1
|
Ren B, Meng M, Yu J, Ma X, Li D, Li J, Yang J, Bai L, Feng Y. Invasion by Cenchrus spinifex changes the soil microbial community structure in a sandy grassland ecosystem. Heliyon 2023; 9:e20860. [PMID: 37920531 PMCID: PMC10618509 DOI: 10.1016/j.heliyon.2023.e20860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/07/2023] [Accepted: 10/09/2023] [Indexed: 11/04/2023] Open
Abstract
Continuous nitrogen deposition increases the nitrogen content of terrestrial ecosystems and alters the soil nitrogen cycling process. Invasive plants have strong environmental adaptability, which can not only affect the composition and diversity of soil microbial community but also significantly affect the transformation process of soil nitrogen, leading to successful invasion. Currently, research on invasive plant soil ecosystems mainly focused on changes in soil nutrients and soil microorganisms. As an invasive annual grass weed with strong ecological adaptability, the impact of Cenchrus spinifex at different growth periods on soil environment and soil microbial structure composition and diversity in sandy grassland ecosystems is still unclear. In this study, soil samples were collected from four habitats with different degrees of invasion in situ during the vegetation and reproductive growth periods of Cenchrus spinifex. High-throughput sequencing and qPCR technology were used to analyze the changes in the composition, structure and diversity characteristics of the soil microbial communities during Cenchrus spinifex invasion. The results indicated that Cenchrus spinifex invasion had different effects on the soil environment at different growth periods, and Cenchrus spinifex had a preference for the utilization of ammonium nitrogen during vegetation growth period. Moreover, Cenchrus spinifex invasion significantly changed the composition and structure of soil bacterial communities, and the response of soil bacterial and fungal communities to the invasion was inconsistent. Additionally, the bacterial network was more stable than the fungal network. At different growth periods, Cenchrus spinifex had a significant impact on the key microbial communities of soil nitrogen cycling. The invasion increased the abundance of nifH and AOA-amoA, while decreased the abundance of AOA-amoB. Alkaline hydrolyzed nitrogen, total nitrogen and total phosphorus content were key factors that affect vegetation growth period and change the key microbial communities of nitrogen cycling. Alkaline hydrolyzed nitrogen, total phosphorus and organic carbon were key factors in reproductive growth period that alter the nitrogen cycling of key microbial communities.
Collapse
Affiliation(s)
- Baihui Ren
- Corresponding author. No. 120 Dongling Road, Shenhe District, Shenyang, Liaoning, 110866, China.
| | | | - Jianxin Yu
- Shenyang Agricultural University, Shenyang, Liaoning, 110866, China
| | - Xinwei Ma
- Shenyang Agricultural University, Shenyang, Liaoning, 110866, China
| | - Daiyan Li
- Shenyang Agricultural University, Shenyang, Liaoning, 110866, China
| | - Jiahuan Li
- Shenyang Agricultural University, Shenyang, Liaoning, 110866, China
| | - Jiyun Yang
- Shenyang Agricultural University, Shenyang, Liaoning, 110866, China
| | - Long Bai
- Shenyang Agricultural University, Shenyang, Liaoning, 110866, China
| | - Yulong Feng
- Shenyang Agricultural University, Shenyang, Liaoning, 110866, China
| |
Collapse
|
2
|
Liu J, Duan X, Li G, Cai Z, Wei S, Song Q, Zheng Z. Changes in Bacterial Communities and Their Effects on Soil Carbon Storage in Spartina alterniflora Invasion Areas, Coastal Wetland Bare Flats, and Sueada salsa Areas. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:4308. [PMID: 36901319 PMCID: PMC10001918 DOI: 10.3390/ijerph20054308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/26/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Spartina alterniflora is considered an invasive species that has affected the biogeochemical circle of carbon in coastal wetlands around the world. Nevertheless, it is still unclear how S. alternation invasion affects the carbon storage capacity of coastal wetlands as carbon pools through bacterial changes. Herein, bacterial communities and soil carbon content in coastal wetland native areas and S. alterniflora invasion areas were detected. It was found that an S. alterniflora invasion brought more organic carbon and resulted in the increase in Proteobacteria in bare flats and Sueada salsa areas. When decomposition capacity was not sufficient, large amounts of organic carbon may be stored in specific chemical forms, such as monosaccharides, carboxylic acids, alcohols, etc. The results have also shown that soil bacterial communities were highly similar between the bare flat and S. alterniflora invasion area, which is extremely conducive to the rapid growth of S. alterniflora. However, an S. alterniflora invasion would decrease total carbon contents and inorganic carbon contents in the Sueada salsa area. This is not conducive to the stability of the soil carbon pool and soil health. These findings may complement, to some extent, the shortcomings of the interaction between S. alterniflora and bacterial communities, and their joint effect on soil carbon storage.
Collapse
Affiliation(s)
- Jiashuo Liu
- Department of Environmental Science & Engineering, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Xiaoxiao Duan
- Department of Environmental Science & Engineering, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Guo Li
- Department of Environmental Science & Engineering, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Zhenjie Cai
- Department of Environmental Science & Engineering, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Sijie Wei
- Department of Environmental Science & Engineering, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Qixuan Song
- School of Life Sciences, Nanjing University, No. 163 Xianlin Road, Nanjing 210023, China
| | - Zheng Zheng
- School of Life Sciences, Nanjing University, No. 163 Xianlin Road, Nanjing 210023, China
| |
Collapse
|
3
|
Xu S, Li K, Li G, Hu Z, Zhang J, Iqbal B, Du D. Canada Goldenrod Invasion Regulates the Effects of Soil Moisture on Soil Respiration. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:15446. [PMID: 36497518 PMCID: PMC9741181 DOI: 10.3390/ijerph192315446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
Canada goldenrod (Solidago canadensis L.) is considered one of the most deleterious and invasive species worldwide, and invasion of riparian wetlands by S. canadensis can reduce vegetation diversity and alter soil nutrient cycling. However, little is known about how S. canadensis invasion affects soil carbon cycle processes, such as soil respiration, in a riparian wetland. This study was conducted to investigate the effects of different degrees of S. canadensis invasion on soil respiration under different moisture conditions. Soil respiration rate (heterotrophic and autotrophic respiration) was measured using a closed-chamber method. S. canadensis invasion considerably reduced soil respiration under all moisture conditions. The inhibition effect on autotrophic respiration was higher than that on heterotrophic respiration. The water level gradient affects the soil autotrophic respiration, thereby affecting the soil respiration rate. The changes in soil respiration may be related to the alteration in the effective substrate of the soil substrate induced by the invasion of S. canadensis. While the effects of S. canadensis invasion were regulated by the fluctuation in moisture conditions. Our results implied that S. canadensis invasion could reduce the soil respiration, which further potentially affect the carbon sequestration in the riparian wetlands. Thus, the present study provided a reference for predicting the dynamics of carbon cycling during S. canadensis invasion and constituted a scientific basis for the sustainable development and management of riparian wetlands invaded by alien plants.
Collapse
Affiliation(s)
- Sixuan Xu
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Kexin Li
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Guanlin Li
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zhiyuan Hu
- WM Environmental Molecular Diagnosis Co., Ltd., Suzhou 215558, China
| | - Jiaqi Zhang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China
| | - Babar Iqbal
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Daolin Du
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
4
|
Gao GF, Li H, Shi Y, Yang T, Gao CH, Fan K, Zhang Y, Zhu YG, Delgado-Baquerizo M, Zheng HL, Chu H. Continental-scale plant invasions reshuffle the soil microbiome of blue carbon ecosystems. GLOBAL CHANGE BIOLOGY 2022; 28:4423-4438. [PMID: 35447006 DOI: 10.1111/gcb.16211] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/05/2022] [Indexed: 06/14/2023]
Abstract
Theory and experiments support that plant invasions largely impact aboveground biodiversity and function. Yet, much less is known on the influence of plant invasions on the structure and function of the soil microbiome of coastal wetlands, one of the largest major reservoirs of biodiversity and carbon on Earth. We studied the continental-scale invasion of Spartina alterniflora across 2451 km of Chinese coastlines as our model-system and found that S. alterniflora invasion can largely influence the soil microbiome (across six depths from 0 to 100 cm), compared with the most common microhabitat found before invasion (mudflats, Mud). In detail, S. alterniflora invasion was not only positively associated with bacterial richness but also resulted in important biotic homogenization of bacterial communities, suggesting that plant invasion can lead to important continental scale trade-offs in the soil microbiome. We found that plant invasion changed the community composition of soil bacterial communities across the soil profile. Moreover, the bacterial communities associated with S. alterniflora invasions where less responsive to climatic changes than those in native Mud microhabitats, suggesting that these new microbial communities might become more dominant under climate change. Plant invasion also resulted in important reductions in the complexity and stability of microbial networks, decoupling the associations between microbes and carbon pools. Taken together, our results indicated that plant invasions can largely influence the microbiome of coastal wetlands at the scale of China, representing the first continental-scale example on how plant invasions can reshuffle the soil microbiome, with consequences for the myriad of functions that they support.
Collapse
Affiliation(s)
- Gui-Feng Gao
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Huan Li
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
- College of Food and Bio-Engineering, Bengbu University, Bengbu, China
| | - Yu Shi
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Teng Yang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chang-Hao Gao
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Kunkun Fan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yihui Zhang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Yong-Guan Zhu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Manuel Delgado-Baquerizo
- Laboratorio de Biodiversidad y Funcionamiento Ecosistemico, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Sevilla, Spain
- Unidad Asociada CSIC-UPO (BioFun), Universidad Pablo de Olavide, Sevilla, Spain
| | - Hai-Lei Zheng
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Haiyan Chu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
5
|
Wu D, Deng L, Sun Y, Wang R, Zhang L, Wang R, Song Y, Gao Z, Haider H, Wang Y, Hou L, Liu M. Climate warming, but not Spartina alterniflora invasion, enhances wetland soil HONO and NO x emissions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 823:153710. [PMID: 35149064 DOI: 10.1016/j.scitotenv.2022.153710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/27/2022] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
Climate warming and invasive plant growth (plant invasion) may aggravate air pollution by affecting soil nitrogen (N) cycling and the emissions of reactive N gases, such as nitrous acid (HONO) and nitrogen oxides (NOx). However, little is known about the response of soil NOy (HONO + NOx) emissions and microbial functional genes to the interaction of climate warming and plant invasion. Here, we found that experimental warming (approximately 1.5 °C), but not Spartina alterniflora invasion, increased NOy emissions (0-140 ng N m-2 s-1) of treated wetland soils by 4-10 fold. Warming also decreased soil archaeal and fungal richness and diversity, shifted their community structure (e.g., decreased the archaeal classes Thermoplasmata and Iainarchaeia, and increased the archaeal genus Candidatus Nitrosoarchaeum, and the fungal classes Saccharomycetes and Tritirachiomycetes), and decreased the overall abundance of soil N cycling genes. Structural equation modeling revealed that warming-associated changes in edaphic factors and the microbial N cycling potential are responsible for the observed increase in soil NOy emissions. Collectively, the results showed that climate warming accelerates soil N cycling by stimulating large soil HONO and NOx emissions, and influences air quality by contributing to atmospheric reactive N and ozone cycling.
Collapse
Affiliation(s)
- Dianming Wu
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, 200241 Shanghai, China; Institute of Eco-Chongming (IEC), 202162 Shanghai, China.
| | - Lingling Deng
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, 200241 Shanghai, China
| | - Yihua Sun
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, 518060 Shenzhen, China
| | - Ruhai Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of soil Sciences, Chinese Academy of Sciences, 210008 Nanjing, China
| | - Li Zhang
- School of Resources and Environment, Anhui Agricultural University, 230036 Hefei, China
| | - Rui Wang
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, 200241 Shanghai, China
| | - Yaqi Song
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, 200241 Shanghai, China; College of Biology and the Environment, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, 210037 Nanjing, China
| | - Zhiwei Gao
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, 200241 Shanghai, China
| | - Haroon Haider
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, 200241 Shanghai, China
| | - Yue Wang
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, 200241 Shanghai, China
| | - Lijun Hou
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 200241 Shanghai, China
| | - Min Liu
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, 200241 Shanghai, China; Institute of Eco-Chongming (IEC), 202162 Shanghai, China
| |
Collapse
|
6
|
Li L, Jiang X, Zhou Q, Chen J, Zang Y, Zhang Z, Gao C, Tang X, Shang S. Responses of Soil Microbiota to Different Control Methods of the Spartina alterniflora in the Yellow River Delta. Microorganisms 2022; 10:microorganisms10061122. [PMID: 35744640 PMCID: PMC9230759 DOI: 10.3390/microorganisms10061122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/20/2022] [Accepted: 05/27/2022] [Indexed: 02/01/2023] Open
Abstract
Spartina alterniflora invasion has negative effects on the structure and functioning of coastal wetland ecosystems. Therefore, many methods for controlling S. alterniflora invasion have been developed. S. alterniflora control methods can affect plant community, which results in changes in microbial communities and subsequent changes in soil ecological processes. However, the effects of controlling S. alterniflora on soil microbial communities remain poorly understood. We aimed to examine the responses of bacterial and fungal communities to invasion control methods (cutting plus tilling treatment: CT; mechanical rolling treatment: MR). Soil bacterial and fungal community diversity and composition structure were assessed using high-throughput sequencing technology. The findings of the study showed that bacterial diversity and richness in the CT treatment reduced substantially, but fungal diversity and richness did not show any remarkable change. Bacterial and fungal diversity and richness in the MR treatment were not affected considerably. In addition, the two control methods significantly changed the soil microbial community structure. The relative abundance of bacteria negatively associated with nutrient cycling increased considerably in the CT treatment. The considerable increases in the relative abundance of certain bacterial taxa in the MR treatment may promote soil nutrient cycling. Compared with mechanical rolling, soil bacterial community diversity and structure were more sensitive to cutting plus tilling.
Collapse
Affiliation(s)
- Liangyu Li
- College of Marine Life Sciences, Ocean University of China, Qingdao 266005, China; (L.L.); (J.C.); (Y.Z.)
| | - Xiangyang Jiang
- Shandong Provincial Key Laboratory of Marine Ecological Restoration, Shandong Marine Resource and Environment Research Institute, Yantai 250299, China; (X.J.); (Q.Z.); (C.G.)
| | - Quanli Zhou
- Shandong Provincial Key Laboratory of Marine Ecological Restoration, Shandong Marine Resource and Environment Research Institute, Yantai 250299, China; (X.J.); (Q.Z.); (C.G.)
| | - Jun Chen
- College of Marine Life Sciences, Ocean University of China, Qingdao 266005, China; (L.L.); (J.C.); (Y.Z.)
| | - Yu Zang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266005, China; (L.L.); (J.C.); (Y.Z.)
| | - Zaiwang Zhang
- College of Biological and Environmental Engineering, Binzhou University, Binzhou 256601, China;
| | - Chen Gao
- Shandong Provincial Key Laboratory of Marine Ecological Restoration, Shandong Marine Resource and Environment Research Institute, Yantai 250299, China; (X.J.); (Q.Z.); (C.G.)
| | - Xuexi Tang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266005, China; (L.L.); (J.C.); (Y.Z.)
- Correspondence: (X.T.); (S.S.)
| | - Shuai Shang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266005, China; (L.L.); (J.C.); (Y.Z.)
- College of Biological and Environmental Engineering, Binzhou University, Binzhou 256601, China;
- Correspondence: (X.T.); (S.S.)
| |
Collapse
|
7
|
Song Z, Sun Y, Liu P, Wang Y, Huang Y, Gao Y, Hu X. Invasion of
Spartina alterniflora
on
Zostera japonica
enhances the abundances of bacteria by absolute quantification sequencing analysis. Ecol Evol 2022; 12:e8939. [PMID: 35600690 PMCID: PMC9120208 DOI: 10.1002/ece3.8939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 04/15/2022] [Accepted: 05/04/2022] [Indexed: 11/26/2022] Open
Abstract
Plant invasion can alter soil organic matter composition and indirectly impact estuary ecology; therefore, it is paramount to understand how plant invasion influences the bacterial community. Here, we present an absolute quantification 16S rRNA gene sequencing to investigate the bacterial communities that were collected from Zostera japonica and Spartina alterniflora covered areas and Z. japonica degradation areas in the Yellow River Estuary. Our data revealed that the absolute quantity of bacteria in the surface layer was significantly (p < .05) higher than that in the bottom and degradation areas. Following the invasion of S. alterniflora, the abundances of Bacteroidia, Acidimicrobiaceae, and Dehalococcoidaceaewere enriched in the S. alterniflora sediment. In addition, variations in the composition of sediment bacterial communities at the phylum level were the most intimately related to total organic carbon (TOC), and the content of heavy metals could reduce the abundance of bacteria. This study provided some information to understand the effects of S. alterniflora invasion on Z. japonica from the perspective of microbiome level.
Collapse
Affiliation(s)
- Zenglei Song
- Key laboratory of Coastal Biology and Bioresource Utilization Yantai Institute of Costal Zone Research Chinese Academy of Sciences Yantai China
- Laboratory for Marine Biology and Biotechnology Qingdao National Laboratory for Marine Science and Technology Qingdao China
- University of Chinese Academy of Sciences Beijing China
| | - Yanyu Sun
- Key laboratory of Coastal Biology and Bioresource Utilization Yantai Institute of Costal Zone Research Chinese Academy of Sciences Yantai China
- Laboratory for Marine Biology and Biotechnology Qingdao National Laboratory for Marine Science and Technology Qingdao China
- University of Chinese Academy of Sciences Beijing China
| | - Pengyuan Liu
- Key laboratory of Coastal Biology and Bioresource Utilization Yantai Institute of Costal Zone Research Chinese Academy of Sciences Yantai China
- Laboratory for Marine Biology and Biotechnology Qingdao National Laboratory for Marine Science and Technology Qingdao China
- University of Chinese Academy of Sciences Beijing China
| | - Yibo Wang
- Key laboratory of Coastal Biology and Bioresource Utilization Yantai Institute of Costal Zone Research Chinese Academy of Sciences Yantai China
- Laboratory for Marine Biology and Biotechnology Qingdao National Laboratory for Marine Science and Technology Qingdao China
- University of Chinese Academy of Sciences Beijing China
| | - Yanyan Huang
- Key laboratory of Coastal Biology and Bioresource Utilization Yantai Institute of Costal Zone Research Chinese Academy of Sciences Yantai China
- Laboratory for Marine Biology and Biotechnology Qingdao National Laboratory for Marine Science and Technology Qingdao China
- University of Chinese Academy of Sciences Beijing China
| | - Yan Gao
- Marine Science Research Institute of Shandong Province National Oceanographic Center of Qingdao Qingdao China
| | - Xiaoke Hu
- Key laboratory of Coastal Biology and Bioresource Utilization Yantai Institute of Costal Zone Research Chinese Academy of Sciences Yantai China
- Laboratory for Marine Biology and Biotechnology Qingdao National Laboratory for Marine Science and Technology Qingdao China
| |
Collapse
|
8
|
Cui H, Bai J, Du S, Wang J, Keculah GN, Wang W, Zhang G, Jia J. Interactive effects of groundwater level and salinity on soil respiration in coastal wetlands of a Chinese delta. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 286:117400. [PMID: 34058447 DOI: 10.1016/j.envpol.2021.117400] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/03/2021] [Accepted: 05/13/2021] [Indexed: 06/12/2023]
Abstract
Coastal wetland soils serve as a great C sink or source, which highly depends on soil carbon flux affected by complex hydrology in relation to salinity. We conducted a field experiment to investigate soil respiration of three coastal wetlands with different land covers (BL: bare land; SS: Suaeda salsa; PL: Phragmites australis) from May to October in 2012 and 2013 under three groundwater tables (deeper, medium, and shallower water tables) in the Yellow River Delta of China, and to characterize the spatial and temporal changes and the primary environmental drivers of soil respiration in coastal wetlands. Our results showed that the elevated groundwater table decreased soil CO2 emissions, and the soil respiration rates at each groundwater table exhibited seasonal and diurnal dynamics, where significant differences were observed among coastal wetlands with different groundwater tables (p < 0.05), with the average CO2 emission of 146.52 ± 13.66 μmol m-2s-1 for deeper water table wetlands, 105.09 ± 13.48 μmol m-2s-1 for medium water table wetlands and 54.32 ± 10.02 μmol m-2s-1 for shallower water table wetlands. Compared with bare land and Suaeda salsa wetlands, higher soil respiration was observed in Phragmites australis wetlands. Generally, soil respiration was greatly affected by salinity and soil water content. There were significant correlations between groundwater tables, electrical conductivity and soil respiration (p < 0.05), indicating that soil respiration in coastal wetlands was limited by electrical conductivity and groundwater tables and soil C sink might be improved by regulating water and salt conditions. We have also observed that soil respiration and temperature showed an exponential relationship on a seasonal scale. Taking into consideration the changes in groundwater tables and salinity that might be caused by sea level rise in the context of global warming, we emphasize the importance of groundwater level and salinity in the carbon cycle process of estuarine wetlands in the future.
Collapse
Affiliation(s)
- Hao Cui
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Junhong Bai
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China.
| | - Shudong Du
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Junjing Wang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Ghemelee Nitta Keculah
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Wei Wang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Guangliang Zhang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Jia Jia
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
9
|
Invasive Nicotiana glauca shifts the soil microbial community composition and functioning of harsh and disturbed semiarid Mediterranean environments. Biol Invasions 2020. [DOI: 10.1007/s10530-020-02299-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
10
|
Fang J, Deng Y, Che R, Han C, Zhong W. Bacterial community composition in soils covered by different vegetation types in the Yancheng tidal marsh. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:21517-21532. [PMID: 32279258 DOI: 10.1007/s11356-020-08629-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 03/26/2020] [Indexed: 06/11/2023]
Abstract
Coastal wetland vegetation plays an important role in maintaining ecological function and is a key factor affecting the soil bacterial community. Spartina alterniflora was introduced to the Yancheng tidal marsh to stabilize the sediments and gradually replaced the native plants. However, the changes in the soil bacterial community profile caused by S. alterniflora invasion are poorly characterized. Here, we used MiSeq sequencing to compare the composition of the bacterial community in soil at different depths under exotic S. alterniflora (SA), native Phragmites australis (PA), and native Suaeda salsa (SS). The results showed that the pH value was lower, but the salinity, soil organic carbon, total nitrogen, and number of 16S rRNA genes were higher in SA soils than in PA and SS soils. Overall, Proteobacteria was the dominant bacterial phylum, followed by Chloroflexi, Acidobacteria, Planctomycetes, Gemmatimonadetes, and Nitrospirae. Anaerolineae in the Chloroflexi phylum showed the greatest difference based on vegetation, accounting for 14.4% of the overall bacterial community in SA soils but only about 3.8% of those in PA and SS soils. The composition, interaction, and predicted functional profiles of the bacterial community in SA soils were significantly different from those in PA and SS soils, especially for functions related to the sulfur and nitrogen cycles. Salinity was negatively correlated with the Shannon index and accounted for 37.7% of the total variation in the bacterial community, making it the most important environmental factor. Our results showed the differences in bacterial community composition among different vegetation types and soil depths in the Yancheng tidal marsh, which provides a microbial basis for a better understanding of the ecological functions in this ecosystem.
Collapse
Affiliation(s)
- Jie Fang
- School of Geography Science, Nanjing Normal University, Nanjing, China
| | - Yongcui Deng
- School of Geography Science, Nanjing Normal University, Nanjing, China.
- Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Nanjing, China.
| | - Rongxiao Che
- Institute of International Rivers and Eco-security, Yunnan University, Kunming, China
| | - Cheng Han
- School of Geography Science, Nanjing Normal University, Nanjing, China
| | - Wenhui Zhong
- School of Geography Science, Nanjing Normal University, Nanjing, China
- Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Nanjing, China
| |
Collapse
|
11
|
Zhang G, Bai J, Zhao Q, Jia J, Wang W, Wang X. Bacterial Succession in Salt Marsh Soils Along a Short-term Invasion Chronosequence of Spartina alterniflora in the Yellow River Estuary, China. MICROBIAL ECOLOGY 2020; 79:644-661. [PMID: 31444524 DOI: 10.1007/s00248-019-01430-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 08/15/2019] [Indexed: 06/10/2023]
Abstract
As an exotic plant species, Spartina alterniflora seriously threatens native ecosystem function in Chinese coastal regions. Unveiling the dynamics of soil bacteria community during its invasion is essential for a better understanding of related biogeochemical processes, while the shift in soil bacterial community over invasive time remains unclear. A short-term chronosequence was identified to assess the impacts of Spartina alterniflora invasion on soil nutrients and bacterial community composition and structure (using 16S rRNA gene high-throughput sequencing) over the time of invasion (i.e., (1) at least 10 years, (2) nearly 5 years, (3) less than 2 years, and (4) in native salt marshes or 0 years) in the Yellow River Estuary. The results exhibited an orderly change in the soil physicochemical properties and bacterial community composition over the invasion time. Soil pH showed a significant decrease with the accumulation of soil organic matter (SOM), whereas soil nutrients such as soil dissolved organic carbon (DOC), total nitrogen (TN), nitrate (NO3-), ammonium (NH4+), K+, and Mg2+ were generally increased with the age of the invasion. The number of operational taxonomic units (OTUs, 97% similarity level) exhibited a decreasing trend, which suggested a decline in bacterial diversity with the invasion age. The dominant groups at the phylum level were Proteobacteria, Bacteroidetes, Chloroflexi, Acidobacteria, and Gemmatimonadetes (the sum of relative abundance was > 70% across all samples). The relative abundances of Chloroflexi and Gemmatimonadetes steadily decreased, while the abundance of Bacteroidetes significantly increased with the plant invasion. The distribution pattern of the soil bacteria was clearly separated according to the principal coordinate analysis (PCoA) and canonical correspondence analysis (CCA) in native and invaded salt marshes. The variation in the soil bacterial community was tightly associated with the soil physicochemical properties (Mantel test, P < 0.05). Variance partitioning analysis (VPA) showed that plant traits explained 4.95% of the bacterial community variation, and soil variables explained approximately 26.96% of the variation. Network analysis also revealed that plant invasion strengthens the interaction among soil bacterial communities. Overall, our findings highlight the bacterial community succession during the Spartina alterniflora invasion in coastal salt marsh soils, which can provide insight regarding the association between soil development and invasive plant.
Collapse
Affiliation(s)
- Guangliang Zhang
- State Key Laboratory of Water Environment Simulation, Beijing Normal University, Beijing, 100875, People's Republic of China
| | - Junhong Bai
- State Key Laboratory of Water Environment Simulation, Beijing Normal University, Beijing, 100875, People's Republic of China.
| | - Qingqing Zhao
- Ecology Institute, QiLu University of Technology (Shandong Academy of Sciences), Jinan, 250000, People's Republic of China
| | - Jia Jia
- State Key Laboratory of Water Environment Simulation, Beijing Normal University, Beijing, 100875, People's Republic of China
| | - Wei Wang
- State Key Laboratory of Water Environment Simulation, Beijing Normal University, Beijing, 100875, People's Republic of China
| | - Xin Wang
- State Key Laboratory of Water Environment Simulation, Beijing Normal University, Beijing, 100875, People's Republic of China
| |
Collapse
|
12
|
McCue MD, Javal M, Clusella‐Trullas S, Le Roux JJ, Jackson MC, Ellis AG, Richardson DM, Valentine AJ, Terblanche JS. Using stable isotope analysis to answer fundamental questions in invasion ecology: Progress and prospects. Methods Ecol Evol 2019. [DOI: 10.1111/2041-210x.13327] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Marshall D. McCue
- Sable Systems International Las Vegas NV USA
- Department of Conservation Ecology and Entomology Centre for Invasion Biology Stellenbosch University Stellenbosch South Africa
| | - Marion Javal
- Department of Conservation Ecology and Entomology Centre for Invasion Biology Stellenbosch University Stellenbosch South Africa
| | - Susana Clusella‐Trullas
- Centre for Invasion Biology Department of Botany and Zoology Stellenbosch University Stellenbosch South Africa
| | - Johannes J. Le Roux
- Centre for Invasion Biology Department of Botany and Zoology Stellenbosch University Stellenbosch South Africa
- Department of Biological Sciences Macquarie University NSW Australia
| | - Michelle C. Jackson
- Centre for Invasion Biology Department of Botany and Zoology Stellenbosch University Stellenbosch South Africa
- Department of Life Sciences Imperial College London Ascot UK
- Department of Zoology Oxford University Oxford UK
| | - Allan G. Ellis
- Department of Botany and Zoology Stellenbosch University Stellenbosch South Africa
| | - David M. Richardson
- Centre for Invasion Biology Department of Botany and Zoology Stellenbosch University Stellenbosch South Africa
| | - Alex J. Valentine
- Department of Botany and Zoology Stellenbosch University Stellenbosch South Africa
| | - John S. Terblanche
- Department of Conservation Ecology and Entomology Centre for Invasion Biology Stellenbosch University Stellenbosch South Africa
| |
Collapse
|
13
|
Nogueira CB, Menéndez E, Ramírez-Bahena MH, Velázquez E, Peix Á, Mateos PF, Scotti MR. The N-fixing legume Periandra mediterranea constrains the invasion of an exotic grass (Melinis minutiflora P. Beauv) by altering soil N cycling. Sci Rep 2019; 9:11033. [PMID: 31363104 PMCID: PMC6667476 DOI: 10.1038/s41598-019-47380-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 07/10/2019] [Indexed: 11/08/2022] Open
Abstract
Melinis minutiflora is an invasive species that threatens the biodiversity of the endemic vegetation of the campo rupestre biome in Brazil, displacing the native vegetation and favouring fire spread. As M. minutiflora invasion has been associated with a high nitrogen (N) demand, we assessed changes in N cycle under four treatments: two treatments with contrasting invasion levels (above and below 50%) and two un-invaded control treatments with native vegetation, in the presence or absence of the leguminous species Periandra mediterranea. This latter species was considered to be the main N source in this site due to its ability to fix N2 in association with Bradyrhizobia species. Soil proteolytic activity was high in treatments with P. mediterranea and in those severely invaded, but not in the first steps of invasion. While ammonium was the N-chemical species dominant in plots with native species, including P.mediterranea, soil nitrate prevailed only in fully invaded plots due to the stimulation of the nitrifying bacterial (AOB) and archaeal (AOA) populations carrying the amoA gene. However, in the presence of P. mediterranea, either in the beginning of the invasion or in uninvaded plots, we observed an inhibition of the nitrifying microbial populations and nitrate formation, suggesting that this is a biotic resistance strategy elicited by P. mediterranea to compete with M. minutiflora. Therefore, the inhibition of proteolytic activity and the nitrification process were the strategies elicited by P.mediterranea to constrain M.munitiflora invasion.
Collapse
Affiliation(s)
- Carina B Nogueira
- Department of Botany, Institute of Biological Science/Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Esther Menéndez
- Departamento de Microbiología y Genética and Instituto Hispanoluso de Investigaciones Agrarias (CIALE), Universidad de Salamanca, Salamanca, Spain
- ICAAM (Institute of Mediterranean Agriculture and Environmental Sciences), University of Évora-Núcleo da Mitra, Évora, Portugal
| | | | - Encarna Velázquez
- Departamento de Microbiología y Genética and Instituto Hispanoluso de Investigaciones Agrarias (CIALE), Universidad de Salamanca, Salamanca, Spain
- Unidad Asociada Universidad de Salamanca- CSIC 'Interacción Planta-Microorganismo', Salamanca, Spain
| | - Álvaro Peix
- Instituto de Recursos Naturales y Agrobiología (IRNASA-CSIC), Cordel de Merinas 40-52, 37008, Salamanca, Spain
- Unidad Asociada Universidad de Salamanca- CSIC 'Interacción Planta-Microorganismo', Salamanca, Spain
| | - Pedro F Mateos
- Departamento de Microbiología y Genética and Instituto Hispanoluso de Investigaciones Agrarias (CIALE), Universidad de Salamanca, Salamanca, Spain
- Unidad Asociada Universidad de Salamanca- CSIC 'Interacción Planta-Microorganismo', Salamanca, Spain
| | - Maria Rita Scotti
- Department of Botany, Institute of Biological Science/Federal University of Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
14
|
Linking Improvement of Soil Structure to Soil Carbon Storage Following Invasion by a C4 Plant Spartina alterniflora. Ecosystems 2018. [DOI: 10.1007/s10021-018-0308-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Temporal and spatial impact of Spartina alterniflora invasion on methanogens community in Chongming Island, China. J Microbiol 2018; 56:507-515. [PMID: 29948827 DOI: 10.1007/s12275-018-8062-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 04/23/2018] [Accepted: 04/23/2018] [Indexed: 10/14/2022]
Abstract
Methane production by methanogens in wetland is recognized as a significant contributor to global warming. Spartina alterniflora (S. alterniflora), which is an invasion plant in China's wetland, was reported to have enormous effects on methane production. But studies on shifts in the methanogen community in response to S. alterniflora invasion at temporal and spatial scales in the initial invasion years are rare. Sediments derived from the invasive species S. alterniflora and the native species Phragmites australis (P. australis) in pairwise sites and an invasion chronosequence patch (4 years) were analyzed to investigate the abundance and community structure of methanogens using quantitative real-time PCR (qPCR) and Denaturing gradient gel electrophoresis (DGGE) cloning of the methyl-coenzyme M reductase A (mcrA) gene. For the pairwise sites, the abundance of methanogens in S. alterniflora soils was lower than that of P. australis soils. For the chronosequence patch, the abundance and diversity of methanogens was highest in the soil subjected to two years invasion, in which we detected some rare groups including Methanocellales and Methanococcales. These results indicated a priming effect at the initial invasion stages of S. alterniflora for microorganisms in the soil, which was also supported by the diverse root exudates. The shifts of methanogen communities after S. alterniflora invasion were due to changes in pH, salinity and sulfate. The results indicate that root exudates from S. alterniflora have a priming effect on methanogens in the initial years after invasion, and the predominate methylotrophic groups (Methanosarcinales) may adapt to the availability of diverse substrates and reflects the potential for high methane production after invasion by S. alterniflora.
Collapse
|
16
|
Gao GF, Li PF, Shen ZJ, Qin YY, Zhang XM, Ghoto K, Zhu XY, Zheng HL. Exotic Spartina alterniflora invasion increases CH 4 while reduces CO 2 emissions from mangrove wetland soils in southeastern China. Sci Rep 2018; 8:9243. [PMID: 29915226 PMCID: PMC6006287 DOI: 10.1038/s41598-018-27625-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 06/04/2018] [Indexed: 11/09/2022] Open
Abstract
Mangroves are critical in global carbon budget while vulnerable to exotic plant invasion. Spartina alterniflora, one of typical salt marsh plant grows forcefully along the coast of China, has invaded the native mangrove habitats in Zhangjiang Estuary. However, the effects of S. alterniflora invasion on soil carbon gases (CH4 and CO2) emission from mangroves are not fully understood. Accordingly, we conducted a field experiment to investigate the soil CH4 and CO2 emission during growing seasons in 2016 and 2017 at four adjacent wetlands, namely bare mudflat (Mud), Kandelia obovata (KO), Avicennia marina (AM) and S. alterniflora (SA). Potential methane production (PMP), potential methane oxidation (PMO), functional microbial abundance and soil biogeochemical properties were measured simultaneously. Our results indicate that S. alterniflora invasion could dramatically increase soil CH4 emissions mainly due to the enhancement in PMP which facilitated by soil EC, MBC, TOC and mcrA gene abundance. Additionally, S. alterniflora invasion decreases soil CO2 emission. Both heterotrophic microbial respiration (16S rRNA) and methane oxidation (pmoA and ANME-pmoA) are responsible for CO2 emission reduction. Furthermore, S. alterniflora invasion greatly increases GWP by stimulating CH4 emissions. Thus, comparing with mangroves, invasive S. alterniflora significantly (p < 0.001) increases CH4 emission while reduces CO2 emission.
Collapse
Affiliation(s)
- Gui Feng Gao
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361102, P. R. China
| | - Peng Fei Li
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361102, P. R. China
| | - Zhi Jun Shen
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361102, P. R. China
| | - Ying Ying Qin
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361102, P. R. China.,College of Life Sciences, Guangxi Normal University, Gulin, Guangxi, 541004, P. R. China.,Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Ministry of Education, Gulin, Guangxi, 541004, P. R. China
| | - Xi Min Zhang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361102, P. R. China.,Key Laboratory of Plant Physiology and Development Regulation, School of Life Science, Guizhou Normal University, Guiyang, Guizhou, 550001, P. R. China
| | - Kabir Ghoto
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361102, P. R. China
| | - Xue Yi Zhu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361102, P. R. China
| | - Hai Lei Zheng
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361102, P. R. China.
| |
Collapse
|
17
|
Appling the One-Class Classification Method of Maxent to Detect an Invasive Plant Spartina alterniflora with Time-Series Analysis. REMOTE SENSING 2017. [DOI: 10.3390/rs9111120] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
18
|
Responses of plant species diversity and soil physical-chemical-microbial properties to Phragmites australis invasion along a density gradient. Sci Rep 2017; 7:11007. [PMID: 28887483 PMCID: PMC5591309 DOI: 10.1038/s41598-017-11205-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 08/16/2017] [Indexed: 11/15/2022] Open
Abstract
The invasion of ecosystems by strongly colonising plants such as Phragmites australis is viewed as one of the greatest threats to plant diversity and soil properties. This study compared a range of diversity measures including soil properties and mycorrhizal potential under different degrees of Phragmites density among three populations in coastal wetland, Victoria, Australia. Species richness, evenness and Shanon-Wiener index had significantly higher values in low degree of Phragmites density in all populations. Higher densities had the lowest diversity, with Shannon-Wiener index = 0 and Simpson’s index = 1 indicating its mono-specificity. Significant alterations in soil properties associated with different degrees of Phragmites density were noticed. These had interactive effects (population × density) on water content, dehydrogenase activity, microbial biomass (C, N and P) but not on pH, electrical conductivity, phenolics, organic carbon, and spore density. Furthermore, the study elucidated decrease of competitive abilities of native plants, by interfering with formation of mycorrhizal associations and biomass. Overall, our results suggest that significant ecological alterations in vegetation and soil variables (including mycorrhizal potential) were strongly dependent on Phragmites density. Such changes may lead to an important role in process of Phragmites invasion through disruption of functional relationships amongst those variables.
Collapse
|