1
|
Hettiarachchi S, Cha H, Ouyang L, Mudugamuwa A, An H, Kijanka G, Kashaninejad N, Nguyen NT, Zhang J. Recent microfluidic advances in submicron to nanoparticle manipulation and separation. LAB ON A CHIP 2023; 23:982-1010. [PMID: 36367456 DOI: 10.1039/d2lc00793b] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Manipulation and separation of submicron and nanoparticles are indispensable in many chemical, biological, medical, and environmental applications. Conventional technologies such as ultracentrifugation, ultrafiltration, size exclusion chromatography, precipitation and immunoaffinity capture are limited by high cost, low resolution, low purity or the risk of damage to biological particles. Microfluidics can accurately control fluid flow in channels with dimensions of tens of micrometres. Rapid microfluidics advancement has enabled precise sorting and isolating of nanoparticles with better resolution and efficiency than conventional technologies. This paper comprehensively studies the latest progress in microfluidic technology for submicron and nanoparticle manipulation. We first summarise the principles of the traditional techniques for manipulating nanoparticles. Following the classification of microfluidic techniques as active, passive, and hybrid approaches, we elaborate on the physics, device design, working mechanism and applications of each technique. We also compare the merits and demerits of different microfluidic techniques and benchmark them with conventional technologies. Concurrently, we summarise seven standard post-separation detection techniques for nanoparticles. Finally, we discuss current challenges and future perspectives on microfluidic technology for nanoparticle manipulation and separation.
Collapse
Affiliation(s)
- Samith Hettiarachchi
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| | - Haotian Cha
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| | - Lingxi Ouyang
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| | | | - Hongjie An
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| | - Gregor Kijanka
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| | - Navid Kashaninejad
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| | - Nam-Trung Nguyen
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| | - Jun Zhang
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| |
Collapse
|
2
|
Abedini-Nassab R, Shourabi R. High-throughput precise particle transport at single-particle resolution in a three-dimensional magnetic field for highly sensitive bio-detection. Sci Rep 2022; 12:6380. [PMID: 35430583 PMCID: PMC9013386 DOI: 10.1038/s41598-022-10122-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 03/30/2022] [Indexed: 11/16/2022] Open
Abstract
Precise manipulation of microparticles have fundamental applications in the fields of lab-on-a-chip and biomedical engineering. Here, for the first time, we propose a fully operational microfluidic chip equipped with thin magnetic films composed of straight tracks and bends which precisely transports numerous single-particles in the size range of ~ 2.8–20 µm simultaneously, to certain points, synced with the general external three-axial magnetic field. The uniqueness of this design arises from the introduced vertical bias field that provides a repulsion force between the particles and prevents unwanted particle cluster formation, which is a challenge in devices operating in two-dimensional fields. Furthermore, the chip operates as an accurate sensor and detects low levels of proteins and DNA fragments, being captured by the ligand-functionalized magnetic beads, while lowering the background noise by excluding the unwanted bead pairs seen in the previous works. The image-processing detection method in this work allows detection at the single-pair resolution, increasing the sensitivity. The proposed device offers high-throughput particle transport and ultra-sensitive bio-detection in a highly parallel manner at single-particle resolution. It can also operate as a robust single-cell analysis platform for manipulating magnetized single-cells and assembling them in large arrays, with important applications in biology.
Collapse
|
3
|
Yang X, Xu R, Wen L, Lou Z, Chen Q, Li B. Light-induced thermal convection for collection and removal of carbon nanotubes. FUNDAMENTAL RESEARCH 2022; 2:59-65. [PMID: 38933914 PMCID: PMC11197525 DOI: 10.1016/j.fmre.2021.06.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 05/06/2021] [Accepted: 06/09/2021] [Indexed: 10/19/2022] Open
Abstract
Carbon nanotubes (CNTs) have exhibited immense potential for applications in biology and medicine, and once their intended purpose is fulfilled, the elimination of residual CNTs is essential to avoid negative effects. In this study, we demonstrated the effective collection and simple removal of CNTs dispersed in a suspension via thermal convection. First, a tapered fiber tip with a cone angle and end diameter of 10° and 3 μm, respectively, was fabricated via a heating and pulling method. Further, a laser beam with a power and wavelength of 100 mW and 1.55 μm, respectively, was launched into the tapered fiber tip, which was placed in a CNT suspension, resulting in the formation of a microbubble on the fiber tip. The temperature gradient on the microbubble and suspension surface induced thermal convection in the suspension, which resulted in the accumulation of CNTs on the fiber tip. The experimentally formed CNT cluster possessed a circular top surface with a diameter of 87 μm and an arched cross-section with a height of 19 μm. Furthermore, this CNT cluster was firmly attached to the fiber tip. Therefore, the removal of CNT clusters can be realized by simply removing the fiber tip from the suspension. Moreover, we simulated the thermal convection that caused CNT aggregation. The obtained results indicate that convection near the fiber tip flows toward it, which pushes the CNTs toward the fiber tip and enables their attachment to it. Further, the flow velocity is symmetrically distributed as a Gaussian function, which results in the formation of a circular top surface and arched cross-sectional profile for the CNT cluster. Our method may be applied in biomedicine for the collection and removal of nano-drug residues.
Collapse
Affiliation(s)
- Xianguang Yang
- Institute of Nanophotonics, Jinan University, Guangzhou 511443, China
| | - Rui Xu
- Institute of Nanophotonics, Jinan University, Guangzhou 511443, China
| | - Long Wen
- Institute of Nanophotonics, Jinan University, Guangzhou 511443, China
| | - Zaizhu Lou
- Institute of Nanophotonics, Jinan University, Guangzhou 511443, China
| | - Qin Chen
- Institute of Nanophotonics, Jinan University, Guangzhou 511443, China
| | - Baojun Li
- Institute of Nanophotonics, Jinan University, Guangzhou 511443, China
| |
Collapse
|
4
|
Saroj SK, Panigrahi PK. Magnetophoretic Control of Diamagnetic Particles Inside an Evaporating Droplet. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:14950-14967. [PMID: 34910880 DOI: 10.1021/acs.langmuir.1c02968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The present study reports the magnetophoresis of diamagnetic particles in an evaporating ferrofluid droplet. Both solid and ring magnet arrangements are used to investigate the effect of magnetic field distribution. The distance of the magnet from the droplet is varied to study the effect of magnetic field strength. The magnetic field distribution is computed using COMSOL multiphysics software. Magnetometer measurements have been carried out to validate the simulation results. The motion of particles and the drying pattern of evaporating ferrofluid droplets are visualized using the confocal microscopy technique. Both bright-field and fluorescence imagings have been carried out to observe the differential deposition of the fluorescent particle (microparticle) and magnetic nanoparticles in the absence and presence of a magnetic field. The velocity of diamagnetic particles as a function of magnetic field distribution and strength has been studied using the micro-PIV technique. In the absence of the magnetic field, a ring-shaped deposition pattern is observed. The mixture of microparticles (diamagnetic) and nanoparticles (magnetic) is deposited between the outer and inner edges of the ring. The diamagnetic particles occupy the inner and outer edges of the ring. Magnetic particles travel toward the higher magnetic field zone and diamagnetic particles move toward the smaller magnetic field zone when a magnetic field is applied by a solid magnet placed over the droplet. This can be attributed to the negative magnetic force originating from the difference between the susceptibility of magnetic and nonmagnetic particles. The negative magnetic force on the microparticle increases as the magnetic field intensity increases, causing the microparticle to convect faster toward the contact line. The deposition behavior can be reversed or suppressed using a ring magnet in place of a solid magnet. In this case, the negative magnetic force is stronger at the contact line region of the droplet and decreases as it approaches the center region of the droplet. The deposition behavior of diamagnetic particle depends on the balance between the Marangoni force and the magnetophoretic force. Overall, the present study demonstrates the capability of the controlled deposition of diamagnetic polystyrene particles by suitable arrangement of the solid and ring magnet.
Collapse
Affiliation(s)
- Sunil Kumar Saroj
- Department of Mechanical Engineering, IIT Kanpur, Kanpur 208016, India
| | | |
Collapse
|
5
|
Gerlt MS, Ruppen P, Leuthner M, Panke S, Dual J. Acoustofluidic medium exchange for preparation of electrocompetent bacteria using channel wall trapping. LAB ON A CHIP 2021; 21:4487-4497. [PMID: 34668506 PMCID: PMC8577197 DOI: 10.1039/d1lc00406a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 10/13/2021] [Indexed: 06/02/2023]
Abstract
Comprehensive integration of process steps into a miniaturised version of synthetic biology workflows remains a crucial task in automating the design of biosystems. However, each of these process steps has specific demands with respect to the environmental conditions, including in particular the composition of the surrounding fluid, which makes integration cumbersome. As a case in point, transformation, i.e. reprogramming of bacteria by delivering exogenous genetic material (such as DNA) into the cytoplasm, is a key process in molecular engineering and modern biotechnology in general. Transformation is often performed by electroporation, i.e. creating pores in the membrane using electric shocks in a low conductivity environment. However, cell preparation for electroporation can be cumbersome as it requires the exchange of growth medium (high-conductivity) for low-conductivity medium, typically performed via multiple time-intensive centrifugation steps. To simplify and miniaturise this step, we developed an acoustofluidic device capable of trapping the bacterium Escherichia coli non-invasively for subsequent exchange of medium, which is challenging in acoustofluidic devices due to detrimental acoustic streaming effects. With an improved etching process, we were able to produce a thin wall between two microfluidic channels, which, upon excitation, can generate streaming fields that complement the acoustic radiation force and therefore can be utilised for trapping of bacteria. Our novel design robustly traps Escherichia coli at a flow rate of 10 μL min-1 and has a cell recovery performance of 47 ± 3% after washing the trapped cells. To verify that the performance of the medium exchange device is sufficient, we tested the electrocompetence of the recovered cells in a standard transformation procedure and found a transformation efficiency of 8 × 105 CFU per μg of plasmid DNA. Our device is a low-volume alternative to centrifugation-based methods and opens the door for miniaturisation of a plethora of microbiological and molecular engineering protocols.
Collapse
Affiliation(s)
- M S Gerlt
- Mechanics and Experimental Dynamics, Department of Mechanical and Process Engineering, Swiss Federal Institute of Technology (ETH Zurich), Tannenstrasse 3, CH-8092 Zurich, Switzerland.
| | - P Ruppen
- Bioprocess Laboratory, Department of Biosystems Science and Engineering, Swiss Federal Institute of Technology (ETH Zurich), Mattenstrasse 26, CH-4058 Basel, Switzerland.
- NCCR Molecular Systems Engineering, BPR 1095, Mattenstrasse 24a, CH-4058 Basel, Switzerland
| | - M Leuthner
- Mechanics and Experimental Dynamics, Department of Mechanical and Process Engineering, Swiss Federal Institute of Technology (ETH Zurich), Tannenstrasse 3, CH-8092 Zurich, Switzerland.
| | - S Panke
- Bioprocess Laboratory, Department of Biosystems Science and Engineering, Swiss Federal Institute of Technology (ETH Zurich), Mattenstrasse 26, CH-4058 Basel, Switzerland.
- NCCR Molecular Systems Engineering, BPR 1095, Mattenstrasse 24a, CH-4058 Basel, Switzerland
| | - J Dual
- Mechanics and Experimental Dynamics, Department of Mechanical and Process Engineering, Swiss Federal Institute of Technology (ETH Zurich), Tannenstrasse 3, CH-8092 Zurich, Switzerland.
| |
Collapse
|
6
|
Abstract
AbstractThis paper studies the efficiency of capillary pump analytically in circular, square and rectangular channels with results verified by experiment. The effect of liquid momentum is analyzed with respect to channel size and equations are developed to enable most efficient fluid pumping. It is found that the momentum term is negligible at channel cross-cut area < 0.1 mm2 while it has a significant contribution at > 0.3 mm2 region. The optimized equations show that the most efficient pumping and thereby the quickest liquid filling is accomplished in square shaped channel when compared with rectangular and circular channels. Generally, the longer the filling distance, or the longer the filling time, the larger the channel size is required after optimization, and vice versa. For the rectangular channel with channel height fixed, the channel width requirement to maximize the ability of capillary pump is obtained and discussed. Experimental verifications are conducted based on the measurement of filling distance versus time, and the simulation results are well correlated with the testing results. The equations developed in the paper provide a reference for the microfluidic channel design, such that the channel filling speed can be maximized.
Collapse
|
7
|
Domnin P, Arkhipova A, Petrov S, Sysolyatina E, Parfenov V, Karalkin P, Mukhachev A, Gusarov A, Moisenovich M, Khesuani Y, Ermolaeva S. An In Vitro Model of Nonattached Biofilm-Like Bacterial Aggregates Based on Magnetic Levitation. Appl Environ Microbiol 2020; 86:e01074-20. [PMID: 32680859 PMCID: PMC7480373 DOI: 10.1128/aem.01074-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/10/2020] [Indexed: 12/27/2022] Open
Abstract
Chronic infections are associated with the formation of nonattached biofilm-like aggregates. In vitro models of surface-attached biofilms do not always accurately mimic these processes. Here, we tested a new approach to create in vitro nonattached bacterial aggregates using the principle of magnetic levitation of biological objects placed into a magnetic field gradient. Bacteria grown under magnetic levitation conditions formed nonattached aggregates that were studied with confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM) and characterized quantitatively. Nonattached aggregates consisted of bacteria submerged into an extracellular matrix and demonstrated features characteristic of biofilms, such as a polymeric matrix that binds Ruby Red and Congo red dyes, a prerequisite of bacterial growth, and increased resistance to gentamicin. Three quantitative parameters were explored to characterize strain-specific potential to form nonattached aggregates: geometric sizes, relative quantities of aggregated and free-swimming bacteria, and Congo red binding. Among three tested Escherichia coli strains, one strain formed nonattached aggregates poorly, and for this strain, all three of the considered parameters were different from those of the other two strains (P < 0.05). Further, we characterized biofilm formation on plastic and agar surfaces by these strains and found that good biofilm formation ability does not necessarily indicate good nonattached aggregate formation ability, and vice versa. The model and quantitative methods can be applied for in vitro studies of nonattached aggregates and modeling bacterial behavior in chronic infections, as it is important to increase our understanding of the role that nonattached bacterial aggregates play in the pathogenesis of chronic diseases.IMPORTANCE An increasing amount of evidence indicates that chronic infections are associated with nonattached biofilm-like aggregates formed by pathogenic bacteria. These aggregates differ from biofilms because they form under low-shear conditions within the volume of biological fluids and they do not attach to surfaces. Here, we describe an in vitro model that provides nonattached aggregate formation within the liquid volume due to magnetic levitation. Using this model, we demonstrated that despite morphological and functional similarities of nonattached aggregates and biofilms, strains that exhibit good biofilm formation might exhibit poor nonattached aggregate formation, suggesting that mechanisms underlying the formation of biofilms and nonattached aggregates are not identical. The magnetic levitation approach can be useful for in vitro studies of nonattached aggregate formation and simulation of bacterial behavior in chronic infections.
Collapse
Affiliation(s)
- Pavel Domnin
- Gamaleya Research Centre of Epidemiology and Microbiology, Moscow, Russia
- Lomonosov Moscow State University, Moscow, Russia
| | | | | | - Elena Sysolyatina
- Gamaleya Research Centre of Epidemiology and Microbiology, Moscow, Russia
| | | | | | - Andrey Mukhachev
- Gamaleya Research Centre of Epidemiology and Microbiology, Moscow, Russia
| | - Alexey Gusarov
- Gamaleya Research Centre of Epidemiology and Microbiology, Moscow, Russia
| | | | | | - Svetlana Ermolaeva
- Gamaleya Research Centre of Epidemiology and Microbiology, Moscow, Russia
| |
Collapse
|
8
|
Jain SK, Banerjee U, Sen AK. Trapping and Coalescence of Diamagnetic Aqueous Droplets Using Negative Magnetophoresis. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:5960-5966. [PMID: 32388985 DOI: 10.1021/acs.langmuir.0c00846] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The manipulation of aqueous droplets has a profound significance in biochemical assays. Magnetic field-driven droplet manipulation, offering unique advantages, is consequently gaining attention. However, the phenomenon relating to diamagnetic droplets is not well understood. Here, we report the understanding of trapping and coalescence of flowing diamagnetic aqueous droplets in a paramagnetic (oil-based ferrofluid) medium using negative magnetophoresis. Our study revealed that the trapping phenomenon is underpinned by the interplay of magnetic energy (Em) and frictional (viscous) energy (Ef), in terms of magnetophoretic stability number, Sm = (Em/Ef). The trapping and nontrapping regimes are characterized based on the peak value of magnetophoretic stability number, Smp, and droplet size, D*. The study of coalescence of a trapped droplet with a follower droplet (and a train of droplets) revealed that the film-drainage Reynolds number (Refd) representing the coalescence time depends on the magnetic Bond number, Bom. The coalesced droplet continues to remain trapped or gets self-released obeying the Smp and D* criterion. Our study offers an understanding of the magnetic manipulation of diamagnetic aqueous droplets that can potentially be used for biochemical assays in microfluidics.
Collapse
Affiliation(s)
- S K Jain
- Micro Nano Bio-Fluidics Unit, Fluid Systems Laboratory, Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai 600036, India
| | - U Banerjee
- Micro Nano Bio-Fluidics Unit, Fluid Systems Laboratory, Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai 600036, India
| | - A K Sen
- Micro Nano Bio-Fluidics Unit, Fluid Systems Laboratory, Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
9
|
Xuan X. Recent Advances in Continuous-Flow Particle Manipulations Using Magnetic Fluids. MICROMACHINES 2019; 10:E744. [PMID: 31683660 PMCID: PMC6915689 DOI: 10.3390/mi10110744] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 10/28/2019] [Accepted: 10/29/2019] [Indexed: 12/11/2022]
Abstract
Magnetic field-induced particle manipulation is simple and economic as compared to other techniques (e.g., electric, acoustic, and optical) for lab-on-a-chip applications. However, traditional magnetic controls require the particles to be manipulated being magnetizable, which renders it necessary to magnetically label particles that are almost exclusively diamagnetic in nature. In the past decade, magnetic fluids including paramagnetic solutions and ferrofluids have been increasingly used in microfluidic devices to implement label-free manipulations of various types of particles (both synthetic and biological). We review herein the recent advances in this field with focus upon the continuous-flow particle manipulations. Specifically, we review the reported studies on the negative magnetophoresis-induced deflection, focusing, enrichment, separation, and medium exchange of diamagnetic particles in the continuous flow of magnetic fluids through microchannels.
Collapse
Affiliation(s)
- Xiangchun Xuan
- Department of Mechanical Engineering, Clemson University, Clemson, SC 29634-0921, USA.
| |
Collapse
|
10
|
Yaman S, Anil-Inevi M, Ozcivici E, Tekin HC. Magnetic Force-Based Microfluidic Techniques for Cellular and Tissue Bioengineering. Front Bioeng Biotechnol 2018; 6:192. [PMID: 30619842 PMCID: PMC6305723 DOI: 10.3389/fbioe.2018.00192] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 11/23/2018] [Indexed: 01/21/2023] Open
Abstract
Live cell manipulation is an important biotechnological tool for cellular and tissue level bioengineering applications due to its capacity for guiding cells for separation, isolation, concentration, and patterning. Magnetic force-based cell manipulation methods offer several advantages, such as low adverse effects on cell viability and low interference with the cellular environment. Furthermore, magnetic-based operations can be readily combined with microfluidic principles by precisely allowing control over the spatiotemporal distribution of physical and chemical factors for cell manipulation. In this review, we present recent applications of magnetic force-based cell manipulation in cellular and tissue bioengineering with an emphasis on applications with microfluidic components. Following an introduction of the theoretical background of magnetic manipulation, components of magnetic force-based cell manipulation systems are described. Thereafter, different applications, including separation of certain cell fractions, enrichment of rare cells, and guidance of cells into specific macro- or micro-arrangements to mimic natural cell organization and function, are explained. Finally, we discuss the current challenges and limitations of magnetic cell manipulation technologies in microfluidic devices with an outlook on future developments in the field.
Collapse
|
11
|
Munaz A, Shiddiky MJA, Nguyen NT. Recent advances and current challenges in magnetophoresis based micro magnetofluidics. BIOMICROFLUIDICS 2018; 12:031501. [PMID: 29983837 PMCID: PMC6013300 DOI: 10.1063/1.5035388] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 06/11/2018] [Indexed: 05/12/2023]
Abstract
The combination of magnetism and microscale fluid flow has opened up a new era for handling and manipulation of samples in microfluidics. In particular, magnetophoresis, the migration of particles in a magnetic field, is extremely attractive for microfluidic handling due to its contactless nature, independence of ionic concentration, and lack of induced heating. The present paper focuses on recent advances and current challenges of magnetophoresis and highlights the key parameters affecting the manipulation of particles by magnetophoresis. The magnetic field is discussed according to their relative motion to the sample as stationary and dynamic fields. The migration of particles is categorized as positive and negative magnetophoresis. The applications of magnetophoresis are discussed according to the basic manipulation tasks such as mixing, separation, and trapping of particles or cells. Finally, the paper highlights the limitations of current approaches and provides the future perspective for this research area.
Collapse
Affiliation(s)
- Ahmed Munaz
- Queensland Micro- and Nanotechnology Centre, Griffith University, Brisbane, QLD 4111, Australia
| | | | - Nam-Trung Nguyen
- Queensland Micro- and Nanotechnology Centre, Griffith University, Brisbane, QLD 4111, Australia
| |
Collapse
|
12
|
Singh R, Brockgreitens J, Saiapina O, Wu Y, Abbas A. Microbial separation from a complex matrix by a hand-held microfluidic device. Chem Commun (Camb) 2018; 53:10788-10791. [PMID: 28920606 DOI: 10.1039/c7cc06310e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Through a simple chemical activation of biomolecules present in the outer structures of microbial cells, microorganisms can be rapidly isolated on gold-coated surfaces in a microfluidic device with over 99% capture efficiency. Bacterial and fungal cells can be selectively captured, concentrated and retrieved for further analysis.
Collapse
Affiliation(s)
- Renu Singh
- Department of Bioproducts and Biosystems Engineering, University of Minnesota St. Paul, MN 55108-6005, USA.
| | | | | | | | | |
Collapse
|
13
|
Chen Q, Li D, Lin J, Wang M, Xuan X. Simultaneous Separation and Washing of Nonmagnetic Particles in an Inertial Ferrofluid/Water Coflow. Anal Chem 2017; 89:6915-6920. [PMID: 28548482 DOI: 10.1021/acs.analchem.7b01608] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Magnetic fluids (e.g., paramagnetic solutions and ferrofluids) have been increasingly used for label-free separation of nonmagnetic particles in microfluidic devices. Their biocompatibility, however, becomes a concern in high-throughput or large-volume applications. One way to potentially resolve this issue is resuspending the particles that are separated in a magnetic fluid immediately into a biocompatible buffer. We demonstrate herein the proof-of-principle of the first integration of negative magnetophoresis and inertial focusing for a simultaneous separation and washing of nonmagnetic particles in coflowing ferrofluid and water streams. The two operations take place in parallel in a simple T-shaped rectangular microchannel with a nearby permanent magnet. We find that the larger and smaller particles' exiting positions (and hence their separation distance) in the sheath water and ferrofluid suspension, respectively, vary with the total flow rate or the flow rate ratio between the two streams.
Collapse
Affiliation(s)
- Qi Chen
- Department of Mechanical Engineering, Clemson University , Clemson, South Carolina 29634-0921, United States.,MOA Key Laboratory of Agricultural Information Acquisition Technology (Beijing), China Agricultural University , Beijing 10083, China
| | - Di Li
- Department of Mechanical Engineering, Clemson University , Clemson, South Carolina 29634-0921, United States
| | - Jianhan Lin
- MOA Key Laboratory of Agricultural Information Acquisition Technology (Beijing), China Agricultural University , Beijing 10083, China
| | - Maohua Wang
- MOA Key Laboratory of Agricultural Information Acquisition Technology (Beijing), China Agricultural University , Beijing 10083, China
| | - Xiangchun Xuan
- Department of Mechanical Engineering, Clemson University , Clemson, South Carolina 29634-0921, United States
| |
Collapse
|
14
|
Timonen JVI, Raimondo C, Pilans D, Pillai PP, Grzybowski BA. Trapping, manipulation, and crystallization of live cells using magnetofluidic tweezers. NANOSCALE HORIZONS 2017; 2:50-54. [PMID: 32260677 DOI: 10.1039/c6nh00104a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Live mammalian cells are captured and manipulated in magnetofluidic traps created in a suspension of biocompatible, magnetic nanoparticles by a coaxial magnetic/non-magnetic "micropen". Upon activation by an external electromagnet, the pen creates microscale gradients of magnetic field and nanoparticle concentration that translate into directional and confining forces acting on the cells. Both individual cells and cell collections can be trapped by this method, allowing, for instance, for the formation of regularly shaped cell assemblies. The method does not entail any local heating artifacts and does not require magnetic tagging of the cells.
Collapse
Affiliation(s)
- J V I Timonen
- Department of Applied Physics, Aalto University, Espoo, Finland
| | | | | | | | | |
Collapse
|
15
|
Lee H, Hong D, Cho H, Kim JY, Park JH, Lee SH, Kim HM, Fakhrullin RF, Choi IS. Turning Diamagnetic Microbes into Multinary Micro-Magnets: Magnetophoresis and Spatio-Temporal Manipulation of Individual Living Cells. Sci Rep 2016; 6:38517. [PMID: 27917922 PMCID: PMC5137033 DOI: 10.1038/srep38517] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 11/10/2016] [Indexed: 11/09/2022] Open
Abstract
Inspired by the biogenic magnetism found in certain organisms, such as magnetotactic bacteria, magnetic nanomaterials have been integrated into living cells for bioorthogonal, magnetic manipulation of the cells. However, magnetized cells have so far been reported to be only binary system (on/off) without any control of magnetization degree, limiting their applications typically to the simple accumulation or separation of cells as a whole. In this work, the magnetization degree is tightly controlled, leading to the generation of multiple subgroups of the magnetized cells, and each subgroup is manipulated independently from the other subgroups in the pool of heterogeneous cell-mixtures. This work will provide a strategic approach to tailor-made fabrication of magnetically functionalized living cells as micro-magnets, and open new vistas in biotechnological and biomedical applications, which highly demand the spatio-temporal manipulation of living cells.
Collapse
Affiliation(s)
- Hojae Lee
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon 34141, Korea
| | - Daewha Hong
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon 34141, Korea
| | - Hyeoncheol Cho
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon 34141, Korea
| | - Ji Yup Kim
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon 34141, Korea
| | - Ji Hun Park
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon 34141, Korea
| | - Sang Hee Lee
- Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Korea
| | - Ho Min Kim
- Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Korea
| | - Rawil F. Fakhrullin
- Bionanotechnology Lab, Institute of Fundamental Medicine & Biology, Kazan Federal University, Kreml uramı 18, Kazan, Republic of Tatarstan 420008, Russian Federation
| | - Insung S. Choi
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon 34141, Korea
| |
Collapse
|
16
|
Varma VB, Ray A, Wang ZM, Wang ZP, Ramanujan RV. Droplet Merging on a Lab-on-a-Chip Platform by Uniform Magnetic Fields. Sci Rep 2016; 6:37671. [PMID: 27892475 PMCID: PMC5124862 DOI: 10.1038/srep37671] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 11/01/2016] [Indexed: 02/07/2023] Open
Abstract
Droplet microfluidics offers a range of Lab-on-a-chip (LoC) applications. However, wireless and programmable manipulation of such droplets is a challenge. We address this challenge by experimental and modelling studies of uniform magnetic field induced merging of ferrofluid based droplets. Control of droplet velocity and merging was achieved through uniform magnetic field and flow rate ratio. Conditions for droplet merging with respect to droplet velocity were studied. Merging and mixing of colour dye + magnetite composite droplets was demonstrated. Our experimental and numerical results are in good agreement. These studies are useful for wireless and programmable droplet merging as well as mixing relevant to biosensing, bioassay, microfluidic-based synthesis, reaction kinetics, and magnetochemistry.
Collapse
Affiliation(s)
- V B Varma
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore
| | - A Ray
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore
| | - Z M Wang
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore
| | - Z P Wang
- Singapore Institute of Manufacturing Technology, 71 Nanyang Dr, 638075, Singapore
| | - R V Ramanujan
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore
| |
Collapse
|
17
|
Abedini-Nassab R, Joh DY, Albarghouthi F, Chilkoti A, Murdoch DM, Yellen BB. Magnetophoretic transistors in a tri-axial magnetic field. LAB ON A CHIP 2016; 16:4181-4188. [PMID: 27714014 PMCID: PMC5072173 DOI: 10.1039/c6lc00878j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The ability to direct and sort individual biological and non-biological particles into spatially addressable locations is fundamentally important to the emerging field of single cell biology. Towards this goal, we demonstrate a new class of magnetophoretic transistors, which can switch single magnetically labeled cells and magnetic beads between different paths in a microfluidic chamber. Compared with prior work on magnetophoretic transistors driven by a two-dimensional in-plane rotating field, the addition of a vertical magnetic field bias provides significant advantages in preventing the formation of particle clumps and in better replicating the operating principles of circuits in general. However, the three-dimensional driving field requires a complete redesign of the magnetic track geometry and switching electrodes. We have solved this problem by developing several types of transistor geometries which can switch particles between two different tracks by either presenting a local energy barrier or by repelling magnetic objects away from a given track, hereby denoted as "barrier" and "repulsion" transistors, respectively. For both types of transistors, we observe complete switching of magnetic objects with currents of ∼40 mA, which is consistent over a range of particle sizes (8-15 μm). The switching efficiency was also tested at various magnetic field strengths (50-90 Oe) and driving frequencies (0.1-0.6 Hz); however, we again found that the device performance only weakly depended on these parameters. These findings support the use of these novel transistor geometries to form circuit architectures in which cells can be placed in defined locations and retrieved on demand.
Collapse
Affiliation(s)
- Roozbeh Abedini-Nassab
- Department of Mechanical Engineering and Materials Science, Duke University, Box 90300 Hudson Hall, Durham, NC 27708, USA.
| | - Daniel Y Joh
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, USA
| | - Faris Albarghouthi
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, USA
| | - Ashutosh Chilkoti
- Department of Mechanical Engineering and Materials Science, Duke University, Box 90300 Hudson Hall, Durham, NC 27708, USA. and Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, USA
| | - David M Murdoch
- Department of Medicine, Duke University, Durham, North Carolina 27708, USA
| | - Benjamin B Yellen
- Department of Mechanical Engineering and Materials Science, Duke University, Box 90300 Hudson Hall, Durham, NC 27708, USA. and Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, USA
| |
Collapse
|