1
|
Andrade DLLS, Pintarelli GB, Rosa JV, Paro IB, Pagano PJT, Silva JCN, Suzuki DOH. Musa acuminata as electroporation model. Bioelectrochemistry 2023; 154:108549. [PMID: 37639773 DOI: 10.1016/j.bioelechem.2023.108549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/17/2023] [Accepted: 08/19/2023] [Indexed: 08/31/2023]
Abstract
Electrochemotherapy (ECT) and Irreversible electroporation (IRE) are cancer treatments based on electric field distribution in tissues. Solanum tuberosum (potato tissue) phantom is known to mimic changes in the electrical conductivity that occur in animal tissues during electroporation (EP). Electric field distribution is assessed through enzymatic staining. However, the 24-h wait for this assessment could slow agile response scenarios. We developed and validated the Musa acuminata (cavendish banana) conductivity model, which quickly evaluates EP by tissue staining. We investigated the frequency response of the tissue using impedance spectroscopy analysis, conductivity changes, and enzymatic staining. We optimized three usual EP models: adapted Gompertz, smoothed Heaviside, and the sigmoid or logistic function. We found dielectric parameters in banana tissue similar to those in potato (electrical conductivity of 0.035 S/m and relative permittivity of 4.1×104). The coefficients of determination R2 were 99.94% (Gompertz), 99.85% (Heaviside), and 99.58% (sigmoid). The sigmoid and Heaviside functions described the calibration and validation electric currents with 95% confidence. We observed the electroporated areas in bananas 3h30m after EP. Staining was significant after 450 V/cm. The conductivity model of Musa acuminata suits treatment planning, hardware development, and training scenarios. Banana phantom supports the 3Rs practice and is a reliable alternative for potato in EP studies.
Collapse
Affiliation(s)
- Daniella L L S Andrade
- Institute of Biomedical Engineering, Department of Electrical and Electronics Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Guilherme B Pintarelli
- Department of Control and Automation Engineering, Federal University of Santa Catarina, Blumenau, SC, Brazil
| | - Juliana V Rosa
- Institute of Biomedical Engineering, Department of Electrical and Electronics Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Isabela B Paro
- Institute of Biomedical Engineering, Department of Electrical and Electronics Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Pedro J T Pagano
- Institute of Biomedical Engineering, Department of Electrical and Electronics Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Julia C N Silva
- Institute of Biomedical Engineering, Department of Electrical and Electronics Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Daniela O H Suzuki
- Institute of Biomedical Engineering, Department of Electrical and Electronics Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| |
Collapse
|
2
|
Guedert R, Brasil Pintarelli G, Mena Barreto Silva FR, Ota Hisayasu Suzuki D. Effects of pulse repetition rate in static electrochemotherapy models. Bioelectrochemistry 2023; 153:108499. [PMID: 37413821 DOI: 10.1016/j.bioelechem.2023.108499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/08/2023]
Abstract
Electroporation alters cell membrane structure and tissue electrical properties by short and intense pulsed electric fields (PEF). Static mathematical models are often used to explain the change in electrical properties of tissues caused by electroporation. Electric pulse repetition rate may play an important role, as tissue dielectric dispersion, electroporation dynamics, and Joule heating may affect the electrical properties. In this work, we investigate the effects on the magnitude of the electric current when the repetition rate of the standard electrochemotherapy protocol is increased. Liver, oral mucosa, and muscle tissues were studied. Ex vivo animal experiments show that the magnitude of the electric current increases when the repetition rate is changed from 1 Hz to 5 kHz (10.8% for liver, 5.8% for oral mucosa, and 4.7% for muscle). Although a correction factor could reduce the error to less than 1%, dynamic models seem to be necessary to analyze different protocol signatures. Authors should be aware that static models and experimental results can only be compared if they use exactly the same PEF signature. The repetition rate is a key information to consider in the pretreatment computer study because the current at 1 Hz PEF differs from a 5 kHz PEF.
Collapse
Affiliation(s)
- Raul Guedert
- Institute of Biomedical Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil.
| | - Guilherme Brasil Pintarelli
- Department of Control and Automation Engineering, Federal University of Santa Catarina, Blumenau, SC, Brazil.
| | - Fátima Regina Mena Barreto Silva
- Hormone and Signals Transduction Laboratory, Núcleo de Bioeletricidade Celular (NUBIOCEL), Departamento de Bioquímica, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, SC, Brazil.
| | | |
Collapse
|
3
|
Lakshmi Narasimhan P, Tokoutsi Z, Baroli D, Baragona M, Veroy K, Maessen R, Ritter A. Global sensitivity study for irreversible electroporation: Towards treatment planning under uncertainty. Med Phys 2023; 50:1290-1304. [PMID: 36635955 DOI: 10.1002/mp.16220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 11/25/2022] [Accepted: 11/25/2022] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Electroporation-based cancer treatments are minimally invasive, nonthermal interventional techniques that leverage cell permeabilization to ablate the target tumor. However, the amount of permeabilization is susceptible to the numerous uncertainties during treatment, such as patient-specific variations in the tissue, type of the tumor, and the resolution of imaging equipment. These uncertainties can reduce the extent of ablation in the tissue, thereby affecting the effectiveness of the treatment. PURPOSE The aim of this work is to understand the effect of these treatment uncertainties on the treatment outcome for irreversible electroporation (IRE) in the case of colorectal liver metastasis (CRLM). Understanding the nature and extent of these effects can help us identify the influential treatment parameters and build better models for predicting the treatment outcome. METHODS This is an in silico study using a static computational model with a custom applicator design, spherical tissue, and tumor geometry. A nonlinear electrical conductivity, dependent on the local electric field, is considered. Morris analysis is used to identify the influential treatment parameters on the treatment outcome. Seven treatment parameters pertaining to the relative tumor location with respect to the applicator, the tumor growth pattern, and the electrical conductivity of tissue are analyzed. The treatment outcome is measured in terms of the relative tumor ablation with respect to the target ablation volume and total ablation volume. RESULTS The Morris analysis was performed with 800 model evaluations, sampled from the seven dimensional input parameter space. Electrical properties of the tissue, especially the electrical conductivity of the tumor before ablation, were found to be the most influential parameter for relative tumor ablation and total ablation volume. This parameter was found to be about 4-15 times more influential than the least influential parameter, depending on the tumor size. The tumor border configuration was identified as the least important parameter for treatment effectiveness. The most desired treatment outcome is obtained by a combination of high healthy liver conductivity and low tumor conductivity. This information can be used to tackle worst-case scenarios in treatment planning. Finally, when the safety margins used in the clinical applications are accounted for, the effects of uncertainties in the treatment parameters reduce drastically. CONCLUSIONS The results of this work can be used to create an efficient surrogate estimator for uncertainty quantification in the treatment outcome, that can be utilized in optimal real-time treatment planning solutions.
Collapse
Affiliation(s)
- Prashanth Lakshmi Narasimhan
- Philips Research, Eindhoven, AE, The Netherlands
- Centre for Analysis, Scientific Computing, and Applications, Eindhoven University of Technology, Eindhoven, AZ, The Netherlands
| | - Zoi Tokoutsi
- Philips Research, Eindhoven, AE, The Netherlands
| | - Davide Baroli
- Euler Institute (Instituto Eulero) and Cardiocentro Ticino, Faculty of Informatics, Universitá della Svizzera italiana, Viganello-Lugano, Switzerland
| | | | - Karen Veroy
- Centre for Analysis, Scientific Computing, and Applications, Eindhoven University of Technology, Eindhoven, AZ, The Netherlands
| | | | - Andreas Ritter
- Department of Diagnostic and Interventional Radiology, University Hospital RWTH Aachen, Aachen, Germany
| |
Collapse
|
4
|
Malyško-Ptašinskė V, Staigvila G, Novickij V. Invasive and non-invasive electrodes for successful drug and gene delivery in electroporation-based treatments. Front Bioeng Biotechnol 2023; 10:1094968. [PMID: 36727038 PMCID: PMC9885012 DOI: 10.3389/fbioe.2022.1094968] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/28/2022] [Indexed: 01/17/2023] Open
Abstract
Electroporation is an effective physical method for irreversible or reversible permeabilization of plasma membranes of biological cells and is typically used for tissue ablation or targeted drug/DNA delivery into living cells. In the context of cancer treatment, full recovery from an electroporation-based procedure is frequently dependent on the spatial distribution/homogeneity of the electric field in the tissue; therefore, the structure of electrodes/applicators plays an important role. This review focuses on the analysis of electrodes and in silico models used for electroporation in cancer treatment and gene therapy. We have reviewed various invasive and non-invasive electrodes; analyzed the spatial electric field distribution using finite element method analysis; evaluated parametric compatibility, and the pros and cons of application; and summarized options for improvement. Additionally, this review highlights the importance of tissue bioimpedance for accurate treatment planning using numerical modeling and the effects of pulse frequency on tissue conductivity and relative permittivity values.
Collapse
Affiliation(s)
| | - Gediminas Staigvila
- Faculty of Electronics, Vilnius Gediminas Technical University, Vilnius, Lithuania
| | - Vitalij Novickij
- Faculty of Electronics, Vilnius Gediminas Technical University, Vilnius, Lithuania
- Department of Immunology, State Research Institute Centre of Innovative Medicine, Vilnius, Lithuania
| |
Collapse
|
5
|
Sugrue A, Maor E, Del-Carpio Munoz F, Killu AM, Asirvatham SJ. Cardiac ablation with pulsed electric fields: principles and biophysics. Europace 2022; 24:1213-1222. [PMID: 35426908 DOI: 10.1093/europace/euac033] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 02/24/2022] [Indexed: 01/04/2023] Open
Abstract
Pulsed electric fields (PEFs) have emerged as an ideal cardiac ablation modality. At present numerous clinical trials in humans are exploring PEF as an ablation strategy for both atrial and ventricular arrhythmias, with early data showing significant promise. As this is a relatively new technology there is limited understanding of its principles and biophysics. Importantly, PEF biophysics and principles are starkly different to current energy modalities (radiofrequency and cryoballoon). Given the relatively novel nature of PEFs, this review aims to provide an understanding of the principles and biophysics of PEF ablation. The goal is to enhance academic research and ultimately enable optimization of ablation parameters to maximize procedure success and minimize risk.
Collapse
Affiliation(s)
- Alan Sugrue
- Division of Heart Rhythm Services, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
- Division of Cardiovascular Medicine, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Elad Maor
- Division of Heart Rhythm Services, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
- Chaim Sheba Medical Center and Sackler School of Medicine, Tel Aviv University, Israel
| | - Freddy Del-Carpio Munoz
- Division of Heart Rhythm Services, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Ammar M Killu
- Division of Heart Rhythm Services, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Samuel J Asirvatham
- Division of Heart Rhythm Services, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
6
|
Ahamed MK, Ahmed M, Karal MAS. Quantification of pulsed electric field for the rupture of giant vesicles with various surface charges, cholesterols and osmotic pressures. PLoS One 2022; 17:e0262555. [PMID: 35025973 PMCID: PMC8757908 DOI: 10.1371/journal.pone.0262555] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/28/2021] [Indexed: 12/02/2022] Open
Abstract
Electropermeabilization is a promising phenomenon that occurs when pulsed electric field with high frequency is applied to cells/vesicles. We quantify the required values of pulsed electric fields for the rupture of cell-sized giant unilamellar vesicles (GUVs) which are prepared under various surface charges, cholesterol contents and osmotic pressures. The probability of rupture and the average time of rupture are evaluated under these conditions. The electric field changes from 500 to 410 Vcm-1 by varying the anionic lipid mole fraction from 0 to 0.60 for getting the maximum probability of rupture (i.e., 1.0). In contrast, the same probability of rupture is obtained for changing the electric field from 410 to 630 Vcm-1 by varying the cholesterol mole fraction in the membranes from 0 to 0.40. These results suggest that the required electric field for the rupture decreases with the increase of surface charge density but increases with the increase of cholesterol. We also quantify the electric field for the rupture of GUVs containing anionic mole fraction of 0.40 under various osmotic pressures. In the absence of osmotic pressure, the electric field for the rupture is obtained 430 Vcm-1, whereas the field is 300 Vcm-1 in the presence of 17 mOsmL-1, indicating the instability of GUVs at higher osmotic pressures. These investigations open an avenue of possibilities for finding the electric field dependent rupture of cell-like vesicles along with the insight of biophysical and biochemical processes.
Collapse
Affiliation(s)
- Md. Kabir Ahamed
- Department of Physics, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh
| | - Marzuk Ahmed
- Department of Physics, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh
| | - Mohammad Abu Sayem Karal
- Department of Physics, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh
- * E-mail:
| |
Collapse
|
7
|
PEF-treated plant and animal tissues: Insights by approaching with different electroporation assessment methods. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2021.102872] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
8
|
Perera-Bel E, Mercadal B, Garcia-Sanchez T, Gonzalez Ballester MA, Ivorra A. Modeling methods for treatment planning in overlapping electroporation treatments. IEEE Trans Biomed Eng 2021; 69:1318-1327. [PMID: 34559631 DOI: 10.1109/tbme.2021.3115029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Irreversible electroporation (IRE) is a non thermal tissue ablation therapy which is induced by applying high voltage waveforms across electrode pairs. When multiple electrode pairs are sequentially used, the treatment volume (TV) is typically computed as the geometric union of the TVs of individual pairs. However, this method neglects that some regions are exposed to overlapping treatments. Recently, a model describing cell survival probability was introduced which effectively predicted TV with overlapping fields in vivo. However, treatment overlap has yet to be quantified. This study characterizes TV overlap in a controlled in vitro setup with the two existing methods which are compared to an adapted logistic model proposed here. METHODS CHO cells were immobilized in agarose gel. Initially, we characterized the electric field threshold and the cell survival probability for overlapping treatments. Subsequently, we created a 2D setup where we compared and validated the accuracy of the different methods in predicting the TV. RESULTS Overlap can reduce the electric field threshold required to induce cell death, particularly for treatments with low pulse number. However, it does not have a major impact on TV in the models assayed here, and all the studied methods predict TV with similar accuracy. CONCLUSION Treatment overlap has a minor influence in the TV for typical protocols found in IRE therapies. SIGNIFICANCE This study provides evidence that the modeling method used in most pre-clinical and clinical studies seems adequate.
Collapse
|
9
|
Weinert RL, Knabben MA, Pereira EM, Garcia CE, Ramos A. Dynamic Electroporation Model Evaluation on Rabbit Tissues. Ann Biomed Eng 2021; 49:2503-2512. [PMID: 34169397 PMCID: PMC8224995 DOI: 10.1007/s10439-021-02816-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/16/2021] [Indexed: 11/27/2022]
Abstract
Biological electroporation is a process of opening pores in the cell membrane when exposed to intense electric fields. This work provides results for validation of a dynamic model of electroporation on biological tissues. Computational simulations were carried out and results for the electrical current through the tissue and increase of the tissue temperature were compared to experimental results. Two calculation methods were used: Equivalent Circuit Method and Finite Element Method. With Equivalent Circuit Method the dielectric dispersion present in biological tissues was included. Liver, kidney and heart of rabbit were used in the experiments. Voltage pulse protocols and voltage ramps were applied using stainless steel needles electrodes. There is good agreement between the simulated and experimental results with mean errors below 15%, with the simulated results within the experimental standard deviation. Only for the protocol with fundamental frequency of 50 kHz, the simulation performed by the Finite Element Method using a commercial software did not correctly represent the current, with errors reaching 50%. The justification for the error found is due to the dielectric dispersion that was not included in this simulator.
Collapse
Affiliation(s)
- Rodolfo Lauro Weinert
- Applied Electromagnetic Research Group, Department of Electrical Engineering, State University of Santa Catarina - UDESC, Paulo Malschitzki, 200 - Campus Universitário Prof. Avelino Marcante, Zona Industrial Norte, Joinville, SC, CEP - 89219-710, Brazil.
| | - Marcel Augusto Knabben
- Applied Electromagnetic Research Group, Department of Electrical Engineering, State University of Santa Catarina - UDESC, Paulo Malschitzki, 200 - Campus Universitário Prof. Avelino Marcante, Zona Industrial Norte, Joinville, SC, CEP - 89219-710, Brazil
| | - Eduardo Manoel Pereira
- Department of Pharmacy, University of Joinville Region - UNIVILLE, Paulo Malschitzki, 10 - Zona Industrial Norte, Joinville, SC, CEP 89201-972, Brazil
| | - Christian Evangelista Garcia
- Department of Medicine, University of Joinville Region - UNIVILLE, Paulo Malschitzki, 10 - Zona Industrial Norte, Joinville, SC, CEP 89201-972, Brazil
| | - Airton Ramos
- Applied Electromagnetic Research Group, Department of Electrical Engineering, State University of Santa Catarina - UDESC, Paulo Malschitzki, 200 - Campus Universitário Prof. Avelino Marcante, Zona Industrial Norte, Joinville, SC, CEP - 89219-710, Brazil
| |
Collapse
|
10
|
Wardhana G, Almeida JP, Abayazid M, Fütterer JJ. Development of a thermal model for irreversible electroporation: an approach to estimate and optimize the IRE protocols. Int J Comput Assist Radiol Surg 2021; 16:1325-1334. [PMID: 34032965 PMCID: PMC8295143 DOI: 10.1007/s11548-021-02403-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 05/07/2021] [Indexed: 11/27/2022]
Abstract
Purpose Irreversible electroporation (IRE) is an emerging technique that has drawn attention in the field of cancer treatment. IRE uses non-thermal electric pulses to induce death of cancerous cells. However, recent studies have shown that the application of this technique may result in heating of the tissue. There is still room for improving its efficiency and defining better treatment protocols. This study investigates the optimal IRE protocols that avoiding the thermal damage during the IRE treatment. Methods Electrode and pulse parameter are investigated. Finite element models are created to evaluate the ablation area and the temperature changes in the tissue. The model is validated experimentally in bovine liver tissue, while the parameters were optimized using response surface method (RSM). Results From analysis of variance, the parameter of electrode distance and input voltage has significant effect to the temperature rise in the IRE treatment of bovine liver (P = 0.020 and P = 0.003 respectively). Meanwhile, only the input voltage significantly affects the ablation area (P < 0.001). The optimal result from RSM showed that for maximum ablation area 250.82mm2 with no thermal damage, the IRE protocol consisted of an active electrode length of 10 mm, a distance between electrodes of 10 mm, and the delivery of 50 pulses of 41.21 µs and 3000 V. Conclusions The approach presented in this study allows the optimization of the IRE protocols. An optimal IRE protocol that maximizes the ablation area was successfully calculated which can be applied with no risk of thermal damage to the tissue.
Collapse
Affiliation(s)
- Girindra Wardhana
- Department of Robotics and Mechatronics, The Faculty of Electrical Engineering, Mathematics and Computer Science, Technical Medical Centre, University of Twente, 7522 NB, Enschede, The Netherlands.
| | - João Pedro Almeida
- Department of Robotics and Mechatronics, The Faculty of Electrical Engineering, Mathematics and Computer Science, Technical Medical Centre, University of Twente, 7522 NB, Enschede, The Netherlands
| | - Momen Abayazid
- Department of Robotics and Mechatronics, The Faculty of Electrical Engineering, Mathematics and Computer Science, Technical Medical Centre, University of Twente, 7522 NB, Enschede, The Netherlands
| | - Jurgen J Fütterer
- Department of Robotics and Mechatronics, The Faculty of Electrical Engineering, Mathematics and Computer Science, Technical Medical Centre, University of Twente, 7522 NB, Enschede, The Netherlands
- Department of Medical Imaging, Radboud University Medical Center Nijmegen, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, The Netherlands
| |
Collapse
|
11
|
Mi Y, Xu J, Liu Q, Wu X, Zhang Q, Tang J. Single-cell electroporation with high-frequency nanosecond pulse bursts: Simulation considering the irreversible electroporation effect and experimental validation. Bioelectrochemistry 2021; 140:107822. [PMID: 33915340 DOI: 10.1016/j.bioelechem.2021.107822] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 03/20/2021] [Accepted: 04/08/2021] [Indexed: 10/21/2022]
Abstract
To study the electroporation characteristics of cells under high-frequency nanosecond pulse bursts (HFnsPBs), the original electroporation mathematical model was improved. By setting a threshold value for irreversible electroporation (IRE) and considering the effect of an electric field on the surface tension of a cell membrane, a mathematical model of electroporation considering the effect of IRE is proposed for the first time. A typical two-dimensional cell system was discretized into nodes using MATLAB, and a mesh transport network method (MTNM) model was established for simulation. The dynamic processes of single-cell electroporation and molecular transport under the application of 50 unipolar HFnsPBs with field intensities of 9 kV cm-1 and different frequencies (10 kHz, 100 kHz and 500 kHz) to the target system was simulated with a 300 s simulation time. The IRE characteristics and molecular transport were evaluated. In addition, a PI fluorescent dye assay was designed to verify the correctness of the model by providing time-domain and spatial results that were compared with the simulation results. The simulation achieved IRE and demonstrated the cumulative effects of multipulse bursts and intraburst frequency on irreversible pores. The model can also reflect the cumulative effect of multipulse bursts on reversible pores by introducing an assumption of stable reversible pores. The experimental results agreed qualitatively with the simulation results. A relative calibration of the fluorescence data gave time-domain molecular transport results that were quantitatively similar to the simulation results. This article reveals the cell electroporation characteristics under HFnsPBs from a mechanism perspective and has important guidance for fields involving the IRE of cells.
Collapse
Affiliation(s)
- Yan Mi
- State Key Laboratory of Power Transmission Equipment & System Security and New Technology, School of Electrical Engineering, Chongqing University, Chongqing 400044, China.
| | - Jin Xu
- State Key Laboratory of Power Transmission Equipment & System Security and New Technology, School of Electrical Engineering, Chongqing University, Chongqing 400044, China
| | - Quan Liu
- State Key Laboratory of Power Transmission Equipment & System Security and New Technology, School of Electrical Engineering, Chongqing University, Chongqing 400044, China
| | - Xiao Wu
- State Key Laboratory of Power Transmission Equipment & System Security and New Technology, School of Electrical Engineering, Chongqing University, Chongqing 400044, China
| | - Qian Zhang
- First Affiliated Hospital of Chongqing Medical Science University, Chongqing 400016, China
| | - Junying Tang
- First Affiliated Hospital of Chongqing Medical Science University, Chongqing 400016, China
| |
Collapse
|
12
|
Goldberg E, Soba A, Gandía D, Fernández ML, Suárez C. Coupled mathematical modeling of cisplatin electroporation. Bioelectrochemistry 2021; 140:107788. [PMID: 33838515 DOI: 10.1016/j.bioelechem.2021.107788] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 12/11/2022]
Abstract
The use of electrochemotherapy (ECT) is a well-established technique to increase the cellular uptake of cytotoxic agents within certain cancer treatment strategies. The study of the mechanisms that take part in this complex process is of high interest to gain a deeper knowledge of it, enabling the improvement of these strategies. In this work, we present a coupled multi-physics electroporation model based on a related previous one, to describe the effect of a set of electric pulses on cisplatin transport across the plasma membrane. The model applies a system of partial differential equations that includes Poisson's equation for the electric field, Nernst-Planck's equation for species transport, Maxwell's tensor and mechanical equilibrium equation for membrane deformation and Smoluchowski's equation for pore creation dynamics. Our numerical results were compared with previous numerical and experimental published data with good qualitative and quantitative agreement. These results indicate that pore aperture is favored at the cell poles by the electric field and mechanical stress forces, giving support to the dominant hypothesis of hydrophilic pore creation as the main mechanism of drug entry during an ECT treatment.
Collapse
Affiliation(s)
- Ezequiel Goldberg
- Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, Buenos Aires, Argentina
| | - Alejandro Soba
- Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, Buenos Aires, Argentina
| | - Daniel Gandía
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires, Instituto de Fısica del Plasma (INFIP), Buenos Aires, Argentina
| | - María Laura Fernández
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires, Instituto de Fısica del Plasma (INFIP), Buenos Aires, Argentina; Universidad de Buenos Aires (UBA), Facultad de Ciencias Exactas y Naturales, Departamento de Física, Buenos Aires, Argentina
| | - Cecilia Suárez
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires, Instituto de Fısica del Plasma (INFIP), Buenos Aires, Argentina; Universidad de Buenos Aires (UBA), Facultad de Ciencias Exactas y Naturales, Departamento de Física, Buenos Aires, Argentina.
| |
Collapse
|
13
|
OpenEP: an open-source simulator for electroporation-based tumor treatments. Sci Rep 2021; 11:1423. [PMID: 33446750 PMCID: PMC7809294 DOI: 10.1038/s41598-020-79858-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 12/11/2020] [Indexed: 12/21/2022] Open
Abstract
Electroporation (EP), the increase of cell membrane permeability due to the application of electric pulses, is a universal phenomenon with a broad range of applications. In medicine, some of the foremost EP-based tumor treatments are electrochemotherapy (ECT), irreversible electroporation, and gene electrotransfer (GET). The electroporation phenomenon is explained as the formation of cell membrane pores when a transmembrane cell voltage reaches a threshold value. Predicting the outcome of an EP-based tumor treatment consists of finding the electric field distribution with an electric threshold value covering the tumor (electroporated tissue). Threshold and electroporated tissue are also a function of the number of pulses, constituting a complex phenomenon requiring mathematical modeling. We present OpenEP, an open-source specific purpose simulator for EP-based tumor treatments, modeling among other variables, threshold, and electroporated tissue variations in time. Distributed under a free/libre user license, OpenEP allows the customization of tissue type; electrode geometry and material; pulse type, intensity, length, and frequency. OpenEP facilitates the prediction of an optimal EP-based protocol, such as ECT or GET, defined as the critical pulse dosage yielding maximum electroporated tissue with minimal damage. OpenEP displays a highly efficient shared memory implementation by taking advantage of parallel resources; this permits a rapid prediction of optimal EP-based treatment efficiency by pulse number tuning.
Collapse
|
14
|
Agnass P, Rodermond HM, Zweije R, Sijbrands J, Vogel JA, van Lienden KP, van Gulik TM, van Veldhuisen E, Franken NAP, Oei AL, Kok HP, Besselink MG, Crezee J. HyCHEED System for Maintaining Stable Temperature Control during Preclinical Irreversible Electroporation Experiments at Clinically Relevant Temperature and Pulse Settings. SENSORS 2020; 20:s20216227. [PMID: 33142821 PMCID: PMC7662544 DOI: 10.3390/s20216227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/21/2020] [Accepted: 10/28/2020] [Indexed: 12/11/2022]
Abstract
Electric permeabilization of cell membranes is the main mechanism of irreversible electroporation (IRE), an ablation technique for treatment of unresectable cancers, but the pulses also induce a significant temperature increase in the treated volume. To investigate the therapeutically thermal contribution, a preclinical setup is required to apply IRE at desired temperatures while maintaining stable temperatures. This study’s aim was to develop and test an electroporation device capable of maintaining a pre-specified stable and spatially homogeneous temperatures and electric field in a tumor cell suspension for several clinical-IRE-settings. A hydraulically controllable heat exchange electroporation device (HyCHEED) was developed and validated at 37 °C and 46 °C. Through plate electrodes, HyCHEED achieved both a homogeneous electric field and homogenous-stable temperatures; IRE heat was removed through hydraulic cooling. IRE was applied to 300 μL of pancreatic carcinoma cell suspension (Mia PaCa-2), after which cell viability and specific conductivity were determined. HyCHEED maintained stable temperatures within ±1.5 °C with respect to the target temperature for multiple IRE-settings at the selected temperature levels. An increase of cell death and specific conductivity, including post-treatment, was found to depend on electric-field strength and temperature. HyCHEED is capable of maintaining stable temperatures during IRE-experiments. This provides an excellent basis to assess the contribution of thermal effects to IRE and other bio-electromagnetic techniques.
Collapse
Affiliation(s)
- Pierre Agnass
- Department of Radiation Oncology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (P.A.); (H.M.R.); (R.Z.); (J.S.); (N.A.P.F.); (A.L.O.); (H.P.K.)
- Department of Surgery, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (T.M.v.G.); (E.v.V.); (M.G.B.)
- Laboratory of Experimental Oncology and Radiobiology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Hans M. Rodermond
- Department of Radiation Oncology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (P.A.); (H.M.R.); (R.Z.); (J.S.); (N.A.P.F.); (A.L.O.); (H.P.K.)
- Laboratory of Experimental Oncology and Radiobiology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Center for Experimental Molecular Medicine, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Remko Zweije
- Department of Radiation Oncology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (P.A.); (H.M.R.); (R.Z.); (J.S.); (N.A.P.F.); (A.L.O.); (H.P.K.)
| | - Jan Sijbrands
- Department of Radiation Oncology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (P.A.); (H.M.R.); (R.Z.); (J.S.); (N.A.P.F.); (A.L.O.); (H.P.K.)
| | - Jantien A. Vogel
- Department of Gastroenterology & Hepatology, Amsterdam Gastroenterology and Metabolism, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands;
| | - Krijn P. van Lienden
- Department of Radiology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands;
| | - Thomas M. van Gulik
- Department of Surgery, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (T.M.v.G.); (E.v.V.); (M.G.B.)
| | - Eran van Veldhuisen
- Department of Surgery, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (T.M.v.G.); (E.v.V.); (M.G.B.)
| | - Nicolaas A. P. Franken
- Department of Radiation Oncology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (P.A.); (H.M.R.); (R.Z.); (J.S.); (N.A.P.F.); (A.L.O.); (H.P.K.)
- Laboratory of Experimental Oncology and Radiobiology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Center for Experimental Molecular Medicine, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Arlene L. Oei
- Department of Radiation Oncology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (P.A.); (H.M.R.); (R.Z.); (J.S.); (N.A.P.F.); (A.L.O.); (H.P.K.)
- Laboratory of Experimental Oncology and Radiobiology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Center for Experimental Molecular Medicine, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - H. Petra Kok
- Department of Radiation Oncology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (P.A.); (H.M.R.); (R.Z.); (J.S.); (N.A.P.F.); (A.L.O.); (H.P.K.)
| | - Marc G. Besselink
- Department of Surgery, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (T.M.v.G.); (E.v.V.); (M.G.B.)
| | - Johannes Crezee
- Department of Radiation Oncology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (P.A.); (H.M.R.); (R.Z.); (J.S.); (N.A.P.F.); (A.L.O.); (H.P.K.)
- Correspondence: ; Tel.: +31-20-566-4231
| |
Collapse
|
15
|
Novickij V, Malyško V, Želvys A, Balevičiūtė A, Zinkevičienė A, Novickij J, Girkontaitė I. Electrochemotherapy Using Doxorubicin and Nanosecond Electric Field Pulses: A Pilot in Vivo Study. Molecules 2020; 25:E4601. [PMID: 33050300 PMCID: PMC7587179 DOI: 10.3390/molecules25204601] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/06/2020] [Accepted: 10/09/2020] [Indexed: 12/23/2022] Open
Abstract
Pulsed electric field (PEF) is frequently used for intertumoral drug delivery resulting in a well-known anticancer treatment-electrochemotherapy. However, electrochemotherapy is associated with microsecond range of electrical pulses, while nanosecond range electrochemotherapy is almost non-existent. In this work, we analyzed the feasibility of nanosecond range pulse bursts for successful doxorubicin-based electrochemotherapy in vivo. The conventional microsecond (1.4 kV/cm × 100 µs × 8) procedure was compared to the nanosecond (3.5 kV/cm × 800 ns × 250) non-thermal PEF-based treatment. As a model, Sp2/0 tumors were developed. Additionally, basic current and voltage measurements were performed to detect the characteristic conductivity-dependent patterns and to serve as an indicator of successful tumor permeabilization both in the nano and microsecond pulse range. It was shown that nano-electrochemotherapy can be the logical evolution of the currently established European Standard Operating Procedures for Electrochemotherapy (ESOPE) protocols, offering better energy control and equivalent treatment efficacy.
Collapse
Affiliation(s)
- Vitalij Novickij
- Faculty of Electronics, Vilnius Gediminas Technical University, 03227 Vilnius, Lithuania; (V.M.); (J.N.)
| | - Veronika Malyško
- Faculty of Electronics, Vilnius Gediminas Technical University, 03227 Vilnius, Lithuania; (V.M.); (J.N.)
| | - Augustinas Želvys
- Department of Immunology, State Research Institute Centre for Innovative Medicine, 08406 Vilnius, Lithuania; (A.Ž.); (A.B.); (A.Z.); (I.G.)
| | - Austėja Balevičiūtė
- Department of Immunology, State Research Institute Centre for Innovative Medicine, 08406 Vilnius, Lithuania; (A.Ž.); (A.B.); (A.Z.); (I.G.)
| | - Auksė Zinkevičienė
- Department of Immunology, State Research Institute Centre for Innovative Medicine, 08406 Vilnius, Lithuania; (A.Ž.); (A.B.); (A.Z.); (I.G.)
| | - Jurij Novickij
- Faculty of Electronics, Vilnius Gediminas Technical University, 03227 Vilnius, Lithuania; (V.M.); (J.N.)
| | - Irutė Girkontaitė
- Department of Immunology, State Research Institute Centre for Innovative Medicine, 08406 Vilnius, Lithuania; (A.Ž.); (A.B.); (A.Z.); (I.G.)
| |
Collapse
|
16
|
Zhao Y, Zheng S, Beitel-White N, Liu H, Yao C, Davalos RV. Development of a Multi-Pulse Conductivity Model for Liver Tissue Treated With Pulsed Electric Fields. Front Bioeng Biotechnol 2020; 8:396. [PMID: 32509742 PMCID: PMC7248411 DOI: 10.3389/fbioe.2020.00396] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 04/08/2020] [Indexed: 12/18/2022] Open
Abstract
Pulsed electric field treatment modalities typically utilize multiple pulses to permeabilize biological tissue. This electroporation process induces conductivity changes in the tissue, which are indicative of the extent of electroporation. In this study, we characterized the electroporation-induced conductivity changes using all treatment pulses instead of solely the first pulse as in conventional conductivity models. Rabbit liver tissue was employed to study the tissue conductivity changes caused by multiple, 100 μs pulses delivered through flat plate electrodes. Voltage and current data were recorded during treatment and used to calculate the tissue conductivity during the entire pulsing process. Temperature data were also recorded to quantify the contribution of Joule heating to the conductivity according to the tissue temperature coefficient. By fitting all these data to a modified Heaviside function, where the two turning points (E0, E1) and the increase factor (A) are the main parameters, we calculated the conductivity as a function of the electric field (E), where the parameters of the Heaviside function (A and E0) were functions of pulse number (N). With the resulting multi-factor conductivity model, a numerical electroporation simulation can predict the electrical current for multiple pulses more accurately than existing conductivity models. Moreover, the saturating behavior caused by electroporation can be explained by the saturation trends of the increase factor A in this model. The conductivity change induced by electroporation has a significant increase at about the first 30 pulses, then tends to saturate at 0.465 S/m. The proposed conductivity model can simulate the electroporation process more accurately than the conventional conductivity model. The electric field distribution computed using this model is essential for treatment planning in biomedical applications utilizing multiple pulsed electric fields, and the method proposed here, relating the pulse number to the conductivity through the variables in the Heaviside function, may be adapted to investigate the effect of other parameters, like pulse frequency and pulse width, on electroporation.
Collapse
Affiliation(s)
- Yajun Zhao
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, United States.,Bioelectromechanical Systems Laboratory, Virginia Tech, Blacksburg, VA, United States
| | - Shuang Zheng
- State Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing University, Chongqing, China.,School of Electrical Engineering, Chongqing University, Chongqing, China
| | - Natalie Beitel-White
- Bioelectromechanical Systems Laboratory, Virginia Tech, Blacksburg, VA, United States.,Department of Electrical and Computer Engineering at Virginia Tech, Blacksburg, VA, United States
| | - Hongmei Liu
- State Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing University, Chongqing, China.,School of Electrical Engineering, Chongqing University, Chongqing, China
| | - Chenguo Yao
- State Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing University, Chongqing, China.,School of Electrical Engineering, Chongqing University, Chongqing, China
| | - Rafael V Davalos
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, United States.,Bioelectromechanical Systems Laboratory, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
17
|
Electronic Emulator of Biological Tissue as an Electrical Load during Electroporation. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10093103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Electroporation is an emerging technology, with great potential in many different medical and biotechnological applications, food engineering and biomass processing. Large variations of biological load characteristics, however, represent a great challenge in electroporator design, which results in different solutions. Because a clinical electroporator is a medical device, it must comply with medical device regulative and standards. However, none of the existing standards directly address the operation or electroporator’s performance requirements. In order to evaluate clinical, laboratory and prototype electroporation devices during the development process, or to evaluate their final performance considering at least from the perspective of output pulse parameters, we present a case study on the design of an electronic emulator of biological tissue as an electrical load during electroporation. The proposed electronic load emulator is a proof of concept, which enables constant and sustainable testing and unbiased comparison of different electroporators’ operations. We developed an analog electrical circuit that has equivalent impedance to the beef liver tissue in combination with needle electrodes, during high voltage pulse delivery and/or electroporation. Current and voltage measurements during electroporation of beef liver tissue ex vivo, were analyzed and parametrized to define the analog circuit equation. An equivalent circuit was simulated, built and validated. The proposed concept of an electronic load emulator can be used for “classical” electroporator (i.e., not nanosecond) performance evaluation and comparison of their operation. Additionally, it facilitates standard implementation regarding the testing protocol and enables quality assurance.
Collapse
|
18
|
|
19
|
Gallinato O, de Senneville BD, Seror O, Poignard C. Numerical workflow of irreversible electroporation for deep-seated tumor. Phys Med Biol 2019; 64:055016. [PMID: 30669121 DOI: 10.1088/1361-6560/ab00c4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The paper provides a numerical workflow, based on the 'real-life' clinical workflow of irreversible electroporation (IRE) performed for the treatment of deep-seated liver tumors. Thanks to a combination of numerical modeling, image registration algorithm and clinical data, our numerical workflow enables to provide the distribution of the electric field as effectively delivered by the clinical IRE procedure. As a proof of concept, we show on a specific clinical case of IRE ablation of liver tumor that clinical data could be advantageously combined to numerical simulations in a near future, in order to give to the interventional radiologists information on the effective IRE ablation. We also corroborate the simulated treated region with the post-treatment MRI performed 3 d after the treatment.
Collapse
Affiliation(s)
- Olivier Gallinato
- INRIA Bordeaux-Sud-Ouest, CNRS, Bordeaux INP, Univ. Bordeaux, IMB, UMR 5251, F-33400, Talence, France
| | | | | | | |
Collapse
|
20
|
Weinert R, Pereira E, Ramos A. Inclusion of memory effects in a dynamic model of electroporation in biological tissues. Artif Organs 2019; 43:688-693. [PMID: 30589443 DOI: 10.1111/aor.13415] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/07/2018] [Accepted: 12/14/2018] [Indexed: 01/06/2023]
Abstract
This article presents experimental and computational results of electroporation in rat liver. The experiments were performed using different forms of electrodes and waveforms of applied electric pulses. For the numerical simulation, the electroporation model proposed by Ramos and Weinert in a previous publication was used. Dynamic adjustments were used for obtaining a good modeling of the electric current. A single set of model parameters was obtained to fit the simulated current response for different waveforms and electrodes. These parameters were obtained with the use of a genetic algorithm that minimized the error between the simulated and experimental currents. The electroporation model with dynamic adjustment proved to be an appropriate simulation tool to predict the tissue conductivity during stimulation by intense electrical fields.
Collapse
Affiliation(s)
- Rodolfo Weinert
- Universidade do Estado de Santa Catarina Ringgold Standard Institution, Electrical Engineering, Joinville, Brazil
| | - Eduardo Pereira
- Universidade do Estado de Santa Catarina Ringgold Standard Institution, Electrical Engineering, Joinville, Brazil
| | - Airton Ramos
- Universidade do Estado de Santa Catarina Ringgold Standard Institution, Electrical Engineering, Joinville, Brazil
| |
Collapse
|
21
|
Pintar M, Langus J, Edhemović I, Brecelj E, Kranjc M, Sersa G, Šuštar T, Rodič T, Miklavčič D, Kotnik T, Kos B. Time-Dependent Finite Element Analysis of In Vivo Electrochemotherapy Treatment. Technol Cancer Res Treat 2018; 17:1533033818790510. [PMID: 30089424 PMCID: PMC6083743 DOI: 10.1177/1533033818790510] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Electrochemotherapy and irreversible electroporation are gaining importance in clinical practice for the treatment of solid tumors. For successful treatment, it is extremely important that the coverage and exposure time of the treated tumor to the electric field are within the specified range. In order to ensure successful coverage of the entire target volume with sufficiently strong electric fields, numerical treatment planning has been proposed and its use has also been demonstrated in practice. Most of numerical models in treatment planning are based on charge conservation equation and are not able to provide time course of electric current, electrical conductivity, or electric field distribution changes established in the tissue during pulse delivery. Recently, a model based on inverse analysis of experimental data that delivers time course of tissue electroporation has been introduced. The aim of this study was to apply the previously reported time-dependent numerical model to a complex in vivo example of electroporation with different tissue types and with a long-term follow-up. The model, consisting of a tumor placed in the liver with 2 needle electrodes inserted in the center of the tumor and 4 around the tumor, was validated by comparison of measured and calculated time course of applied electric current. Results of simulations clearly indicated that proposed numerical model can successfully capture transient effects, such as evolution of electric current during each pulse, and effects of pulse frequency due to electroporation effects in the tissue. Additionally, the model can provide evolution of electric field amplitude and electrical conductivity in the tumor with consecutive pulse sequences.
Collapse
Affiliation(s)
| | | | | | - Erik Brecelj
- 2 Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | - Matej Kranjc
- 3 Laboratory of Biocybernetics, Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
| | - Gregor Sersa
- 2 Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | | | - Tomaž Rodič
- 3 Laboratory of Biocybernetics, Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
| | - Damijan Miklavčič
- 3 Laboratory of Biocybernetics, Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
| | - Tadej Kotnik
- 3 Laboratory of Biocybernetics, Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
| | - Bor Kos
- 3 Laboratory of Biocybernetics, Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
22
|
Shi J, Ma Y, Zhu J, Chen Y, Sun Y, Yao Y, Yang Z, Xie J. A Review on Electroporation-Based Intracellular Delivery. Molecules 2018; 23:E3044. [PMID: 30469344 PMCID: PMC6278265 DOI: 10.3390/molecules23113044] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 11/13/2018] [Accepted: 11/17/2018] [Indexed: 12/17/2022] Open
Abstract
Intracellular delivery is a critical step in biological discoveries and has been widely utilized in biomedical research. A variety of molecular tools have been developed for cell-based gene therapies, including FDA approved CAR-T immunotherapy, iPSC, cell reprogramming and gene editing. Despite the inspiring results of these applications, intracellular delivery of foreign molecules including nucleic acids and proteins remains challenging. Efficient yet non-invasive delivery of biomolecules in a high-throughput manner has thus long fascinates the scientific community. As one of the most popular non-viral technologies for cell transfection, electroporation has gone through enormous development with the assist of nanotechnology and microfabrication. Emergence of miniatured electroporation system brought up many merits over the weakness of traditional electroporation system, including precise dose control and high cell viability. These new generation of electroporation systems are of considerable importance to expand the biological applications of intracellular delivery, bypassing the potential safety issue of viral vectors. In this review, we will go over the recent progresses in the electroporation-based intracellular delivery and several potential applications of cutting-edge research on the miniatured electroporation, including gene therapy, cellular reprogramming and intracellular probe.
Collapse
Affiliation(s)
- Junfeng Shi
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA.
| | - Yifan Ma
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA.
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA.
| | - Jing Zhu
- College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA.
| | - Yuanxin Chen
- Department of Neurosurgery, Mayo Clinic College of Medicine, Jacksonville, FL 33573, USA.
| | - Yating Sun
- School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Yicheng Yao
- School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Zhaogang Yang
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA.
| | - Jing Xie
- School of Life Sciences, Jilin University, Changchun 130012, China.
| |
Collapse
|
23
|
Novickij V, Zinkevičienė A, Perminaitė E, Čėsna R, Lastauskienė E, Paškevičius A, Švedienė J, Markovskaja S, Novickij J, Girkontaitė I. Non-invasive nanosecond electroporation for biocontrol of surface infections: an in vivo study. Sci Rep 2018; 8:14516. [PMID: 30266920 PMCID: PMC6162327 DOI: 10.1038/s41598-018-32783-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 09/14/2018] [Indexed: 12/20/2022] Open
Abstract
Invasive infections caused by drug-resistant bacteria are frequently responsible for fatal sepsis, morbidity and mortality rates. In this work, we propose a new methodology based on nanosecond high frequency electric field bursts, which enables successful eradication of bacteria in vivo. High frequency (15 kHz) 15–25 kV/cm 300–900 ns pulsing bursts were used separately and in combination with acetic acid (0.1–1%) to treat Pseudomonas aeruginosa in a murine model. Acetic acid 1% alone was effective resulting in almost 10-fold reduction of bacteria viability, however combination of nanosecond electric field and acetic acid 1% treatment was the most successful showing almost full eradication (0.01% survival compared to control) of the bacteria in the contaminated area. The short duration of the pulses (sub-microsecond) and high frequency (kHz range) of the burst enabled reduction of the muscle contractions to barely detectable level while the proposed applicators ensured predominantly topical treatment, without electroporation of deeper tissues. The results of our study have direct application for treatment of wounds and ulcers when chemical treatment is no longer effective.
Collapse
Affiliation(s)
- Vitalij Novickij
- Institute of High Magnetic Fields, Vilnius Gediminas Technical University, Vilnius, Lithuania.
| | - Auksė Zinkevičienė
- State Research Institute Centre for Innovative Medicine, Department of Immunology, Vilnius, Lithuania
| | - Emilija Perminaitė
- State Research Institute Centre for Innovative Medicine, Department of Immunology, Vilnius, Lithuania
| | - Robertas Čėsna
- State Research Institute Centre for Innovative Medicine, Department of Immunology, Vilnius, Lithuania
| | - Eglė Lastauskienė
- Institute of Biosciences, Life Sciences Centre, Vilnius University, Vilnius, Lithuania
| | | | - Jurgita Švedienė
- Laboratory of Biodeterioration Research, Nature Research Centre, Vilnius, Lithuania
| | | | - Jurij Novickij
- Institute of High Magnetic Fields, Vilnius Gediminas Technical University, Vilnius, Lithuania
| | - Irutė Girkontaitė
- State Research Institute Centre for Innovative Medicine, Department of Immunology, Vilnius, Lithuania
| |
Collapse
|
24
|
Bhonsle S, Lorenzo MF, Safaai-Jazi A, Davalos RV. Characterization of Nonlinearity and Dispersion in Tissue Impedance During High-Frequency Electroporation. IEEE Trans Biomed Eng 2018; 65:2190-2201. [PMID: 29989955 DOI: 10.1109/tbme.2017.2787038] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The use of high-voltage, high-frequency bipolar pulses (HFBPs) is an emerging electroporation-based therapy for the treatment of solid tumors. In this study, we quantify the extent of nonlinearity and dispersion during the HFBP treatment. METHODS We utilize flat-plate electrodes to capture the impedance of the porcine liver tissue during the delivery of a burst of HFBPs of widths 1 and 2 $\mu$s at different pulse amplitudes. Next, we fit the impedance data to a frequency-dependent parallel RC network to determine the conductivity and permittivity of the tissue as a function of frequency, for different applied electric fields. Finally, we present a simple model to approximate the field distribution in the tissue using the conductivity function at a frequency that could minimize the errors due to approximation with a nondispersive model. RESULTS The conductivity/permittivity of the tissue was plotted as a function of frequency for different electric fields. It was found that the extent of dispersion reduces with higher applied electric field magnitudes. CONCLUSION This is the first study to quantify dispersion and nonlinearity in the tissue during the HFBP treatment. The data have been used to predict the field distribution in a numerical model of the liver tissue utilizing two needle electrodes. SIGNIFICANCE The data and technique developed in this study to monitor the electrical properties of tissue during treatment can be used to generate treatment-planning models for future high-frequency electroporation therapies as well as provide insights regarding treatment effect.
Collapse
|
25
|
Voyer D, Silve A, Mir LM, Scorretti R, Poignard C. Dynamical modeling of tissue electroporation. Bioelectrochemistry 2018; 119:98-110. [DOI: 10.1016/j.bioelechem.2017.08.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 08/22/2017] [Accepted: 08/28/2017] [Indexed: 12/21/2022]
|
26
|
Zhao Y, Bhonsle S, Dong S, Lv Y, Liu H, Safaai-Jazi A, Davalos RV, Yao C. Characterization of Conductivity Changes During High-Frequency Irreversible Electroporation for Treatment Planning. IEEE Trans Biomed Eng 2017; 65:1810-1819. [PMID: 29989932 DOI: 10.1109/tbme.2017.2778101] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
For irreversible-electroporation (IRE)-based therapies, the underlying electric field distribution in the target tissue is influenced by the electroporation-induced conductivity changes and is important for predicting the treatment zone. OBJECTIVE In this study, we characterized the liver tissue conductivity changes during high-frequency irreversible electroporation (H-FIRE) treatments of widths 5 and 10 μs and proposed a method for predicting the ablation zones. METHODS To achieve this, we created a finite-element model of the tissue treated with H-FIRE and IRE pulses based on experiments conducted in an in-vivo rabbit liver study. We performed a parametric sweep on a Heaviside function that captured the tissue conductivity versus electric field behavior to yield a model current close to the experimental current during the first burst/pulse. A temperature module was added to account for the current increase in subsequent bursts/pulses. The evolution of the electric field at the end of the treatment was overlaid on the experimental ablation zones determined from hematoxylin and eosin staining to find the field thresholds of ablation. RESULTS Dynamic conductivity curves that provided a statistically significant relation between the model and experimental results were determined for H-FIRE. In addition, the field thresholds of ablation were obtained for the tested H-FIRE parameters. CONCLUSION The proposed numerical model can simulate the electroporation process during H-FIRE. SIGNIFICANCE The treatment planning method developed in this study can be translated to H-FIRE treatments of different widths and for different tissue types.
Collapse
|
27
|
Suzuki DOH, Berkenbrock JA, Frederico MJS, Silva FRMB, Rangel MMM. Oral Mucosa Model for Electrochemotherapy Treatment of Dog Mouth Cancer: Ex Vivo, In Silico, and In Vivo Experiments. Artif Organs 2017; 42:297-304. [DOI: 10.1111/aor.13003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 06/04/2017] [Accepted: 07/12/2017] [Indexed: 02/06/2023]
Affiliation(s)
- Daniela O. H. Suzuki
- Institute of Biomedical Engineering; Federal University of Santa Catarina, IEB/EEL/CTC/UFSC; Florianópolis Santa Catarina Brazil
| | - José A. Berkenbrock
- Institute of Biomedical Engineering; Federal University of Santa Catarina, IEB/EEL/CTC/UFSC; Florianópolis Santa Catarina Brazil
| | - Marisa J. S. Frederico
- Laboratório de Hormônios & Transdução de Sinais; Federal University of Santa Catarina, IEB/EEL/CTC/UFSC; Florianópolis Santa Catarina Brazil
| | - Fátima R. M. B. Silva
- Laboratório de Hormônios & Transdução de Sinais; Federal University of Santa Catarina, IEB/EEL/CTC/UFSC; Florianópolis Santa Catarina Brazil
| | | |
Collapse
|
28
|
Technological and Theoretical Aspects for Testing Electroporation on Liposomes. BIOMED RESEARCH INTERNATIONAL 2017; 2017:5092704. [PMID: 28393078 PMCID: PMC5368396 DOI: 10.1155/2017/5092704] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Accepted: 02/15/2017] [Indexed: 01/08/2023]
Abstract
Recently, the use of nanometer liposomes as nanocarriers in drug delivery systems mediated by nanoelectroporation has been proposed. This technique takes advantage of the possibility of simultaneously electroporating liposomes and cell membrane with 10-nanosecond pulsed electric fields (nsPEF) facilitating the release of the drug from the liposomes and at the same time its uptake by the cells. In this paper the design and characterization of a 10 nsPEF exposure system is presented, for liposomes electroporation purposes. The design and the characterization of the applicator have been carried out choosing an electroporation cuvette with 1 mm gap between the electrodes. The structure efficiency has been evaluated at different experimental conditions by changing the solution conductivity from 0.25 to 1.6 S/m. With the aim to analyze the influence of device performances on the liposomes electroporation, microdosimetric simulations have been performed considering liposomes of 200 and 400 nm of dimension with different inner and outer conductivity (from 0.05 to 1.6 S/m) in order to identify the voltage needed for their poration.
Collapse
|
29
|
Novickij V, Lastauskienė E, Švedienė J, Grainys A, Staigvila G, Paškevičius A, Girkontaitė I, Zinkevičienė A, Markovskaja S, Novickij J. Membrane Permeabilization of Pathogenic Yeast in Alternating Sub-microsecond Electromagnetic Fields in Combination with Conventional Electroporation. J Membr Biol 2017; 251:189-195. [PMID: 28238117 DOI: 10.1007/s00232-017-9951-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 02/15/2017] [Indexed: 12/14/2022]
Abstract
Recently, a novel contactless treatment method based on high-power pulsed electromagnetic fields (PEMF) was proposed, which results in cell membrane permeabilization effects similar to electroporation. In this work, a new PEMF generator based on multi-stage Marx circuit topology, which is capable of delivering 3.3 T, 0.19 kV/cm sub-microsecond pulses was used to permeabilize pathogenic yeast Candida albicans separately and in combination with conventional square wave electroporation (8-17 kV/cm, 100 μs). Bursts of 10, 25, and 50 PEMF pulses were used. The yeast permeabilization rate was evaluated using flow cytometric analysis and propidium iodide (PI) assay. A statistically significant (P < 0.05) combinatorial effect of electroporation and PEMF treatment was detected. Also the PEMF treatment (3.3 T, 50 pulses) resulted in up to 21% loss of yeast viability, and a dose-dependent additive effect with pulsed electric field was observed. As expected, increase of the dB/dt and subsequently the induced electric field amplitude resulted in a detectable effect solely by PEMF, which was not achievable before for yeasts in vitro.
Collapse
Affiliation(s)
- Vitalij Novickij
- Institute of High Magnetic Fields, Vilnius Gediminas Technical University, Naugarduko st. 41, 03227, Vilnius, Lithuania.
| | - Eglė Lastauskienė
- Department of Microbiology and Biotechnology, Vilnius University, Sauletekio al. 7, 10257, Vilnius, Lithuania
| | - Jurgita Švedienė
- Laboratory of Biodeterioration Research, Nature Research Centre, Akademijos st. 2, 08412, Vilnius, Lithuania
| | - Audrius Grainys
- Institute of High Magnetic Fields, Vilnius Gediminas Technical University, Naugarduko st. 41, 03227, Vilnius, Lithuania
| | - Gediminas Staigvila
- Institute of High Magnetic Fields, Vilnius Gediminas Technical University, Naugarduko st. 41, 03227, Vilnius, Lithuania
| | - Algimantas Paškevičius
- Laboratory of Biodeterioration Research, Nature Research Centre, Akademijos st. 2, 08412, Vilnius, Lithuania
| | - Irutė Girkontaitė
- Department of Immunology, State Research Institute Centre for Innovative Medicine, Santariškių st. 5, 08406, Vilnius, Lithuania
| | - Auksė Zinkevičienė
- Department of Immunology, State Research Institute Centre for Innovative Medicine, Santariškių st. 5, 08406, Vilnius, Lithuania
| | - Svetlana Markovskaja
- Laboratory of Mycology, Nature Research Centre, Žaliųjų ežerų st. 49, 08406, Vilnius, Lithuania
| | - Jurij Novickij
- Institute of High Magnetic Fields, Vilnius Gediminas Technical University, Naugarduko st. 41, 03227, Vilnius, Lithuania
| |
Collapse
|