1
|
Courtiol-Legourd S, Mariano S, Foret J, Roos AK, Mowbray SL, Salmon L. Synthesis and kinetic evaluation of phosphomimetic inhibitors targeting type B ribose-5-phosphate isomerase from Mycobacterium tuberculosis. Bioorg Med Chem Lett 2024; 102:129666. [PMID: 38382679 DOI: 10.1016/j.bmcl.2024.129666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/01/2024] [Accepted: 02/15/2024] [Indexed: 02/23/2024]
Abstract
Because tuberculosis is still a major health threat worldwide, identification of new drug targets is urgently needed. In this study, we considered type B ribose-5-phosphate isomerase from Mycobacterium tuberculosis as a potential target, and addressed known problems of previous inhibitors in terms of their sensitivity to hydrolysis catalyzed by phosphatase enzymes, which impaired their potential use as drugs. To this end, we synthesized six novel phosphomimetic compounds designed to be hydrolytically stable analogs of the substrate ribose 5-phosphate and the best known inhibitor 5-phospho-d-ribonate. The phosphate function was replaced by phosphonomethyl, sulfate, sulfonomethyl, or malonate groups. Inhibition was evaluated on type A and type B ribose-5-phosphate isomerases, and stability towards hydrolysis using alkaline phosphatase and veal serum was assessed. One of the phosphomimetic analogs, 5-deoxy-5-phosphonomethyl-d-ribonate, emerged as the first strong and specific inhibitor of the M. tuberculosis enzyme that is resistant to hydrolysis.
Collapse
Affiliation(s)
- Stéphanie Courtiol-Legourd
- Université Paris-Saclay, CNRS, Institut de Chimie Moléculaire et des Matériaux d'Orsay, 91400, Orsay, France
| | - Sandrine Mariano
- Université Paris-Saclay, CNRS, Institut de Chimie Moléculaire et des Matériaux d'Orsay, 91400, Orsay, France
| | - Johanna Foret
- Université Paris-Saclay, CNRS, Institut de Chimie Moléculaire et des Matériaux d'Orsay, 91400, Orsay, France
| | - Annette K Roos
- Uppsala University, Department of Cell and Molecular Biology, Box 596, SE-751 24 Uppsala, Sweden; Uppsala University, Drug Discovery and Development Platform, Science for Life Laboratory, Department of Cell and Molecular Biology, Box 596, SE-751 24 Uppsala, Sweden
| | - Sherry L Mowbray
- Uppsala University, Department of Cell and Molecular Biology, Box 596, SE-751 24 Uppsala, Sweden; Uppsala University, Science for Life Laboratory, Department of Cell and Molecular Biology, Box 596, SE-751 24 Uppsala, Sweden
| | - Laurent Salmon
- Université Paris-Saclay, CNRS, Institut de Chimie Moléculaire et des Matériaux d'Orsay, 91400, Orsay, France.
| |
Collapse
|
2
|
Tao R, Guo W, Li T, Wang Y, Wang P. Intestinal microbiota dysbiosis and liver metabolomic changes during brain death. JOURNAL OF INTENSIVE MEDICINE 2023; 3:345-351. [PMID: 38028643 PMCID: PMC10658038 DOI: 10.1016/j.jointm.2023.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 01/17/2023] [Accepted: 02/25/2023] [Indexed: 12/01/2023]
Abstract
Background Whether a causative link exists between brain death (BD) and intestinal microbiota dysbiosis is unclear, and the distortion in liver metabolism associated with BD requires further exploration. Methods A rat model of BD was constructed and sustained for 9 h (BD group, n=6). The sham group (n=6) underwent the same procedures, but the catheter was inserted into the epidural space without ballooning. Intestinal contents and portal vein plasma were collected for microbiota sequencing and microbial metabolite detection. Liver tissue was resected to investigate metabolic alterations, and the results were compared with those of a sham group. Results α-diversity indexes showed that BD did not alter bacterial diversity. Microbiota dysbiosis occurred after 9 h of BD. At the family level, Peptostreptococcaceae and Bacteroidaceae were both decreased in the BD group. At the genus level, Romboutsia, Bacteroides, Erysipelotrichaceae_UCG_004, Faecalibacterium, and Barnesiella were enriched in the sham group, whereas Ruminococcaceae_UCG_007, Lachnospiraceae_ND3007_group, and Papillibacter were enriched in the BD group. Short-chain fatty acids, bile acids, and 132 other microbial metabolites remained unchanged in both the intestinal contents and portal vein plasma of the BD group. BD caused alterations in 65 metabolites in the liver, of which, carbohydrates, amino acids, and organic acids accounted for 64.6%. Additionally, 80.0% of the differential metabolites were decreased in the BD group livers. Galactose metabolism was the most significant metabolic pathway in the BD group. Conclusions BD resulted in microbiota dysbiosis in rats; however, this dysbiosis did not alter microbial metabolites. Deterioration in liver metabolic function during extended periods of BD may reflect a continuous worsening in energy deficiency.
Collapse
Affiliation(s)
- Ruolin Tao
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
- Henan Key Laboratory for Digestive Organ Transplantation, Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Wenzhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
- Henan Key Laboratory for Digestive Organ Transplantation, Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Tao Li
- Department of Biliary Surgery, Nanyang Central Hospital, Nanyang 473009, Henan, China
| | - Yong Wang
- Henan Key Laboratory for Digestive Organ Transplantation, Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
- Department of Anesthesiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Panliang Wang
- Henan Key Laboratory for Digestive Organ Transplantation, Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| |
Collapse
|
3
|
Paul A, Roy PK, Babu NK, Dhumal TT, Singh S. Leishmania donovani 6-phosphogluconolactonase: Crucial for growth and host infection? Microb Pathog 2023; 178:106082. [PMID: 36958644 DOI: 10.1016/j.micpath.2023.106082] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/14/2023] [Accepted: 03/19/2023] [Indexed: 03/25/2023]
Abstract
The hexose monophosphate shunt is a crucial pathway in a variety of microorganisms owing to its vital metabolic products and intermediates such as NADPH, ribose 5-phosphate etc. The enzyme 6-phosphogluconolactonase catalyses the second step of this pathway, converting 6-phosphogluconolactone to 6-phosphogluconic acid. This enzyme has been known to have a significant involvement in growth, pathogenesis and sensitivity to oxidative stress in bacterial and protozoal pathogens. However, the functional role of kinetoplastid Leishmania donovani 6-phospohogluconolactonase (Ld6PGL) remains unexplored. L. donovani is the second largest parasitic killer and causative organism of life threatening visceral leishmaniasis. To understand its possible functional role in the parasite, the alleles of Ld6PGL were sequentially knocked-out followed by gene complementation. The Ld6PGL mutant cell lines showed decrease in transcriptional and translational expression as well as in the enzyme activity. In case of Ld6PGL null mutants, approximately 2-fold reduction was observed in growth. The null mutants also showed ∼38% decrease in infectivity, which recovered to ∼15% on complementation. Scanning electron microscopy showed a marked decrease in flagellar length in the knockout parasites. When treated with the standard drug miltefosine, the mutant strains had no significant change in the drug sensitivity. However, the Ld6PGL mutants were more susceptible to oxidative stress. Our findings suggest that 6PGL is required for parasite growth and infection but it is not essential.
Collapse
Affiliation(s)
- Anindita Paul
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, SAS Nagar, Mohali, 160062, Punjab, India
| | - Pradyot Kumar Roy
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, SAS Nagar, Mohali, 160062, Punjab, India
| | - Neerupudi Kishore Babu
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, SAS Nagar, Mohali, 160062, Punjab, India
| | - Tushar Tukaram Dhumal
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, SAS Nagar, Mohali, 160062, Punjab, India
| | - Sushma Singh
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, SAS Nagar, Mohali, 160062, Punjab, India.
| |
Collapse
|
4
|
Insights into the Substrate Uptake Mechanism of Mycobacterium Tuberculosis Ribose 5-Phosphate Isomerase and Perspectives on Drug Development. BIOPHYSICA 2023. [DOI: 10.3390/biophysica3010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
The active site of the dimeric ribose 5-phosphate isomerase B (RpiB) contains a solvent-exposed barrier formed by residues H12, R113, R137, and R141, which is closed upon the complexation of phosphate. The substrate ribose 5-phosphate (R5P) has to overcome the surface barrier to reach an internal cavity and then bind in the linear configuration of ribose to the interface between the two subunits. NMR and molecular dynamics simulation are suitable methods to describe the transient nature of the RpiB active site and help our understanding of the mechanism of substrate entrance. In this study, we show that the entrance of the nucleotides AMP/ADP into the internal cavity of mycobacterium tuberculosis RpiB (MtRpiB) does not involve a canonical open/close-lid conformational transition usually observed in many enzymes. Instead, a flipping mechanism in which the nucleotide phosphate interacts with the surface barrier followed by the flip of the nitrogenous base and ribose is responsible for changing the substrate/ligand orientation from a solvent-exposed to a buried state. Based on these results, we propose a substrate/inhibitor uptake mechanism that could provide a basis for rational drug design using MtRpiB, which is an essential enzyme and a good target for drug development.
Collapse
|
5
|
Nath SK, Pankajakshan P, Sharma T, Kumari P, Shinde S, Garg N, Mathur K, Arambam N, Harjani D, Raj M, Kwatra G, Venkatesh S, Choudhoury A, Bano S, Tayal P, Sharan M, Arora R, Strych U, Hotez PJ, Bottazzi ME, Rawal K. A Data-Driven Approach to Construct a Molecular Map of Trypanosoma cruzi to Identify Drugs and Vaccine Targets. Vaccines (Basel) 2023; 11:vaccines11020267. [PMID: 36851145 PMCID: PMC9963959 DOI: 10.3390/vaccines11020267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 01/28/2023] Open
Abstract
Chagas disease (CD) is endemic in large parts of Central and South America, as well as in Texas and the southern regions of the United States. Successful parasites, such as the causative agent of CD, Trypanosoma cruzi have adapted to specific hosts during their phylogenesis. In this work, we have assembled an interactive network of the complex relations that occur between molecules within T. cruzi. An expert curation strategy was combined with a text-mining approach to screen 10,234 full-length research articles and over 200,000 abstracts relevant to T. cruzi. We obtained a scale-free network consisting of 1055 nodes and 874 edges, and composed of 838 proteins, 43 genes, 20 complexes, 9 RNAs, 36 simple molecules, 81 phenotypes, and 37 known pharmaceuticals. Further, we deployed an automated docking pipeline to conduct large-scale docking studies involving several thousand drugs and potential targets to identify network-based binding propensities. These experiments have revealed that the existing FDA-approved drugs benznidazole (Bz) and nifurtimox (Nf) show comparatively high binding energies to the T. cruzi network proteins (e.g., PIF1 helicase-like protein, trans-sialidase), when compared with control datasets consisting of proteins from other pathogens. We envisage this work to be of value to those interested in finding new vaccines for CD, as well as drugs against the T. cruzi parasite.
Collapse
Affiliation(s)
- Swarsat Kaushik Nath
- Centre for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Amity University, Noida 201303, Uttar Pradesh, India
| | - Preeti Pankajakshan
- Centre for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Amity University, Noida 201303, Uttar Pradesh, India
| | - Trapti Sharma
- Centre for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Amity University, Noida 201303, Uttar Pradesh, India
| | - Priya Kumari
- Centre for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Amity University, Noida 201303, Uttar Pradesh, India
| | - Sweety Shinde
- Centre for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Amity University, Noida 201303, Uttar Pradesh, India
| | - Nikita Garg
- Centre for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Amity University, Noida 201303, Uttar Pradesh, India
| | - Kartavya Mathur
- Centre for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Amity University, Noida 201303, Uttar Pradesh, India
| | - Nevidita Arambam
- Centre for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Amity University, Noida 201303, Uttar Pradesh, India
| | - Divyank Harjani
- Centre for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Amity University, Noida 201303, Uttar Pradesh, India
| | - Manpriya Raj
- Centre for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Amity University, Noida 201303, Uttar Pradesh, India
| | - Garwit Kwatra
- Centre for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Amity University, Noida 201303, Uttar Pradesh, India
| | - Sayantan Venkatesh
- Centre for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Amity University, Noida 201303, Uttar Pradesh, India
| | - Alakto Choudhoury
- Centre for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Amity University, Noida 201303, Uttar Pradesh, India
| | - Saima Bano
- Centre for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Amity University, Noida 201303, Uttar Pradesh, India
| | - Prashansa Tayal
- Centre for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Amity University, Noida 201303, Uttar Pradesh, India
| | - Mahek Sharan
- Centre for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Amity University, Noida 201303, Uttar Pradesh, India
| | - Ruchika Arora
- Centre for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Amity University, Noida 201303, Uttar Pradesh, India
| | - Ulrich Strych
- Texas Children’s Hospital Center for Vaccine Development, Departments of Pediatrics and Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
- National School of Tropical Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Peter J. Hotez
- Texas Children’s Hospital Center for Vaccine Development, Departments of Pediatrics and Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
- National School of Tropical Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Biology, Baylor University, Waco, TX 76798, USA
| | - Maria Elena Bottazzi
- Texas Children’s Hospital Center for Vaccine Development, Departments of Pediatrics and Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
- National School of Tropical Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Biology, Baylor University, Waco, TX 76798, USA
| | - Kamal Rawal
- Centre for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Amity University, Noida 201303, Uttar Pradesh, India
- Correspondence:
| |
Collapse
|
6
|
de Azevedo SLC, Catanho M, Guimarães ACR, Galvão TC. Genomic surveillance: a potential shortcut for effective Chagas disease management. Mem Inst Oswaldo Cruz 2023; 117:e220164. [PMID: 36700581 PMCID: PMC9870261 DOI: 10.1590/0074-02760220164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 11/29/2022] [Indexed: 01/27/2023] Open
Abstract
Chagas disease is an enduring public health issue in many Latin American countries, receiving insufficient investment in research and development. Strategies for disease control and management currently lack efficient pharmaceuticals, commercial diagnostic kits with improved sensitivity, and vaccines. Genetic heterogeneity of Trypanosoma cruzi is a key aspect for novel drug design since pharmacological technologies rely on the degree of conservation of parasite target proteins. Therefore, there is a need to expand the knowledge regarding parasite genetics which, if fulfilled, could leverage Chagas disease research and development, and improve disease control strategies. The growing capacity of whole-genome sequencing technology and its adoption as disease surveillance routine may be key for solving this long-lasting problem.
Collapse
Affiliation(s)
- Sophia Lincoln Cardoso de Azevedo
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Genômica Funcional e Bioinformática, Rio de Janeiro, RJ, Brasil,Universidade Federal Fluminense, Niterói, RJ, Brasil
| | - Marcos Catanho
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Rio de Janeiro, RJ, Brasil
| | - Ana Carolina Ramos Guimarães
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Genômica Funcional e Bioinformática, Rio de Janeiro, RJ, Brasil
| | - Teca Calcagno Galvão
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Genômica Funcional e Bioinformática, Rio de Janeiro, RJ, Brasil,+ Corresponding author:
| |
Collapse
|
7
|
Cardoso MS, Santos RF, Almeida S, Sá M, Pérez-Cabezas B, Oliveira L, Tavares J, Carmo AM. Physical Interactions With Bacteria and Protozoan Parasites Establish the Scavenger Receptor SSC4D as a Broad-Spectrum Pattern Recognition Receptor. Front Immunol 2021; 12:760770. [PMID: 35003072 PMCID: PMC8739261 DOI: 10.3389/fimmu.2021.760770] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/29/2021] [Indexed: 12/19/2022] Open
Abstract
Since the pioneering discoveries, by the Nobel laureates Jules Hoffmann and Bruce Beutler, that Toll and Toll-like receptors can sense pathogenic microorganisms and initiate, in vertebrates and invertebrates, innate immune responses against microbial infections, many other families of pattern recognition receptors (PRRs) have been described. One of such receptor clusters is composed by, if not all, at least several members of the scavenger receptor cysteine-rich (SRCR) superfamily. Many SRCR proteins are plasma membrane receptors of immune cells; however, a small subset consists of secreted receptors that are therefore in circulation. We here describe the first characterization of biological and functional roles of the circulating human protein SSC4D, one of the least scrutinized members of the family. Within leukocyte populations, SSC4D was found to be expressed by monocytes/macrophages, neutrophils, and B cells, but its production was particularly evident in epithelial cells of several organs and tissues, namely, in the kidney, thyroid, lung, placenta, intestinal tract, and liver. Similar to other SRCR proteins, SSC4D shows the capacity of physically binding to different species of bacteria, and this opsonization can increase the phagocytic capacity of monocytes. Importantly, we have uncovered the capacity of SSC4D of binding to several protozoan parasites, a singular feature seldom described for PRRs in general and here demonstrated for the first time for an SRCR family member. Overall, our study is pioneer in assigning a PRR role to SSC4D.
Collapse
Affiliation(s)
- Marcos S. Cardoso
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC–Instituto de Biologia Molecular e Celular, Porto, Portugal
- Programa Doutoral em Biologia Molecular e Celular (MCbiology), Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Rita F. Santos
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC–Instituto de Biologia Molecular e Celular, Porto, Portugal
- Programa Doutoral em Biologia Molecular e Celular (MCbiology), Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Sarah Almeida
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC–Instituto de Biologia Molecular e Celular, Porto, Portugal
- Departamento de Biologia, Universidade de Aveiro, Aveiro, Portugal
| | - Mónica Sá
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC–Instituto de Biologia Molecular e Celular, Porto, Portugal
- Doutoramento em Ciências Farmacêuticas (especialidade Microbiologia), Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Begoña Pérez-Cabezas
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC–Instituto de Biologia Molecular e Celular, Porto, Portugal
| | - Liliana Oliveira
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC–Instituto de Biologia Molecular e Celular, Porto, Portugal
| | - Joana Tavares
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC–Instituto de Biologia Molecular e Celular, Porto, Portugal
| | - Alexandre M. Carmo
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC–Instituto de Biologia Molecular e Celular, Porto, Portugal
| |
Collapse
|
8
|
Toward Chemical Validation of Leishmania infantum Ribose 5-Phosphate Isomerase as a Drug Target. Antimicrob Agents Chemother 2021; 65:e0189220. [PMID: 33875438 DOI: 10.1128/aac.01892-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Neglected tropical diseases caused by kinetoplastid parasites (Trypanosoma brucei, Trypanosoma cruzi, and Leishmania spp.) place a significant health and economic burden on developing nations worldwide. Current therapies are largely outdated, inadequate, and face mounting drug resistance from the causative parasites. Thus, there is an urgent need for drug discovery and development. Target-led drug discovery approaches have focused on the identification of parasite enzymes catalyzing essential biochemical processes, which significantly differ from equivalent proteins found in humans, thereby providing potentially exploitable therapeutic windows. One such target is ribose 5-phosphate isomerase B (RpiB), an enzyme involved in the nonoxidative branch of the pentose phosphate pathway, which catalyzes the interconversion of d-ribose 5-phosphate and d-ribulose 5-phosphate. Although protozoan RpiB has been the focus of numerous targeted studies, compounds capable of selectively inhibiting this parasite enzyme have not been identified. Here, we present the results of a fragment library screening against Leishmania infantum RpiB (LiRpiB), performed using thermal shift analysis. Hit fragments were shown to be effective inhibitors of LiRpiB in activity assays, and several fragments were capable of selectively inhibiting parasite growth in vitro. These results support the identification of LiRpiB as a validated therapeutic target. The X-ray crystal structure of apo LiRpiB was also solved, permitting docking studies to assess how hit fragments might interact with LiRpiB to inhibit its activity. Overall, this work will guide structure-based development of LiRpiB inhibitors as antileishmanial agents.
Collapse
|
9
|
Gonzalez SN, Mills JJ, Maugeri D, Olaya C, Laguera BL, Enders JR, Sherman J, Rodriguez A, Pierce JG, Cazzulo JJ, D'Antonio EL. Design, synthesis, and evaluation of substrate - analogue inhibitors of Trypanosoma cruzi ribose 5-phosphate isomerase type B. Bioorg Med Chem Lett 2021; 32:127723. [PMID: 33249135 DOI: 10.1016/j.bmcl.2020.127723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/17/2020] [Accepted: 11/23/2020] [Indexed: 11/30/2022]
Abstract
Ribose 5-phosphate isomerase type B (RPI-B) is a key enzyme of the pentose phosphate pathway that catalyzes the isomerization of ribose 5-phosphate (R5P) and ribulose 5-phosphate (Ru5P). Trypanosoma cruzi RPI-B (TcRPI-B) appears to be a suitable drug-target mainly due to: (i) its essentiality (as previously shown in other trypanosomatids), (ii) it does not present a homologue in mammalian genomes sequenced thus far, and (iii) it participates in the production of NADPH and nucleotide/nucleic acid synthesis that are critical for parasite cell survival. In this survey, we report on the competitive inhibition of TcRPI-B by a substrate - analogue inhibitor, Compound B (Ki = 5.5 ± 0.1 μM), by the Dixon method. This compound has an iodoacetamide moiety that is susceptible to nucleophilic attack, particularly by the cysteine thiol group. Compound B was conceived to specifically target Cys-69, an important active site residue. By incubating TcRPI-B with Compound B, a trypsin digestion LC-MS/MS analysis revealed the identification of Compound B covalently bound to Cys-69. This inhibitor also exhibited notable in vitro trypanocidal activity against T. cruzi infective life-stages co-cultured in NIH-3T3 murine host cells (IC50 = 17.40 ± 1.055 μM). The study of Compound B served as a proof-of-concept so that next generation inhibitors can potentially be developed with a focus on using a prodrug group in replacement of the iodoacetamide moiety, thus representing an attractive starting point for the future treatment of Chagas' disease.
Collapse
Affiliation(s)
- Soledad Natalia Gonzalez
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de General San Martín - CONICET (IIBio-UNSAM), Avenida 25 de Mayo y Francia CP (1650), San Martín (Buenos Aires), Argentina
| | - Jonathan J Mills
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Box 8204, Raleigh, NC 27695, USA
| | - Dante Maugeri
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de General San Martín - CONICET (IIBio-UNSAM), Avenida 25 de Mayo y Francia CP (1650), San Martín (Buenos Aires), Argentina
| | - Christopher Olaya
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Box 8204, Raleigh, NC 27695, USA
| | - Breana L Laguera
- Department of Natural Sciences, University of South Carolina Beaufort, 1 University Boulevard, Bluffton, SC 29909, USA
| | - Jeffrey R Enders
- Molecular Education, Technology and Research Innovation Center (METRIC), North Carolina State University, Raleigh, NC 27695, USA
| | - Julian Sherman
- Department of Microbiology, New York University School of Medicine, 430 East 29(th) Street, New York, NY 10016, USA
| | - Ana Rodriguez
- Department of Microbiology, New York University School of Medicine, 430 East 29(th) Street, New York, NY 10016, USA
| | - Joshua G Pierce
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Box 8204, Raleigh, NC 27695, USA
| | - Juan José Cazzulo
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de General San Martín - CONICET (IIBio-UNSAM), Avenida 25 de Mayo y Francia CP (1650), San Martín (Buenos Aires), Argentina
| | - Edward L D'Antonio
- Department of Natural Sciences, University of South Carolina Beaufort, 1 University Boulevard, Bluffton, SC 29909, USA.
| |
Collapse
|
10
|
Tang H, Ju X, Zhao J, Li L. Engineering ribose-5-phosphate isomerase B from a central carbon metabolic enzyme to a promising sugar biocatalyst. Appl Microbiol Biotechnol 2021; 105:509-523. [PMID: 33394147 DOI: 10.1007/s00253-020-11075-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/12/2020] [Accepted: 12/23/2020] [Indexed: 10/22/2022]
Abstract
Ribose-5-phosphate isomerase B (RpiB) was first identified in the pentose phosphate pathway responsible for the inter-conversion of ribose-5-phosphate and ribulose-5-phosphate. Though there are seldom key enzymes in central carbon metabolic system developed as useful biocatalysts, RpiB with the advantages of wide substrate scope and high stereoselectivity has become a potential biotechnological tool to fulfill the demand of rare sugars currently. In this review, the pivotal roles of RpiB in carbon metabolism are summarized, and their sequence identity and structural similarity are discussed. Substrate binding and catalytic mechanisms are illustrated to provide solid foundations for enzyme engineering. Interesting differences in origin, physiological function, structure, and catalytic mechanism between RpiB and ribose-5-phosphate isomerase A are introduced. Moreover, enzyme engineering efforts for rare sugar production are stressed, and prospects of future development are concluded briefly in the viewpoint of biocatalysis. Aided by the progresses of structural and computational biology, the application of RpiB will be promoted greatly in the preparation of valuable molecules. KEY POINTS: • Detailed illustration of RpiB's vital function in central carbon metabolism. • Potential of RpiB in sequence, substrate scope, and mechanism for application. • Enzyme engineering efforts to promote RpiB in the preparation of rare sugars.
Collapse
Affiliation(s)
- Hengtao Tang
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, No.99 Xuefu Rd., Huqiu district, Suzhou, 215009, Jiangsu Province, People's Republic of China
| | - Xin Ju
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, No.99 Xuefu Rd., Huqiu district, Suzhou, 215009, Jiangsu Province, People's Republic of China
| | - Jing Zhao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, People's Republic of China
| | - Liangzhi Li
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, No.99 Xuefu Rd., Huqiu district, Suzhou, 215009, Jiangsu Province, People's Republic of China.
| |
Collapse
|
11
|
Chen J, Wu H, Zhang W, Mu W. Ribose-5-phosphate isomerases: characteristics, structural features, and applications. Appl Microbiol Biotechnol 2020; 104:6429-6441. [PMID: 32533303 DOI: 10.1007/s00253-020-10735-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/02/2020] [Accepted: 06/07/2020] [Indexed: 01/21/2023]
Abstract
Ribose-5-phosphate isomerase (Rpi, EC 5.3.1.6) is widespread in microorganisms, animals, and plants. It has a pivotal role in the pentose phosphate pathway and responsible for catalyzing the isomerization between D-ribulose 5-phosphate and D-ribose 5-phosphate. In recent years, Rpi has received considerable attention as a multipurpose biocatalyst for production of rare sugars, including D-allose, L-rhamnulose, L-lyxose, and L-tagatose. Besides, it has been thought of as a potential drug target in the treatment of trypanosomatid-caused diseases such as Chagas' disease, leishmaniasis, and human African trypanosomiasis. Despite increased research activities, up to now, no systematic review of Rpi has been published. To fill this gap, this paper provides detailed information about the enzymatic properties of various Rpis. Furthermore, structural features, catalytic mechanism, and molecular modifications of Rpis are summarized based on extensive crystal structure research. Additionally, the applications of Rpi in rare sugar production and the role of Rpi in trypanocidal drug design are reviewed. Key points • Fundamental properties of various ribose-5-phosphate isomerases (Rpis). • Differences in crystal structure and catalytic mechanism between RpiA and RpiB. • Application of Rpi as a rare sugar producer and a potential drug target.
Collapse
Affiliation(s)
- Jiajun Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Hao Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China.
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, Jiangsu, China.
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, Jiangsu, China
| |
Collapse
|
12
|
Bartkevihi L, Martins B, de Oliveira DMP, Pires JRM, Anobom CD, Almeida FCL. Backbone assignment of ribose-5-phosphate isomerase of Mycobacterium tuberculosis (MtRpiB). BIOMOLECULAR NMR ASSIGNMENTS 2020; 14:119-122. [PMID: 32030620 DOI: 10.1007/s12104-020-09931-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 01/16/2020] [Indexed: 06/10/2023]
Abstract
Tuberculosis is one of the deadliest diseases worldwide affecting approximately 10 million people in 2018. This classifies tuberculosis as epidemic in several countries and leads to an increasing number of multidrug-resistant strains. Thus, the development of new drugs is essential to effective treatments. A potential drug target is the ribose-5-phosphate isomerase, a ubiquitous enzyme important to nucleotide and cofactor biosynthesis. Here, we report the backbone assignment of ribose-5-phosphate isomerase of Mycobacterium tuberculosis (MtRpiB) that has been performed by triple resonance sequential approach using a [13C, 15N, 2H]-labeled protein. This is the first ribose-5-phosphate isomerase, an enzyme previously classified as highly druggable, to be assigned. These data will be important to further screening studies to find inhibitors and determine their interaction with MtRpiB.
Collapse
Affiliation(s)
- Leonardo Bartkevihi
- Institute of Medical Biochemistry (IBqM), National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- National Center of Nuclear Magnetic Resonance (CNRMN), Center for Structural Biology and Bioimaging (CENABIO), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bruna Martins
- Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - José Ricardo M Pires
- Institute of Medical Biochemistry (IBqM), National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- National Center of Nuclear Magnetic Resonance (CNRMN), Center for Structural Biology and Bioimaging (CENABIO), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Fabio C L Almeida
- Institute of Medical Biochemistry (IBqM), National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
- National Center of Nuclear Magnetic Resonance (CNRMN), Center for Structural Biology and Bioimaging (CENABIO), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
13
|
Mendes Costa D, Cecílio P, Santarém N, Cordeiro-da-Silva A, Tavares J. Murine infection with bioluminescent Leishmania infantum axenic amastigotes applied to drug discovery. Sci Rep 2019; 9:18989. [PMID: 31831809 PMCID: PMC6908656 DOI: 10.1038/s41598-019-55474-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 11/25/2019] [Indexed: 11/13/2022] Open
Abstract
Leishmaniasis is an important vector-borne neglected tropical disease caused by Leishmania parasites. Current anti-Leishmania chemotherapy is unsatisfactory, justifying the continued search for alternative treatment options. Herein, we demonstrate that luciferase-expressing Leishmania infantum axenic amastigotes, unlike promastigotes, are highly infectious to BALB/c mice and thus generate a robust bioluminescent signal in target organs, such as the liver and the spleen, as early as two weeks after infection. Treatment with the reference drugs amphotericin B and miltefosine was effective at reducing parasite burdens. This model allows the assessment of treatment efficacy using whole-mouse bioluminescence imaging without the need to wait several weeks for spleen infections to be detectable by this non-invasive method. In conclusion, we propose the use of this model in an initial approach to evaluate the treatment efficacy of promising chemical entities without having to sacrifice large numbers of animals or to wait several days for a readout.
Collapse
|
14
|
Pérez-Cabezas B, Cecílio P, Gaspar TB, Gärtner F, Vasconcellos R, Cordeiro-da-Silva A. Understanding Resistance vs. Susceptibility in Visceral Leishmaniasis Using Mouse Models of Leishmania infantum Infection. Front Cell Infect Microbiol 2019; 9:30. [PMID: 30881923 PMCID: PMC6407322 DOI: 10.3389/fcimb.2019.00030] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 01/31/2019] [Indexed: 01/28/2023] Open
Abstract
Every year, up to 90,000 new cases of Visceral Leishmaniasis and 30,000 resultant deaths are estimated to occur worldwide. Such numbers give relevance to the continuous study of this complex form of the disease: a zoonosis and an anthroponosis; two known etiological agents (Leishmania infantum and L. donovani, respectively); with an estimated average ratio of 1 symptomatic per 10 asymptomatic individuals; and sometimes associated with atypical clinical presentations. This complexity, which results from a long co-evolutionary process involving vector-host, host-pathogen, and pathogen-vector interactions, is still not completely understood. The determinants of visceralization are not fully defined and the dichotomy resistance vs. susceptibility remains unsolved, translating into obstacles that delay the progress of global disease control. Inbred mouse models, with different susceptibility patterns to Leishmania infection, have been very useful in exploring this dichotomy. BALB/c and C57BL/6 mice were described as susceptible strains to L. donovani visceral infection, while SV/129 was considered resistant. Here, we used these three mouse models, but in the context of L. infantum infection, the other Leishmania species that cause visceral disease in humans, and dynamically compared their local and systemic infection-induced immune responses in order to establish a parallel and to ultimately better understand susceptibility vs. resistance in visceral leishmaniasis. Overall, our results suggest that C57BL/6 mice develop an intermediate “infection-phenotype” in comparison to BALB/c and SV/129 mouse strains, considering both the splenic parasite burden and the determined target organs weights. However, the immune mechanisms associated with the control of infection seem to be different in each mouse strain. We observed that both BALB/c and SV/129, but not C57BL/6 mice, show an infection-induced increase of splenic T follicular helper cells. On the other hand, differences detected in terms of CD21 expression by B cells early after infection, together with the quantified anti-Leishmania specific antibodies, suggest that SV/129 are faster than BALB/c and C57BL/6 mice in the assembly of an efficient B-cell response. Additionally, we observed an infection-induced increase in polyfunctional CD4+ T cells in the resistant SV/129 model, opposing an infection-induced increase in CD4+IL-10+ cells in susceptible BALB/c mice. Our data aligns with the observations reported for L. donovani infection and suggest that not only a single mechanism, but an interaction of several could be necessary for the control of this parasitic disease.
Collapse
Affiliation(s)
- Begoña Pérez-Cabezas
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Parasite Disease Group, Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Pedro Cecílio
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Parasite Disease Group, Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.,Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Tiago Bordeira Gaspar
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Cancer Signalling and Metabolism Group, Institute of Molecular Pathology and Immunology of University of Porto, Porto, Portugal.,Faculdade de Medicina, Universidade do Porto, Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Fátima Gärtner
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Department of Molecular Pathology and Immunology, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal.,Glycobiology in Cancer Group, Institute of Molecular Pathology and Immunology of University of Porto, Universidade do Porto, Porto, Portugal
| | - Rita Vasconcellos
- Immunobiology Department, Biology Institute, Universidade Federal Fluminense, Rio de Janeiro, Brazil
| | - Anabela Cordeiro-da-Silva
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Parasite Disease Group, Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.,Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| |
Collapse
|
15
|
Tavares J, Santarém N, Cordeiro-da-Silva A. Quantification of Leishmania Parasites in Murine Models of Visceral Infection. Methods Mol Biol 2019; 1971:289-301. [PMID: 30980311 DOI: 10.1007/978-1-4939-9210-2_16] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Visceral leishmaniasis (VL) is mainly caused by Leishmania donovani (India and East Africa), and Leishmania infantum (Mediterranean Basin and South America) infections. Although murine models of visceral infection lack the clinicopathological aspects of VL in humans, they have been proven useful at advancing our knowledge in the Leishmania field. Indeed, these models have been used not only to better understand the pathophysiology of the infection but also in drug and vaccine development. This chapter focuses on the protocols used to experimentally infect mice and to quantify parasite burdens in mice infected with L. infantum using limiting dilution methodology of target organs and whole-mouse in vivo imaging.
Collapse
Affiliation(s)
- Joana Tavares
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,IBMC-Instituto de Biologia Molecular e Celular, Parasite Disease Group, Universidade do Porto, Porto, Portugal
| | - Nuno Santarém
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,IBMC-Instituto de Biologia Molecular e Celular, Parasite Disease Group, Universidade do Porto, Porto, Portugal
| | - Anabela Cordeiro-da-Silva
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal. .,IBMC-Instituto de Biologia Molecular e Celular, Parasite Disease Group, Universidade do Porto, Porto, Portugal. .,Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal.
| |
Collapse
|
16
|
Pérez-Cabezas B, Santarém N, Cecílio P, Silva C, Silvestre R, A M Catita J, Cordeiro da Silva A. More than just exosomes: distinct Leishmania infantum extracellular products potentiate the establishment of infection. J Extracell Vesicles 2018; 8:1541708. [PMID: 30455859 PMCID: PMC6237156 DOI: 10.1080/20013078.2018.1541708] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 09/21/2018] [Accepted: 10/23/2018] [Indexed: 12/19/2022] Open
Abstract
The use of secretion pathways for effector molecule delivery by microorganisms is a trademark of pathogenesis. Leishmania extracellular vesicles (EVs) were shown to have significant immunomodulatory potential. Still, they will act in conjunction with other released parasite-derived products that might modify the EVs effects. Notwithstanding, the immunomodulatory properties of these non-vesicular components and their influence in the infectious process remains unknown. To address this, we explored both in vitro and in vivo the immunomodulatory potential of promastigotes extracellular material (EXO), obtained as a whole or separated in two different fractions: EVs or vesicle depleted EXO (VDE). Using an air pouch model, we observed that EVs and VDE induced a dose-dependent cell recruitment profile different from the one obtained with parasites, attracting significantly fewer neutrophils and more dendritic cells (DCs). Additionally, when we co-inoculated parasites with extracellular products a drop in cell recruitment was observed. Moreover, in vitro, while VDE (but not EVs) downregulated the expression of DCs and macrophages activation markers, both products were able to diminish the responsiveness of these cells to LPS. Finally, the presence of Leishmania infantum extracellular products in the inoculum promoted a dose-dependent infection potentiation in vivo, highlighting their relevance for the infectious process. In conclusion, our data demonstrate that EVs are not the only relevant players among the parasite exogenous products. This, together with the dose-dependency observed, opens new avenues to the comprehension of Leishmania infectious process. The approach presented here should be exploited to revisit existing data and considered for future studies in other infection models.
Collapse
Affiliation(s)
- Begoña Pérez-Cabezas
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Parasite Disease Group, Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Nuno Santarém
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Parasite Disease Group, Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Pedro Cecílio
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Parasite Disease Group, Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Cátia Silva
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Parasite Disease Group, Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Ricardo Silvestre
- Microbiology and Infection Research Domain, Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
| | - José A M Catita
- FP-ENAS Research Unit, UFP Energy, Environment and Health Research Unit, CEBIMED, Biomedical Research Centre, Fernando Pessoa University, Porto, Portugal.,Paralab, SA, Valbom, Portugal
| | - Anabela Cordeiro da Silva
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Parasite Disease Group, Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.,Departamento de Ciências Biológicas, Faculdade de Farmácia da Universidade do Porto, Porto, Portugal
| |
Collapse
|
17
|
Deletion of transketolase triggers a stringent metabolic response in promastigotes and loss of virulence in amastigotes of Leishmania mexicana. PLoS Pathog 2018; 14:e1006953. [PMID: 29554142 PMCID: PMC5882173 DOI: 10.1371/journal.ppat.1006953] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 04/03/2018] [Accepted: 02/28/2018] [Indexed: 11/22/2022] Open
Abstract
Transketolase (TKT) is part of the non-oxidative branch of the pentose phosphate pathway (PPP). Here we describe the impact of removing this enzyme from the pathogenic protozoan Leishmania mexicana. Whereas the deletion had no obvious effect on cultured promastigote forms of the parasite, the Δtkt cells were not virulent in mice. Δtkt promastigotes were more susceptible to oxidative stress and various leishmanicidal drugs than wild-type, and metabolomics analysis revealed profound changes to metabolism in these cells. In addition to changes consistent with those directly related to the role of TKT in the PPP, central carbon metabolism was substantially decreased, the cells consumed significantly less glucose, flux through glycolysis diminished, and production of the main end products of metabolism was decreased. Only minor changes in RNA abundance from genes encoding enzymes in central carbon metabolism, however, were detected although fructose-1,6-bisphosphate aldolase activity was decreased two-fold in the knock-out cell line. We also showed that the dual localisation of TKT between cytosol and glycosomes is determined by the C-terminus of the enzyme and by engineering different variants of the enzyme we could alter its sub-cellular localisation. However, no effect on the overall flux of glucose was noted irrespective of whether the enzyme was found uniquely in either compartment, or in both. Leishmania parasites endanger over 1 billion people worldwide, infecting 300,000 people and causing 20,000 deaths annually. In this study, we scrutinized metabolism in Leishmania mexicana after deletion of the gene encoding transketolase (TKT), an enzyme involved in sugar metabolism via the pentose phosphate pathway which plays key roles in creating ribose 5-phosphate for nucleotide synthesis and also defence against oxidative stress. The insect stage of the parasite, grown in culture medium, did not suffer from any obvious growth defect after the gene was deleted. However, its metabolism changed dramatically, with metabolomics indicating profound changes to flux through the pentose phosphate pathway: decreased glucose consumption, and generally enhanced efficiency in using metabolic substrates with reduced secretion of partially oxidised end products of metabolism. This ‘stringent’ metabolism is reminiscent of the mammalian stage parasites. The cells were also more sensitive to oxidative stress inducing agents and leishmanicidal drugs. Crucially, mice inoculated with the TKT knock-out parasites did not develop an infection pointing to the enzyme playing a key role in allowing the parasites to remain viable in the host, indicating that TKT may be considered a useful target for development of new drugs against leishmaniasis.
Collapse
|
18
|
Ronin C, Costa DM, Tavares J, Faria J, Ciesielski F, Ciapetti P, Smith TK, MacDougall J, Cordeiro-da-Silva A, Pemberton IK. The crystal structure of the Leishmania infantum Silent Information Regulator 2 related protein 1: Implications to protein function and drug design. PLoS One 2018; 13:e0193602. [PMID: 29543820 PMCID: PMC5854310 DOI: 10.1371/journal.pone.0193602] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 02/14/2018] [Indexed: 12/21/2022] Open
Abstract
The de novo crystal structure of the Leishmania infantum Silent Information Regulator 2 related protein 1 (LiSir2rp1) has been solved at 1.99Å in complex with an acetyl-lysine peptide substrate. The structure is broadly commensurate with Hst2/SIRT2 proteins of yeast and human origin, reproducing many of the structural features common to these sirtuin deacetylases, including the characteristic small zinc-binding domain, and the larger Rossmann-fold domain involved in NAD+-binding interactions. The two domains are linked via a cofactor binding loop ordered in open conformation. The peptide substrate binds to the LiSir2rp1 protein via a cleft formed between the small and large domains, with the acetyl-lysine side chain inserting further into the resultant hydrophobic tunnel. Crystals were obtained only with recombinant LiSir2rp1 possessing an extensive internal deletion of a proteolytically-sensitive region unique to the sirtuins of kinetoplastid origin. Deletion of 51 internal amino acids (P253-E303) from LiSir2rp1 did not appear to alter peptide substrate interactions in deacetylation assays, but was indispensable to obtain crystals. Removal of this potentially flexible region, that otherwise extends from the classical structural elements of the Rossmann-fold, specifically the β8-β9 connector, appears to result in lower accumulation of the protein when expressed from episomal vectors in L. infantum SIR2rp1 single knockout promastigotes. The biological function of the large serine-rich insertion in kinetoplastid/trypanosomatid sirtuins, highlighted as a disordered region with strong potential for post-translational modification, remains unknown but may confer additional cellular functions that are distinct from their human counterparts. These unique molecular features, along with the resolution of the first kinetoplastid sirtuin deacetylase structure, present novel opportunities for drug design against a protein target previously established as essential to parasite survival and proliferation.
Collapse
Affiliation(s)
- Céline Ronin
- NovAliX - Bioparc, Bd Sébastien Brant, Illkirch, France
| | - David Mendes Costa
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC-, Instituto de Biologia Molecular e Celular da Universidade do Porto, Porto, Portuga
| | - Joana Tavares
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC-, Instituto de Biologia Molecular e Celular da Universidade do Porto, Porto, Portuga
| | - Joana Faria
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC-, Instituto de Biologia Molecular e Celular da Universidade do Porto, Porto, Portuga
| | | | | | - Terry K. Smith
- BSRC, School of Biology, University of St Andrews, St Andrews, Scotland
| | | | - Anabela Cordeiro-da-Silva
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC-, Instituto de Biologia Molecular e Celular da Universidade do Porto, Porto, Portuga
- Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | | |
Collapse
|
19
|
Duncan SM, Jones NG, Mottram JC. Recent advances in Leishmania reverse genetics: Manipulating a manipulative parasite. Mol Biochem Parasitol 2017. [DOI: 10.1016/j.molbiopara.2017.06.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
20
|
de V C Sinatti V, R Baptista LP, Alves-Ferreira M, Dardenne L, Hermínio Martins da Silva J, Guimarães AC. In silico identification of inhibitors of ribose 5-phosphate isomerase from Trypanosoma cruzi using ligand and structure based approaches. J Mol Graph Model 2017; 77:168-180. [PMID: 28865321 DOI: 10.1016/j.jmgm.2017.08.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 07/11/2017] [Accepted: 08/07/2017] [Indexed: 11/25/2022]
Abstract
Chagas disease, caused by the protozoan Trypanosoma cruzi, affects approximately seven million people, mainly in Latin America, and causes about 7000 deaths annually. The available treatments are unsatisfactory and search for more effective drugs against this pathogen is critical. In this context, the ribose 5-phosphate isomerase (Rpi) enzyme is a potential drug target mainly due to its function in the pentose phosphate pathway and its essentiality (previously shown in other trypanosomatids). In this study, we propose novel potential inhibitors for the Rpi of T. cruzi (TcRpi) based on a computer-aided approach, including structure-based and ligand-based pharmacophore modeling. Along with a substructural and similarity search, the selected pharmacophore hypotheses were used to screen the purchasable subset of the ZINC Database, yielding 20,183 candidate compounds. These compounds were submitted to molecular docking studies in the TcRpi and Human Rpi (HsRpi) active sites in order to identify potential selective inhibitors for the T. cruzi enzyme. After the molecular docking and ADME-T (absorption, distribution, metabolism, excretion and toxicity)/PAINS (pan-assay interference compounds) screenings, 211 molecules were selected as potential TcRpi inhibitors. Out of these, three compounds - ZINC36975961, ZINC63480117, and ZINC43763931 - were submitted to molecular dynamics simulations and two of them - ZINC36975961 and ZINC43763931- had good performance and made interactions with important active site residues over all the simulation time. These compounds could be considered potential TcRpi inhibitors candidates and also may be used as leads for developing new TcRpi inhibitors.
Collapse
Affiliation(s)
- Vanessa de V C Sinatti
- Fiocruz, Instituto Oswaldo Cruz, Laboratório de Genômica Funcional e Bioinformática, Av. Brasil 4365, Manguinhos, 21040-900, Rio de Janeiro, RJ, Brazil.
| | - Luiz Phillippe R Baptista
- Fiocruz, Instituto Oswaldo Cruz, Laboratório de Genômica Funcional e Bioinformática, Av. Brasil 4365, Manguinhos, 21040-900, Rio de Janeiro, RJ, Brazil
| | - Marcelo Alves-Ferreira
- Fiocruz, Laboratório de Modelagem de Sistemas Biológicos, Centro de Desenvolvimento Tecnológico em Saúde, Av. Brasil 4036, Manguinhos, 21040-361, Rio de Janeiro, Brazil; Instituto Nacional de Ciência e Tecnologia em Inovação em Doenças de Populações Negligenciadas, INCT-IDPN, CNPq, Brazil
| | - Laurent Dardenne
- Laboratório Nacional de Computação Científica, Grupo de Modelagem Molecular de Sistemas Biológicos, Av. Getúlio Vargas, 333, Quitandinha, 25651-075, Petrópolis, RJ, Brazil
| | | | - Ana Carolina Guimarães
- Fiocruz, Instituto Oswaldo Cruz, Laboratório de Genômica Funcional e Bioinformática, Av. Brasil 4365, Manguinhos, 21040-900, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
21
|
Hillion M, Imber M, Pedre B, Bernhardt J, Saleh M, Loi VV, Maaß S, Becher D, Astolfi Rosado L, Adrian L, Weise C, Hell R, Wirtz M, Messens J, Antelmann H. The glyceraldehyde-3-phosphate dehydrogenase GapDH of Corynebacterium diphtheriae is redox-controlled by protein S-mycothiolation under oxidative stress. Sci Rep 2017; 7:5020. [PMID: 28694441 PMCID: PMC5504048 DOI: 10.1038/s41598-017-05206-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 06/01/2017] [Indexed: 11/10/2022] Open
Abstract
Mycothiol (MSH) is the major low molecular weight (LMW) thiol in Actinomycetes and functions in post-translational thiol-modification by protein S-mycothiolation as emerging thiol-protection and redox-regulatory mechanism. Here, we have used shotgun-proteomics to identify 26 S-mycothiolated proteins in the pathogen Corynebacterium diphtheriae DSM43989 under hypochlorite stress that are involved in energy metabolism, amino acid and nucleotide biosynthesis, antioxidant functions and translation. The glyceraldehyde-3-phosphate dehydrogenase (GapDH) represents the most abundant S-mycothiolated protein that was modified at its active site Cys153 in vivo. Exposure of purified GapDH to H2O2 and NaOCl resulted in irreversible inactivation due to overoxidation of the active site in vitro. Treatment of GapDH with H2O2 or NaOCl in the presence of MSH resulted in S-mycothiolation and reversible GapDH inactivation in vitro which was faster compared to the overoxidation pathway. Reactivation of S-mycothiolated GapDH could be catalyzed by both, the Trx and the Mrx1 pathways in vitro, but demycothiolation by Mrx1 was faster compared to Trx. In summary, we show here that S-mycothiolation can function in redox-regulation and protection of the GapDH active site against overoxidation in C. diphtheriae which can be reversed by both, the Mrx1 and Trx pathways.
Collapse
Affiliation(s)
- Melanie Hillion
- Institute for Biology-Microbiology, Freie Universität Berlin, D-14195, Berlin, Germany
| | - Marcel Imber
- Institute for Biology-Microbiology, Freie Universität Berlin, D-14195, Berlin, Germany
| | - Brandán Pedre
- Center for Structural Biology, VIB, B-1050, Brussels, Belgium.,Brussels Center for Redox Biology, B-1050, Brussels, Belgium.,Structural Biology Brussels, Vrije Universiteit Brussel, B-1050, Brussels, Belgium
| | - Jörg Bernhardt
- Institute for Microbiology, Ernst-Moritz-Arndt-University of Greifswald, D-17487, Greifswald, Germany
| | - Malek Saleh
- Institute for Biology-Microbiology, Freie Universität Berlin, D-14195, Berlin, Germany
| | - Vu Van Loi
- Institute for Biology-Microbiology, Freie Universität Berlin, D-14195, Berlin, Germany
| | - Sandra Maaß
- Institute for Microbiology, Ernst-Moritz-Arndt-University of Greifswald, D-17487, Greifswald, Germany
| | - Dörte Becher
- Institute for Microbiology, Ernst-Moritz-Arndt-University of Greifswald, D-17487, Greifswald, Germany
| | - Leonardo Astolfi Rosado
- Center for Structural Biology, VIB, B-1050, Brussels, Belgium.,Brussels Center for Redox Biology, B-1050, Brussels, Belgium.,Structural Biology Brussels, Vrije Universiteit Brussel, B-1050, Brussels, Belgium
| | - Lorenz Adrian
- Department Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Christoph Weise
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, D-14195, Berlin, Germany
| | - Rüdiger Hell
- Plant Molecular Biology, Centre for Organismal Studies Heidelberg, University of Heidelberg, Heidelberg, Germany
| | - Markus Wirtz
- Plant Molecular Biology, Centre for Organismal Studies Heidelberg, University of Heidelberg, Heidelberg, Germany
| | - Joris Messens
- Center for Structural Biology, VIB, B-1050, Brussels, Belgium.,Brussels Center for Redox Biology, B-1050, Brussels, Belgium.,Structural Biology Brussels, Vrije Universiteit Brussel, B-1050, Brussels, Belgium
| | - Haike Antelmann
- Institute for Biology-Microbiology, Freie Universität Berlin, D-14195, Berlin, Germany.
| |
Collapse
|
22
|
Wachsmuth LM, Johnson MG, Gavenonis J. Essential multimeric enzymes in kinetoplastid parasites: A host of potentially druggable protein-protein interactions. PLoS Negl Trop Dis 2017; 11:e0005720. [PMID: 28662026 PMCID: PMC5507555 DOI: 10.1371/journal.pntd.0005720] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 07/12/2017] [Accepted: 06/16/2017] [Indexed: 12/18/2022] Open
Abstract
Parasitic diseases caused by kinetoplastid parasites of the genera Trypanosoma and Leishmania are an urgent public health crisis in the developing world. These closely related species possess a number of multimeric enzymes in highly conserved pathways involved in vital functions, such as redox homeostasis and nucleotide synthesis. Computational alanine scanning of these protein-protein interfaces has revealed a host of potentially ligandable sites on several established and emerging anti-parasitic drug targets. Analysis of interfaces with multiple clustered hotspots has suggested several potentially inhibitable protein-protein interactions that may have been overlooked by previous large-scale analyses focusing solely on secondary structure. These protein-protein interactions provide a promising lead for the development of new peptide and macrocycle inhibitors of these enzymes.
Collapse
Affiliation(s)
- Leah M. Wachsmuth
- Department of Chemistry, Dickinson College, Carlisle, Pennsylvania, United States of America
| | - Meredith G. Johnson
- Department of Chemistry, Dickinson College, Carlisle, Pennsylvania, United States of America
| | - Jason Gavenonis
- Department of Chemistry, Dickinson College, Carlisle, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
23
|
Gonzalez SN, Valsecchi WM, Maugeri D, Delfino JM, Cazzulo JJ. Structure, kinetic characterization and subcellular localization of the two ribulose 5-phosphate epimerase isoenzymes from Trypanosoma cruzi. PLoS One 2017; 12:e0172405. [PMID: 28207833 PMCID: PMC5312968 DOI: 10.1371/journal.pone.0172405] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 02/03/2017] [Indexed: 02/01/2023] Open
Abstract
The enzyme of the pentose phosphate pathway (PPP) ribulose-5-phosphate-epimerase (RPE) is encoded by two genes present in the genome of Trypanosoma cruzi CL Brener clone: TcRPE1 and TcRPE2. Despite high sequence similarity at the amino acid residue level, the recombinant isoenzymes show a strikingly different kinetics. Whereas TcRPE2 follows a typical michaelian behavior, TcRPE1 shows a complex kinetic pattern, displaying a biphasic curve, suggesting the coexistence of -at least- two kinetically different molecular forms. Regarding the subcellular localization in epimastigotes, whereas TcRPE1 is a cytosolic enzyme, TcRPE2 is localized in glycosomes. To our knowledge, TcRPE2 is the first PPP isoenzyme that is exclusively localized in glycosomes. Over-expression of TcRPE1, but not of TcRPE2, significantly reduces the parasite doubling time in vitro, as compared with wild type epimastigotes. Both TcRPEs represent single domain proteins exhibiting the classical α/β TIM-barrel fold, as expected for enzymes with this activity. With regard to the architecture of the active site, all the important amino acid residues for catalysis -with the exception of M58- are also present in both TcRPEs models. The superimposition of the binding pocket of both isoenzyme models shows that they adopt essentially identical positions in the active site with a residue specific RMSD < 2Å, with the sole exception of S12, which displays a large deviation (residue specific RMSD: 11.07 Å). Studies on the quaternary arrangement of these isoenzymes reveal that both are present in a mixture of various oligomeric species made up of an even number of molecules, probably pointing to the dimer as their minimal functional unit. This multiplicity of oligomeric species has not been reported for any of the other RPEs studied so far and it might bear implications for the regulation of TcRPEs activity, although further investigation will be necessary to unravel the physiological significance of these structural findings.
Collapse
Affiliation(s)
- Soledad Natalia Gonzalez
- Instituto de Investigaciones Biotecnológicas Dr. Rodolfo A. Ugalde-Instituto Tecnológico de Chascomús Dr. Raúl Alfonsín (IIB-INTECH), Universidad Nacional de San Martín (UNSAM)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Campus Miguelete, Buenos Aires, Argentina
| | - Wanda Mariela Valsecchi
- Instituto de Química y Fisicoquímica Biológicas, Universidad de Buenos Aires, Junín, Buenos Aires, Argentina
| | - Dante Maugeri
- Instituto de Investigaciones Biotecnológicas Dr. Rodolfo A. Ugalde-Instituto Tecnológico de Chascomús Dr. Raúl Alfonsín (IIB-INTECH), Universidad Nacional de San Martín (UNSAM)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Campus Miguelete, Buenos Aires, Argentina
| | - José María Delfino
- Instituto de Química y Fisicoquímica Biológicas, Universidad de Buenos Aires, Junín, Buenos Aires, Argentina
| | - Juan José Cazzulo
- Instituto de Investigaciones Biotecnológicas Dr. Rodolfo A. Ugalde-Instituto Tecnológico de Chascomús Dr. Raúl Alfonsín (IIB-INTECH), Universidad Nacional de San Martín (UNSAM)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Campus Miguelete, Buenos Aires, Argentina
| |
Collapse
|