710065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
The extension of Plasmodium falciparum resistance to existing antimalarial drugs is worrying. Faced with this problem, the search for new and effective molecules is necessary. In this context, six chalcone derivatives (B1, B11, B14, B17, SCA02 and SCA03) were tested on field isolates and then reference strains to evaluate their antiplasmodial activity by using the Rieckmann semi-microtest, recommended by WHO, for in vitro and ex vivo activity tests. Compounds B14 and B17 exhibited promising antiplasmodial activities (IC50s: 14.41-16.40 μM) regardless of the type of isolate. Compounds B1, B11, SCA02 and SCA03 showed a moderate inhibition of field isolates (IC50S: 25.63-48.29 μM) and very good activity against reference strains (IC50s: 3.82-10.03 μM). Therefore, more structural modulations should improve their efficiency and make these molecules very good candidates for future effective antimalarial drugs.
Collapse
Affiliation(s)
- Marius Trésor Dable
- Malaria Research and Control Centre, National Institute of Public Health, Abidjan, Côte d'Ivoire
| | - Konan Dominique Tano
- Malaria Research and Control Centre, National Institute of Public Health, Abidjan, Côte d'Ivoire
| | - Mahama Ouattara
- Department of Therapeutic Chemistry and Organic Chemistry, Faculty of Pharmacy and Biological Sciences Félix Houphouët-Boigny University, Abidjan, Côte d'Ivoire
| | | | - Eby I Hervé Menan
- Centre for Diagnosis and Research on AIDS and other infectious diseases, Abidjan, Côte d'Ivoire
| | - William Yavo
- Malaria Research and Control Centre, National Institute of Public Health, Abidjan, Côte d'Ivoire.,Department of Parasitology-Mycology, Faculty of Pharmacy and Biological Sciences, Félix Houphouët Boigny University, Abidjan, Côte d'Ivoire
| |
Collapse
|
9
|
Stresman GH, Mwesigwa J, Achan J, Giorgi E, Worwui A, Jawara M, Di Tanna GL, Bousema T, Van Geertruyden JP, Drakeley C, D'Alessandro U. Do hotspots fuel malaria transmission: a village-scale spatio-temporal analysis of a 2-year cohort study in The Gambia. BMC Med 2018; 16:160. [PMID: 30213275 PMCID: PMC6137946 DOI: 10.1186/s12916-018-1141-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 07/31/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Despite the biological plausibility of hotspots fueling malaria transmission, the evidence to support this concept has been mixed. If transmission spreads from high burden to low burden households in a consistent manner, then this could have important implications for control and elimination program development. METHODS Data from a longitudinal cohort in The Gambia was analyzed. All consenting individuals residing in 12 villages across the country were sampled monthly from June (dry season) to December 2013 (wet season), in April 2014 (mid dry season), and monthly from June to December 2014. A study nurse stationed within each village recorded passively detected malaria episodes between visits. Plasmodium falciparum infections were determined by polymerase chain reaction and analyzed using a geostatistical model. RESULTS Household-level observed monthly incidence ranged from 0 to 0.50 infection per person (interquartile range = 0.02-0.10) across the sampling months, and high burden households exist across all study villages. There was limited evidence of a spatio-temporal pattern at the monthly timescale irrespective of transmission intensity. Within-household transmission was the most plausible hypothesis examined to explain the observed heterogeneity in infections. CONCLUSIONS Within-village malaria transmission patterns are concentrated in a small proportion of high burden households, but patterns are stochastic regardless of endemicity. Our findings support the notion of transmission occurring at the household and village scales but not the use of a targeted approach to interrupt spreading of infections from high to low burden areas within villages in this setting.
Collapse
Affiliation(s)
- Gillian H Stresman
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, UK.
| | - Julia Mwesigwa
- Medical Research Council Unit The Gambia at London School of Hygiene & Tropical Medicine, Fajara, The Gambia.,University of Antwerp, Antwerp, Belgium
| | - Jane Achan
- Medical Research Council Unit The Gambia at London School of Hygiene & Tropical Medicine, Fajara, The Gambia.,University of Antwerp, Antwerp, Belgium
| | - Emanuele Giorgi
- CHICAS, Lancaster Medical School, Lancaster University, Lancaster, UK
| | - Archibald Worwui
- Medical Research Council Unit The Gambia at London School of Hygiene & Tropical Medicine, Fajara, The Gambia.,University of Antwerp, Antwerp, Belgium
| | - Musa Jawara
- Medical Research Council Unit The Gambia at London School of Hygiene & Tropical Medicine, Fajara, The Gambia.,University of Antwerp, Antwerp, Belgium
| | | | - Teun Bousema
- Department of Medical Microbology, Radboud Medical University, Nijmegen, The Netherlands
| | | | - Chris Drakeley
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, UK
| | - Umberto D'Alessandro
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, UK.,Medical Research Council Unit The Gambia at London School of Hygiene & Tropical Medicine, Fajara, The Gambia.,University of Antwerp, Antwerp, Belgium
| |
Collapse
|
10
|
Spicer TP, Gardiner DL, Schoenen FJ, Roy S, Griffin PR, Chase P, Scampavia L, Hodder P, Trenholme KR. Identification of Antimalarial Inhibitors Using Late-Stage Gametocytes in a Phenotypic Live/Dead Assay. SLAS DISCOVERY 2018; 24:38-46. [PMID: 30142014 DOI: 10.1177/2472555218796410] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Malaria remains a major cause of morbidity and mortality worldwide with ~3.3 billion people at risk of contracting malaria and an estimated 450,000 deaths each year. While tools to reduce the infection prevalence to low levels are currently under development, additional efforts will be required to interrupt transmission. Transmission between human host and vector by the malaria parasite involves gametogenesis in the host and uptake of gametocytes by the mosquito vector. This stage is a bottleneck for reproduction of the parasite, making it a target for small-molecule drug discovery. Targeting this stage, we used whole Plasmodium falciparum gametocytes from in vitro culture and implemented them into 1536-well plates to create a live/dead phenotypic antigametocyte assay. Using specialized equipment and upon further validation, we screened ~150,000 compounds from the NIH repository currently housed at Scripps Florida. We identified 100 primary screening hits that were tested for concentration response. Additional follow-up studies to determine specificity, potency, and increased efficacy of the antigametocyte candidate compounds resulted in a starting point for initial medicinal chemistry intervention. From this, 13 chemical analogs were subsequently tested as de novo powders, which confirmed original activity from the initial analysis and now provide a point of future engagement.
Collapse
Affiliation(s)
- Timothy P Spicer
- 1 Department of Molecular Medicine, The Scripps Research Institute, Scripps Florida, Jupiter, FL, USA.,2 School of Medicine, University of Queensland, Herston, Queensland, Australia
| | - Donald L Gardiner
- 2 School of Medicine, University of Queensland, Herston, Queensland, Australia
| | - Frank J Schoenen
- 3 The University of Kansas Specialized Chemistry Center, Lawrence, KS,USA
| | - Sudeshna Roy
- 3 The University of Kansas Specialized Chemistry Center, Lawrence, KS,USA.,4 The University of Mississippi, Oxford, MS
| | - Patrick R Griffin
- 1 Department of Molecular Medicine, The Scripps Research Institute, Scripps Florida, Jupiter, FL, USA
| | - Peter Chase
- 1 Department of Molecular Medicine, The Scripps Research Institute, Scripps Florida, Jupiter, FL, USA.,5 BMS, Hopewell, NJ
| | - Louis Scampavia
- 1 Department of Molecular Medicine, The Scripps Research Institute, Scripps Florida, Jupiter, FL, USA
| | - Peter Hodder
- 1 Department of Molecular Medicine, The Scripps Research Institute, Scripps Florida, Jupiter, FL, USA.,6 Amgen, Inc., Thousand Oaks, CA, USA
| | - Katharine R Trenholme
- 2 School of Medicine, University of Queensland, Herston, Queensland, Australia.,7 Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| |
Collapse
|
11
|
Wong W, Griggs AD, Daniels RF, Schaffner SF, Ndiaye D, Bei AK, Deme AB, MacInnis B, Volkman SK, Hartl DL, Neafsey DE, Wirth DF. Genetic relatedness analysis reveals the cotransmission of genetically related Plasmodium falciparum parasites in Thiès, Senegal. Genome Med 2017; 9:5. [PMID: 28118860 PMCID: PMC5260019 DOI: 10.1186/s13073-017-0398-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Accepted: 12/23/2016] [Indexed: 12/30/2022] Open
Abstract
Background As public health interventions drive parasite populations to elimination, genetic epidemiology models that incorporate population genomics can be powerful tools for evaluating the effectiveness of continued intervention. However, current genetic epidemiology models may not accurately simulate the population genetic profile of parasite populations, particularly with regard to polygenomic (multi-strain) infections. Current epidemiology models simulate polygenomic infections via superinfection (multiple mosquito bites), despite growing evidence that cotransmission (a single mosquito bite) may contribute to polygenomic infections. Methods Here, we quantified the relatedness of strains within 31 polygenomic infections collected from patients in Thiès, Senegal using a hidden Markov model to measure the proportion of the genome that is inferred to be identical by descent. Results We found that polygenomic infections can be composed of highly related parasites and that superinfection models drastically underestimate the relatedness of strains within polygenomic infections. Conclusions Our findings suggest that cotransmission is a major contributor to polygenomic infections in Thiès, Senegal. The incorporation of cotransmission into existing genetic epidemiology models may enhance our ability to characterize and predict changes in population structure associated with reduced transmission intensities and the emergence of important phenotypes like drug resistance that threaten to undermine malaria elimination activities. Electronic supplementary material The online version of this article (doi:10.1186/s13073-017-0398-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wesley Wong
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, 02115, USA
| | | | - Rachel F Daniels
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, 02115, USA.,Broad Institute, Cambridge, MA, 02142, USA
| | | | - Daouda Ndiaye
- Faculty of Medicine and Pharmacy, Cheikh Anta Diop University, Dakar, Senegal
| | - Amy K Bei
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, 02115, USA.,Faculty of Medicine and Pharmacy, Cheikh Anta Diop University, Dakar, Senegal
| | - Awa B Deme
- Faculty of Medicine and Pharmacy, Cheikh Anta Diop University, Dakar, Senegal
| | | | - Sarah K Volkman
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, 02115, USA.,Broad Institute, Cambridge, MA, 02142, USA.,School of Nursing and Health Sciences, Simmons College, Boston, MA, 02115, USA
| | - Daniel L Hartl
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, 02115, USA.,Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| | | | - Dyann F Wirth
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, 02115, USA. .,Broad Institute, Cambridge, MA, 02142, USA.
| |
Collapse
|