1
|
Luo L, Tan Z, Wang S. RSANMDA: Resampling based subview attention network for miRNA-disease association prediction. Methods 2024; 230:99-107. [PMID: 39097178 DOI: 10.1016/j.ymeth.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/16/2024] [Accepted: 07/23/2024] [Indexed: 08/05/2024] Open
Abstract
Many studies have demonstrated the importance of accurately identifying miRNA-disease associations (MDAs) for understanding disease mechanisms. However, the number of known MDAs is significantly fewer than the unknown pairs. Here, we propose RSANMDA, a subview attention network for predicting MDAs. We first extract miRNA and disease features from multiple similarity matrices. Next, using resampling techniques, we generate different subviews from known MDAs. Each subview undergoes multi-head graph attention to capture its features, followed by semantic attention to integrate features across subviews. Finally, combining raw and training features, we use a multilayer scoring perceptron for prediction. In the experimental section, we conducted comparative experiments with other advanced models on both HMDD v2.0 and HMDD v3.2 datasets. We also performed a series of ablation studies and parameter tuning exercises. Comprehensive experiments conclusively demonstrate the superiority of our model. Case studies on lung, breast, and esophageal cancers further validate our method's predictive capability for identifying disease-related miRNAs.
Collapse
Affiliation(s)
- Longfei Luo
- Department of Computer Science and Engineering, School of Information Science and Engineering, Yunnan University, Kunming, 650504, Yunnan, China
| | - Zhuokun Tan
- Department of Computer Science and Engineering, School of Information Science and Engineering, Yunnan University, Kunming, 650504, Yunnan, China
| | - Shunfang Wang
- Department of Computer Science and Engineering, School of Information Science and Engineering, Yunnan University, Kunming, 650504, Yunnan, China.
| |
Collapse
|
2
|
Dong B, Sun W, Xu D, Wang G, Zhang T. MDformer: A transformer-based method for predicting miRNA-Disease associations using multi-source feature fusion and maximal meta-path instances encoding. Comput Biol Med 2023; 167:107585. [PMID: 37890424 DOI: 10.1016/j.compbiomed.2023.107585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/15/2023] [Accepted: 10/15/2023] [Indexed: 10/29/2023]
Abstract
There is a growing body of evidence suggesting that microRNAs (miRNAs), small biological molecules, play a crucial role in the diagnosis, treatment, and prognostic assessment of diseases. However, it is often inefficient to verify the association between miRNAs and diseases (MDA) through traditional experimental methods. Based on this situation, researchers have proposed various computational-based methods, but the existing methods often have many drawbacks in terms of predictive effectiveness and accuracy. Therefore, in order to improve the prediction performance of computational methods, we propose a transformer-based prediction model (MDformer) for multi-source feature information. Specifically, first, we consider multiple features of miRNAs and diseases from the molecular biology perspective and utilize them in a fusion. Then high-quality node feature embeddings were generated using a feature encoder based on the transformer architecture and meta-path instances. Finally, a deep neural network was built for MDA prediction. To evaluate the performance of our model, we performed multiple 5-fold cross-validations as well as comparison experiments on HMDD v3.2 and HMDD v2.0 databases, and the experimental results of the average ROC area under the curve (AUC) were higher than the comparative methods for both databases at 0.9506 and 0.9369. We conducted case studies on five highly lethal cancers (breast, lung, colorectal, gastric, and hepatocellular cancers), and the first 30 predictions for these five diseases achieved 97.3% accuracy. In conclusion, MDformer is a reliable and scientifically sound tool that can be used to accurately predict MDA. In addition, the source code is available at https://github.com/Linda908/MDformer.
Collapse
Affiliation(s)
- Benzhi Dong
- College of Computer and Control Engineering, Northeast Forestry University, Harbin, 150040, China
| | - Weidong Sun
- College of Computer and Control Engineering, Northeast Forestry University, Harbin, 150040, China
| | - Dali Xu
- College of Computer and Control Engineering, Northeast Forestry University, Harbin, 150040, China
| | - Guohua Wang
- College of Computer and Control Engineering, Northeast Forestry University, Harbin, 150040, China.
| | - Tianjiao Zhang
- College of Computer and Control Engineering, Northeast Forestry University, Harbin, 150040, China.
| |
Collapse
|
3
|
Dong B, Sun W, Xu D, Wang G, Zhang T. DAEMDA: A Method with Dual-Channel Attention Encoding for miRNA-Disease Association Prediction. Biomolecules 2023; 13:1514. [PMID: 37892196 PMCID: PMC10604960 DOI: 10.3390/biom13101514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 10/08/2023] [Indexed: 10/29/2023] Open
Abstract
A growing number of studies have shown that aberrant microRNA (miRNA) expression is closely associated with the evolution and development of various complex human diseases. These key biomarkers' identification and observation are significant for gaining a deeper understanding of disease pathogenesis and therapeutic mechanisms. Consequently, pinpointing potential miRNA-disease associations (MDA) has become a prominent bioinformatics subject, encouraging several new computational methods given the advances in graph neural networks (GNN). Nevertheless, these existing methods commonly fail to exploit the network nodes' global feature information, leaving the generation of high-quality embedding representations using graph properties as a critical unsolved issue. Addressing these challenges, we introduce the DAEMDA, a computational method designed to optimize the current models' efficacy. First, we construct similarity and heterogeneous networks involving miRNAs and diseases, relying on experimentally corroborated miRNA-disease association data and analogous information. Then, a newly-fashioned parallel dual-channel feature encoder, designed to better comprehend the global information within the heterogeneous network and generate varying embedding representations, follows this. Ultimately, employing a neural network classifier, we merge the dual-channel embedding representations and undertake association predictions between miRNA and disease nodes. The experimental results of five-fold cross-validation and case studies of major diseases based on the HMDD v3.2 database show that this method can generate high-quality embedded representations and effectively improve the accuracy of MDA prediction.
Collapse
Affiliation(s)
| | | | | | - Guohua Wang
- College of Computer and Control Engineering, Northeast Forestry University, Harbin 150040, China; (B.D.)
| | - Tianjiao Zhang
- College of Computer and Control Engineering, Northeast Forestry University, Harbin 150040, China; (B.D.)
| |
Collapse
|
4
|
Ai N, Liang Y, Yuan H, Ouyang D, Xie S, Liu X. GDCL-NcDA: identifying non-coding RNA-disease associations via contrastive learning between deep graph learning and deep matrix factorization. BMC Genomics 2023; 24:424. [PMID: 37501127 PMCID: PMC10373414 DOI: 10.1186/s12864-023-09501-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/02/2023] [Indexed: 07/29/2023] Open
Abstract
Non-coding RNAs (ncRNAs) draw much attention from studies widely in recent years because they play vital roles in life activities. As a good complement to wet experiment methods, computational prediction methods can greatly save experimental costs. However, high false-negative data and insufficient use of multi-source information can affect the performance of computational prediction methods. Furthermore, many computational methods do not have good robustness and generalization on different datasets. In this work, we propose an effective end-to-end computing framework, called GDCL-NcDA, of deep graph learning and deep matrix factorization (DMF) with contrastive learning, which identifies the latent ncRNA-disease association on diverse multi-source heterogeneous networks (MHNs). The diverse MHNs include different similarity networks and proven associations among ncRNAs (miRNAs, circRNAs, and lncRNAs), genes, and diseases. Firstly, GDCL-NcDA employs deep graph convolutional network and multiple attention mechanisms to adaptively integrate multi-source of MHNs and reconstruct the ncRNA-disease association graph. Then, GDCL-NcDA utilizes DMF to predict the latent disease-associated ncRNAs based on the reconstructed graphs to reduce the impact of the false-negatives from the original associations. Finally, GDCL-NcDA uses contrastive learning (CL) to generate a contrastive loss on the reconstructed graphs and the predicted graphs to improve the generalization and robustness of our GDCL-NcDA framework. The experimental results show that GDCL-NcDA outperforms highly related computational methods. Moreover, case studies demonstrate the effectiveness of GDCL-NcDA in identifying the associations among diversiform ncRNAs and diseases.
Collapse
Affiliation(s)
- Ning Ai
- Peng Cheng Laboratory, Shenzhen, 518005, Guangdong, China
- School of Computer Science and Engineering, Macau University of Science and Technology, Avenida Wai Long, Taipa, China
| | - Yong Liang
- Peng Cheng Laboratory, Shenzhen, 518005, Guangdong, China.
- Pazhou Laboratory (Huangpu), Guangzhou, 510555, Guangdong, China.
| | - Haoliang Yuan
- School of Automation, Guangdong University of Technology, Guangzhou, 510006, Guangdong, China
| | - Dong Ouyang
- Peng Cheng Laboratory, Shenzhen, 518005, Guangdong, China
- School of Computer Science and Engineering, Macau University of Science and Technology, Avenida Wai Long, Taipa, China
| | - Shengli Xie
- Institute of Intelligent Information Processing, Guangdong University of Technology, Guangzhou, 510000, Guangdong, China
| | - Xiaoying Liu
- Computer Engineering Technical College, Guangdong Polytechnic of Science and Technology, Zhuhai, Guangdong, 519090, China
| |
Collapse
|
5
|
Chen M, Deng Y, Li Z, Ye Y, He Z. KATZNCP: a miRNA-disease association prediction model integrating KATZ algorithm and network consistency projection. BMC Bioinformatics 2023; 24:229. [PMID: 37268893 DOI: 10.1186/s12859-023-05365-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 05/26/2023] [Indexed: 06/04/2023] Open
Abstract
BACKGROUND Clinical studies have shown that miRNAs are closely related to human health. The study of potential associations between miRNAs and diseases will contribute to a profound understanding of the mechanism of disease development, as well as human disease prevention and treatment. MiRNA-disease associations predicted by computational methods are the best complement to biological experiments. RESULTS In this research, a federated computational model KATZNCP was proposed on the basis of the KATZ algorithm and network consistency projection to infer the potential miRNA-disease associations. In KATZNCP, a heterogeneous network was initially constructed by integrating the known miRNA-disease association, integrated miRNA similarities, and integrated disease similarities; then, the KATZ algorithm was implemented in the heterogeneous network to obtain the estimated miRNA-disease prediction scores. Finally, the precise scores were obtained by the network consistency projection method as the final prediction results. KATZNCP achieved the reliable predictive performance in leave-one-out cross-validation (LOOCV) with an AUC value of 0.9325, which was better than the state-of-the-art comparable algorithms. Furthermore, case studies of lung neoplasms and esophageal neoplasms demonstrated the excellent predictive performance of KATZNCP. CONCLUSION A new computational model KATZNCP was proposed for predicting potential miRNA-drug associations based on KATZ and network consistency projections, which can effectively predict the potential miRNA-disease interactions. Therefore, KATZNCP can be used to provide guidance for future experiments.
Collapse
Affiliation(s)
- Min Chen
- School of Computer Science and Technology, Hunan Institute of Technology, Hengyang, 421002, China
| | - Yingwei Deng
- School of Computer Science and Technology, Hunan Institute of Technology, Hengyang, 421002, China.
| | - Zejun Li
- School of Computer Science and Technology, Hunan Institute of Technology, Hengyang, 421002, China
| | - Yifan Ye
- School of Computer Science and Technology, Hunan Institute of Technology, Hengyang, 421002, China
| | - Ziyi He
- School of Computer Science and Technology, Hunan Institute of Technology, Hengyang, 421002, China
| |
Collapse
|
6
|
Fei X, Jin M, Yuan Z, Li T, Lu Z, Wang H, Lu J, Quan K, Yang J, He M, Wang T, Wang Y, Wei C. MiRNA-Seq reveals key MicroRNAs involved in fat metabolism of sheep liver. Front Genet 2023; 14:985764. [PMID: 36968587 PMCID: PMC10035661 DOI: 10.3389/fgene.2023.985764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 02/27/2023] [Indexed: 03/11/2023] Open
Abstract
There is a genetic difference between Hu sheep (short/fat-tailed sheep) and Tibetan sheep (short/thin-tailed sheep) in tail type, because of fat metabolism. Previous studies have mainly focused directly on sheep tail fat, which is not the main organ of fat metabolism. The function of miRNAs in sheep liver fat metabolism has not been thoroughly elucidated. In this study, miRNA-Seq was used to identify miRNAs in the liver tissue of three Hu sheep (short/fat-tailed sheep) and three Tibetan sheep (short/thin-tailed sheep) to characterize the differences in fat metabolism of sheep. In our study, Hu sheep was in a control group, we identified 11 differentially expressed miRNAs (DE miRNAs), including six up-regulated miRNAs and five down-regulated miRNAs. Miranda and RNAhybrid were used to predict the target genes of DE miRNAs, obtaining 3,404 target genes. A total of 115 and 67 GO terms as well as 54 and 5 KEGG pathways were significantly (padj < 0.05) enriched for predicted 3,109 target genes of up-regulated and 295 target genes of down-regulated miRNAs, respectively. oar-miR-432 was one of the most up-regulated miRNAs between Hu sheep and Tibetan sheep. And SIRT1 is one of the potential target genes of oar-miR-432. Furthermore, functional validation using the dual-luciferase reporter assay indicated that the up-regulated miRNA; oar-miR-432 potentially targeted sirtuin 1 (SIRT1) expression. Then, the oar-miR-432 mimic transfected into preadipocytes resulted in inhibited expression of SIRT1. This is the first time reported that the expression of SIRT1 gene was regulated by oar-miR-432 in fat metabolism of sheep liver. These results could provide a meaningful theoretical basis for studying the fat metabolism of sheep.
Collapse
Affiliation(s)
- Xiaojuan Fei
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Meilin Jin
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zehu Yuan
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education, Yangzhou University, Yangzhou, China
| | - Taotao Li
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zengkui Lu
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Huihua Wang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jian Lu
- National Animal Husbandry Service, Beijing, China
| | - Kai Quan
- College of Animals Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Junxiang Yang
- Gansu Institute of Animal Husbandry and Veterinary Medicine, Pingliang, China
| | - Maochang He
- Gansu Institute of Animal Husbandry and Veterinary Medicine, Pingliang, China
| | - Tingpu Wang
- College of Bioengineering and Biotechnology, TianShui Normal University, Tianshui, China
| | - Yuqin Wang
- College of Animals Science and Technology, Henan University of Science and Technology, Luoyang, China
- *Correspondence: Caihong Wei, ; Yuqin Wang,
| | - Caihong Wei
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Caihong Wei, ; Yuqin Wang,
| |
Collapse
|
7
|
Feng H, Jin D, Li J, Li Y, Zou Q, Liu T. Matrix reconstruction with reliable neighbors for predicting potential MiRNA-disease associations. Brief Bioinform 2023; 24:6960615. [PMID: 36567252 DOI: 10.1093/bib/bbac571] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/16/2022] [Accepted: 11/23/2022] [Indexed: 12/27/2022] Open
Abstract
Numerous experimental studies have indicated that alteration and dysregulation in mircroRNAs (miRNAs) are associated with serious diseases. Identifying disease-related miRNAs is therefore an essential and challenging task in bioinformatics research. Computational methods are an efficient and economical alternative to conventional biomedical studies and can reveal underlying miRNA-disease associations for subsequent experimental confirmation with reasonable confidence. Despite the success of existing computational approaches, most of them only rely on the known miRNA-disease associations to predict associations without adding other data to increase the prediction accuracy, and they are affected by issues of data sparsity. In this paper, we present MRRN, a model that combines matrix reconstruction with node reliability to predict probable miRNA-disease associations. In MRRN, the most reliable neighbors of miRNA and disease are used to update the original miRNA-disease association matrix, which significantly reduces data sparsity. Unknown miRNA-disease associations are reconstructed by aggregating the most reliable first-order neighbors to increase prediction accuracy by representing the local and global structure of the heterogeneous network. Five-fold cross-validation of MRRN produced an area under the curve (AUC) of 0.9355 and area under the precision-recall curve (AUPR) of 0.2646, values that were greater than those produced by comparable models. Two different types of case studies using three diseases were conducted to demonstrate the accuracy of MRRN, and all top 30 predicted miRNAs were verified.
Collapse
Affiliation(s)
- Hailin Feng
- School of mathematics and computer science, Zhejiang A&F University, No.666 Wusu Street,Lin'an District, 311300, Hangzhou, China
| | - Dongdong Jin
- School of mathematics and computer science, Zhejiang A&F University, No.666 Wusu Street,Lin'an District, 311300, Hangzhou, China
| | - Jian Li
- School of mathematics and computer science, Zhejiang A&F University, No.666 Wusu Street,Lin'an District, 311300, Hangzhou, China
| | - Yane Li
- School of mathematics and computer science, Zhejiang A&F University, No.666 Wusu Street,Lin'an District, 311300, Hangzhou, China
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, No. 2006, Xiyuan Avenue, West District, high tech Zone, 611731, Chengdu, China
| | - Tongcun Liu
- School of mathematics and computer science, Zhejiang A&F University, No.666 Wusu Street,Lin'an District, 311300, Hangzhou, China
| |
Collapse
|
8
|
Huang L, Zhang L, Chen X. Updated review of advances in microRNAs and complex diseases: experimental results, databases, webservers and data fusion. Brief Bioinform 2022; 23:6696143. [PMID: 36094095 DOI: 10.1093/bib/bbac397] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/19/2022] [Accepted: 08/15/2022] [Indexed: 12/14/2022] Open
Abstract
MicroRNAs (miRNAs) are gene regulators involved in the pathogenesis of complex diseases such as cancers, and thus serve as potential diagnostic markers and therapeutic targets. The prerequisite for designing effective miRNA therapies is accurate discovery of miRNA-disease associations (MDAs), which has attracted substantial research interests during the last 15 years, as reflected by more than 55 000 related entries available on PubMed. Abundant experimental data gathered from the wealth of literature could effectively support the development of computational models for predicting novel associations. In 2017, Chen et al. published the first-ever comprehensive review on MDA prediction, presenting various relevant databases, 20 representative computational models, and suggestions for building more powerful ones. In the current review, as the continuation of the previous study, we revisit miRNA biogenesis, detection techniques and functions; summarize recent experimental findings related to common miRNA-associated diseases; introduce recent updates of miRNA-relevant databases and novel database releases since 2017, present mainstream webservers and new webserver releases since 2017 and finally elaborate on how fusion of diverse data sources has contributed to accurate MDA prediction.
Collapse
Affiliation(s)
- Li Huang
- Academy of Arts and Design, Tsinghua University, Beijing, 10084, China.,The Future Laboratory, Tsinghua University, Beijing, 10084, China
| | - Li Zhang
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, 221116, China
| | - Xing Chen
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, 221116, China.,Artificial Intelligence Research Institute, China University of Mining and Technology, Xuzhou, 221116, China
| |
Collapse
|
9
|
Lu X, Li J, Zhu Z, Yuan Y, Chen G, He K. Predicting miRNA-Disease Associations via Combining Probability Matrix Feature Decomposition With Neighbor Learning. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2022; 19:3160-3170. [PMID: 34260356 DOI: 10.1109/tcbb.2021.3097037] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Predicting the associations of miRNAs and diseases may uncover the causation of various diseases. Many methods are emerging to tackle the sparse and unbalanced disease related miRNA prediction. Here, we propose a Probabilistic matrix decomposition combined with neighbor learning to identify MiRNA-Disease Associations utilizing heterogeneous data(PMDA). First, we build similarity networks for diseases and miRNAs, respectively, by integrating semantic information and functional interactions. Second, we construct a neighbor learning model in which the neighbor information of individual miRNA or disease is utilized to enhance the association relationship to tackle the spare problem. Third, we predict the potential association between miRNAs and diseases via probability matrix decomposition. The experimental results show that PMDA is superior to other five methods in sparse and unbalanced data. The case study shows that the new miRNA-disease interactions predicted by the PMDA are effective and the performance of the PMDA is superior to other methods.
Collapse
|
10
|
Huang C, Cen K, Zhang Y, Liu B, Wang Y, Li J. MEAHNE: miRNA-Disease Association Prediction Based on Semantic Information in a Heterogeneous Network. Life (Basel) 2022; 12:1578. [PMID: 36295013 PMCID: PMC9655430 DOI: 10.3390/life12101578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/08/2022] [Accepted: 10/08/2022] [Indexed: 11/29/2022] Open
Abstract
Correct prediction of potential miRNA-disease pairs can considerably accelerate the experimental process in biomedical research. However, many methods cannot effectively learn the complex information contained in multisource data, limiting the performance of the prediction model. A heterogeneous network prediction model (MEAHNE) is proposed to make full use of the complex information contained in multisource data. To fully mine the potential relationship between miRNA and disease, we collected multisource data and constructed a heterogeneous network. After constructing the network, we mined potential associations in the network through a designed heterogeneous network framework (MEAHNE). MEAHNE first learned the semantic information of the metapath instances, then used the attention mechanism to encode the semantic information as attention weights and aggregated nodes of the same type using the attention weights. The semantic information was also integrated into the node. MEAHNE optimized parameters through end-to-end training. MEAHNE was compared with other state-of-the-art heterogeneous graph neural network methods. The values of the area under the precision-recall curve and the receiver operating characteristic curve demonstrated the superiority of MEAHNE. In addition, MEAHNE predicted 20 miRNAs each for breast cancer and nasopharyngeal cancer and verified 18 miRNAs related to breast cancer and 14 miRNAs related to nasopharyngeal cancer by consulting related databases.
Collapse
Affiliation(s)
- Chen Huang
- School of Computer Science and Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; (C.H.); (K.C.); (Y.W.)
| | - Keliang Cen
- School of Computer Science and Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; (C.H.); (K.C.); (Y.W.)
| | - Yang Zhang
- College of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China;
| | - Bo Liu
- Center for Bioinformatics, School of Computer Science and Technology, Harbin Institute of Technology, Harbin 150001, China;
| | - Yadong Wang
- School of Computer Science and Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; (C.H.); (K.C.); (Y.W.)
- Center for Bioinformatics, School of Computer Science and Technology, Harbin Institute of Technology, Harbin 150001, China;
| | - Junyi Li
- School of Computer Science and Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; (C.H.); (K.C.); (Y.W.)
- Guangdong Provincial Key Laboratory of Novel Security Intelligence Technologies, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| |
Collapse
|
11
|
MHDMF: Prediction of miRNA-disease associations based on Deep Matrix Factorization with Multi-source Graph Convolutional Network. Comput Biol Med 2022; 149:106069. [PMID: 36115300 DOI: 10.1016/j.compbiomed.2022.106069] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/31/2022] [Accepted: 08/27/2022] [Indexed: 11/24/2022]
Abstract
A growing number of works have proved that microRNAs (miRNAs) are a crucial biomarker in diverse bioprocesses affecting various diseases. As a good complement to high-cost wet experiment-based methods, numerous computational prediction methods have sprung up. However, there are still challenges that exist in making effective use of high false-negative associations and multi-source information for finding the potential associations. In this work, we develop an end-to-end computational framework, called MHDMF, which integrates the multi-source information on a heterogeneous network to discover latent disease-miRNA associations. Since high false-negative exist in the miRNA-disease associations, MHDMF utilizes the multi-source Graph Convolutional Network (GCN) to correct the false-negative association by reformulating the miRNA-disease association score matrix. The score matrix reformulation is based on different similarity profiles and known associations between miRNAs, genes, and diseases. Then, MHDMF employs Deep Matrix Factorization (DMF) to predict the miRNA-disease associations based on reformulated miRNA-disease association score matrix. The experimental results show that the proposed framework outperforms highly related comparison methods by a large margin on tasks of miRNA-disease association prediction. Furthermore, case studies suggest that MHDMF could be a convenient and efficient tool and may supply a new way to think about miRNA-disease association prediction.
Collapse
|
12
|
Lu S, Liang Y, Li L, Liao S, Ouyang D. Inferring human miRNA–disease associations via multiple kernel fusion on GCNII. Front Genet 2022; 13:980497. [PMID: 36134032 PMCID: PMC9483142 DOI: 10.3389/fgene.2022.980497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 07/20/2022] [Indexed: 11/16/2022] Open
Abstract
Increasing evidence shows that the occurrence of human complex diseases is closely related to the mutation and abnormal expression of microRNAs(miRNAs). MiRNAs have complex and fine regulatory mechanisms, which makes it a promising target for drug discovery and disease diagnosis. Therefore, predicting the potential miRNA-disease associations has practical significance. In this paper, we proposed an miRNA–disease association predicting method based on multiple kernel fusion on Graph Convolutional Network via Initial residual and Identity mapping (GCNII), called MKFGCNII. Firstly, we built a heterogeneous network of miRNAs and diseases to extract multi-layer features via GCNII. Secondly, multiple kernel fusion method was applied to weight fusion of embeddings at each layer. Finally, Dual Laplacian Regularized Least Squares was used to predict new miRNA–disease associations by the combined kernel in miRNA and disease spaces. Compared with the other methods, MKFGCNII obtained the highest AUC value of 0.9631. Code is available at https://github.com/cuntjx/bioInfo.
Collapse
Affiliation(s)
- Shanghui Lu
- School of Computer Science and Engineering, Macau University of Science and Technology, Taipa, China
- School of Mathematics and Physics, Hechi University, Hechi, China
| | - Yong Liang
- School of Computer Science and Engineering, Macau University of Science and Technology, Taipa, China
- Peng Cheng Laboratory, Shenzhen, China
- *Correspondence: Yong Liang,
| | - Le Li
- School of Computer Science and Engineering, Macau University of Science and Technology, Taipa, China
| | - Shuilin Liao
- School of Computer Science and Engineering, Macau University of Science and Technology, Taipa, China
| | - Dong Ouyang
- School of Computer Science and Engineering, Macau University of Science and Technology, Taipa, China
| |
Collapse
|
13
|
Ma M, Na S, Zhang X, Chen C, Xu J. SFGAE: a self-feature-based graph autoencoder model for miRNA-disease associations prediction. Brief Bioinform 2022; 23:6678419. [PMID: 36037084 DOI: 10.1093/bib/bbac340] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/21/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Increasing evidence has suggested that microRNAs (miRNAs) are important biomarkers of various diseases. Numerous graph neural network (GNN) models have been proposed for predicting miRNA-disease associations. However, the existing GNN-based methods have over-smoothing issue-the learned feature embeddings of miRNA nodes and disease nodes are indistinguishable when stacking multiple GNN layers. This issue makes the performance of the methods sensitive to the number of layers, and significantly hurts the performance when more layers are employed. In this study, we resolve this issue by a novel self-feature-based graph autoencoder model, shortened as SFGAE. The key novelty of SFGAE is to construct miRNA-self embeddings and disease-self embeddings, and let them be independent of graph interactions between two types of nodes. The novel self-feature embeddings enrich the information of typical aggregated feature embeddings, which aggregate the information from direct neighbors and hence heavily rely on graph interactions. SFGAE adopts a graph encoder with attention mechanism to concatenate aggregated feature embeddings and self-feature embeddings, and adopts a bilinear decoder to predict links. Our experiments show that SFGAE achieves state-of-the-art performance. In particular, SFGAE improves the average AUC upon recent GAEMDA [1] on the benchmark datasets HMDD v2.0 and HMDD v3.2, and consistently performs better when less (e.g. 10%) training samples are used. Furthermore, SFGAE effectively overcomes the over-smoothing issue and performs stably well on deeper models (e.g. eight layers). Finally, we carry out case studies on three human diseases, colon neoplasms, esophageal neoplasms and kidney neoplasms, and perform a survival analysis using kidney neoplasm as an example. The results suggest that SFGAE is a reliable tool for predicting potential miRNA-disease associations.
Collapse
Affiliation(s)
- Mingyuan Ma
- Key Laboratory of High Confidence Software Technologies of Ministry of Education, School of Computer Science, Peking University, Beijing, China
| | - Sen Na
- International Computer Science Institute and Department of Statistics, University of California, Berkeley, Berkeley CA, USA
| | - Xiaolu Zhang
- Department of Information Systems, City University of Hong Kong, Hong Kong, China
| | - Congzhou Chen
- Key Laboratory of High Confidence Software Technologies of Ministry of Education, School of Computer Science, Peking University, Beijing, China
| | - Jin Xu
- Key Laboratory of High Confidence Software Technologies of Ministry of Education, School of Computer Science, Peking University, Beijing, China
| |
Collapse
|
14
|
Huang D, An J, Zhang L, Liu B. Computational method using heterogeneous graph convolutional network model combined with reinforcement layer for MiRNA-disease association prediction. BMC Bioinformatics 2022; 23:299. [PMID: 35879658 PMCID: PMC9316361 DOI: 10.1186/s12859-022-04843-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 07/11/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND A large number of evidences from biological experiments have confirmed that miRNAs play an important role in the progression and development of various human complex diseases. However, the traditional experiment methods are expensive and time-consuming. Therefore, it is a challenging task that how to develop more accurate and efficient methods for predicting potential associations between miRNA and disease. RESULTS In the study, we developed a computational model that combined heterogeneous graph convolutional network with enhanced layer for miRNA-disease association prediction (HGCNELMDA). The major improvement of our method lies in through restarting the random walk optimized the original features of nodes and adding a reinforcement layer to the hidden layer of graph convolutional network retained similar information between nodes in the feature space. In addition, the proposed approach recalculated the influence of neighborhood nodes on target nodes by introducing the attention mechanism. The reliable performance of the HGCNELMDA was certified by the AUC of 93.47% in global leave-one-out cross-validation (LOOCV), and the average AUCs of 93.01% in fivefold cross-validation. Meanwhile, we compared the HGCNELMDA with the state‑of‑the‑art methods. Comparative results indicated that o the HGCNELMDA is very promising and may provide a cost‑effective alternative for miRNA-disease association prediction. Moreover, we applied HGCNELMDA to 3 different case studies to predict potential miRNAs related to lung cancer, prostate cancer, and pancreatic cancer. Results showed that 48, 50, and 50 of the top 50 predicted miRNAs were supported by experimental association evidence. Therefore, the HGCNELMDA is a reliable method for predicting disease-related miRNAs. CONCLUSIONS The results of the HGCNELMDA method in the LOOCV (leave-one-out cross validation, LOOCV) and 5-cross validations were 93.47% and 93.01%, respectively. Compared with other typical methods, the performance of HGCNELMDA is higher. Three cases of lung cancer, prostate cancer, and pancreatic cancer were studied. Among the predicted top 50 candidate miRNAs, 48, 50, and 50 were verified in the biological database HDMMV2.0. Therefore; this further confirms the feasibility and effectiveness of our method. Therefore, this further confirms the feasibility and effectiveness of our method. To facilitate extensive studies for future disease-related miRNAs research, we developed a freely available web server called HGCNELMDA is available at http://124.221.62.44:8080/HGCNELMDA.jsp .
Collapse
Affiliation(s)
- Dan Huang
- School of Computer Science and Technology, China University of Mining and Technology, Xuzhou, 21116, Jiangsu, China
| | - JiYong An
- School of Computer Science and Technology, China University of Mining and Technology, Xuzhou, 21116, Jiangsu, China.
| | - Lei Zhang
- School of Computer Science and Technology, China University of Mining and Technology, Xuzhou, 21116, Jiangsu, China.
| | - BaiLong Liu
- School of Computer Science and Technology, China University of Mining and Technology, Xuzhou, 21116, Jiangsu, China
| |
Collapse
|
15
|
Wang W, Chen H. Predicting miRNA-disease associations based on graph attention networks and dual Laplacian regularized least squares. Brief Bioinform 2022; 23:6645486. [PMID: 35849099 DOI: 10.1093/bib/bbac292] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/23/2022] [Accepted: 06/26/2022] [Indexed: 01/05/2023] Open
Abstract
Increasing biomedical evidence has proved that the dysregulation of miRNAs is associated with human complex diseases. Identification of disease-related miRNAs is of great importance for disease prevention, diagnosis and remedy. To reduce the time and cost of biomedical experiments, there is a strong incentive to develop efficient computational methods to infer potential miRNA-disease associations. Although many computational approaches have been proposed to address this issue, the prediction accuracy needs to be further improved. In this study, we present a computational framework MKGAT to predict possible associations between miRNAs and diseases through graph attention networks (GATs) using dual Laplacian regularized least squares. We use GATs to learn embeddings of miRNAs and diseases on each layer from initial input features of known miRNA-disease associations, intra-miRNA similarities and intra-disease similarities. We then calculate kernel matrices of miRNAs and diseases based on Gaussian interaction profile (GIP) with the learned embeddings. We further fuse the kernel matrices of each layer and initial similarities with attention mechanism. Dual Laplacian regularized least squares are finally applied for new miRNA-disease association predictions with the fused miRNA and disease kernels. Compared with six state-of-the-art methods by 5-fold cross-validations, our method MKGAT receives the highest AUROC value of 0.9627 and AUPR value of 0.7372. We use MKGAT to predict related miRNAs for three cancers and discover that all the top 50 predicted results in the three diseases are confirmed by existing databases. The excellent performance indicates that MKGAT would be a useful computational tool for revealing disease-related miRNAs.
Collapse
Affiliation(s)
- Wengang Wang
- School of Software, East China Jiaotong University, Nanchang 330013, China
| | - Hailin Chen
- School of Software, East China Jiaotong University, Nanchang 330013, China
| |
Collapse
|
16
|
Xu L, Li X, Yang Q, Tan L, Liu Q, Liu Y. Application of Bidirectional Generative Adversarial Networks to Predict Potential miRNAs Associated With Diseases. Front Genet 2022; 13:936823. [PMID: 35903359 PMCID: PMC9314862 DOI: 10.3389/fgene.2022.936823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 06/08/2022] [Indexed: 11/18/2022] Open
Abstract
Substantial evidence has shown that microRNAs are crucial for biological processes within complex human diseases. Identifying the association of miRNA–disease pairs will contribute to accelerating the discovery of potential biomarkers and pathogenesis. Researchers began to focus on constructing computational models to facilitate the progress of disease pathology and clinical medicine by identifying the potential disease-related miRNAs. However, most existing computational methods are expensive, and their use is limited to unobserved relationships for unknown miRNAs (diseases) without association information. In this manuscript, we proposed a creatively semi-supervised model named bidirectional generative adversarial network for miRNA-disease association prediction (BGANMDA). First, we constructed a microRNA similarity network, a disease similarity network, and Gaussian interaction profile kernel similarity based on the known miRNA–disease association and comprehensive similarity of miRNAs (diseases). Next, an integrated similarity feature network with the full underlying relationships of miRNA–disease pairwise was obtained. Then, the similarity feature network was fed into the BGANMDA model to learn advanced traits in latent space. Finally, we ranked an association score list and predicted the associations between miRNA and disease. In our experiment, a five-fold cross validation was applied to estimate BGANMDA’s performance, and an area under the curve (AUC) of 0.9319 and a standard deviation of 0.00021 were obtained. At the same time, in the global and local leave-one-out cross validation (LOOCV), the AUC value and standard deviation of BGANMDA were 0.9116 ± 0.0025 and 0.8928 ± 0.0022, respectively. Furthermore, BGANMDA was employed in three different case studies to validate its prediction capability and accuracy. The experimental results of the case studies showed that 46, 46, and 48 of the top 50 prediction lists had been identified in previous studies.
Collapse
Affiliation(s)
- Long Xu
- School of Computer Science and Technology, Heilongjiang University, Harbin, China
| | - Xiaokun Li
- School of Computer Science and Technology, Heilongjiang University, Harbin, China
- Postdoctoral Program of Heilongjiang Hengxun Technology Co., Ltd., Heilongjiang University, Harbin, China
- *Correspondence: Xiaokun Li, ; Yong Liu,
| | - Qiang Yang
- School of Electronic Engineering, Heilongjiang University, Harbin, China
| | - Long Tan
- School of Computer Science and Technology, Heilongjiang University, Harbin, China
| | - Qingyuan Liu
- Postdoctoral Program of Heilongjiang Hengxun Technology Co., Ltd., Heilongjiang University, Harbin, China
| | - Yong Liu
- School of Computer Science and Technology, Heilongjiang University, Harbin, China
- *Correspondence: Xiaokun Li, ; Yong Liu,
| |
Collapse
|
17
|
Identification of MiRNA–Disease Associations Based on Information of Multi-Module and Meta-Path. Molecules 2022; 27:molecules27144443. [PMID: 35889314 PMCID: PMC9321348 DOI: 10.3390/molecules27144443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/01/2022] [Accepted: 07/08/2022] [Indexed: 12/10/2022] Open
Abstract
Cumulative research reveals that microRNAs (miRNAs) are involved in many critical biological processes including cell proliferation, differentiation and apoptosis. It is of great significance to figure out the associations between miRNAs and human diseases that are the basis for finding biomarkers for diagnosis and targets for treatment. To overcome the time-consuming and labor-intensive problems faced by traditional experiments, a computational method was developed to identify potential associations between miRNAs and diseases based on the graph attention network (GAT) with different meta-path mode and support vector (SVM). Firstly, we constructed a multi-module heterogeneous network based on the meta-path and learned the latent features of different modules by GAT. Secondly, we found the average of the latent features with weight to obtain a final node representation. Finally, we characterized miRNA–disease-association pairs with the node representation and trained an SVM to recognize potential associations. Based on the five-fold cross-validation and benchmark datasets, the proposed method achieved an area under the precision–recall curve (AUPR) of 0.9379 and an area under the receiver–operating characteristic curve (AUC) of 0.9472. The results demonstrate that our method has an outstanding practical application performance and can provide a reference for the discovery of new biomarkers and therapeutic targets.
Collapse
|
18
|
Ouyang D, Miao R, Wang J, Liu X, Xie S, Ai N, Dang Q, Liang Y. Predicting Multiple Types of Associations Between miRNAs and Diseases Based on Graph Regularized Weighted Tensor Decomposition. Front Bioeng Biotechnol 2022; 10:911769. [PMID: 35910021 PMCID: PMC9335924 DOI: 10.3389/fbioe.2022.911769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 05/04/2022] [Indexed: 11/23/2022] Open
Abstract
Many studies have indicated miRNAs lead to the occurrence and development of diseases through a variety of underlying mechanisms. Meanwhile, computational models can save time, minimize cost, and discover potential associations on a large scale. However, most existing computational models based on a matrix or tensor decomposition cannot recover positive samples well. Moreover, the high noise of biological similarity networks and how to preserve these similarity relationships in low-dimensional space are also challenges. To this end, we propose a novel computational framework, called WeightTDAIGN, to identify potential multiple types of miRNA–disease associations. WeightTDAIGN can recover positive samples well and improve prediction performance by weighting positive samples. WeightTDAIGN integrates more auxiliary information related to miRNAs and diseases into the tensor decomposition framework, focuses on learning low-rank tensor space, and constrains projection matrices by using the L2,1 norm to reduce the impact of redundant information on the model. In addition, WeightTDAIGN can preserve the local structure information in the biological similarity network by introducing graph Laplacian regularization. Our experimental results show that the sparser datasets, the more satisfactory performance of WeightTDAIGN can be obtained. Also, the results of case studies further illustrate that WeightTDAIGN can accurately predict the associations of miRNA–disease-type.
Collapse
Affiliation(s)
- Dong Ouyang
- Faculty of Information Technology, Macau University of Science and Technology, Macau, China
| | - Rui Miao
- Faculty of Information Technology, Macau University of Science and Technology, Macau, China
| | - Jianjun Wang
- School of Mathematics and Statistics, Southwest University, Chongqing, China
| | - Xiaoying Liu
- Computer Engineering Technical College, Guangdong Polytechnic of Science and Technology, Zhuhai, China
| | - Shengli Xie
- Institute of Intelligent Information Processing, Guangdong University of Technology, Guangzhou, China
| | - Ning Ai
- Faculty of Information Technology, Macau University of Science and Technology, Macau, China
| | - Qi Dang
- Faculty of Information Technology, Macau University of Science and Technology, Macau, China
| | - Yong Liang
- Peng Cheng Laboratory, Shenzhen, China
- *Correspondence: Yong Liang,
| |
Collapse
|
19
|
Xu H, Hu X, Yan X, Zhong W, Yin D, Gai Y. Exploring noncoding RNAs in thyroid cancer using a graph convolutional network approach. Comput Biol Med 2022; 145:105447. [DOI: 10.1016/j.compbiomed.2022.105447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/20/2022] [Accepted: 03/21/2022] [Indexed: 12/01/2022]
|
20
|
Yu L, Zheng Y, Ju B, Ao C, Gao L. Research progress of miRNA-disease association prediction and comparison of related algorithms. Brief Bioinform 2022; 23:6542222. [PMID: 35246678 DOI: 10.1093/bib/bbac066] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/30/2022] [Accepted: 02/08/2022] [Indexed: 11/13/2022] Open
Abstract
With an in-depth understanding of noncoding ribonucleic acid (RNA), many studies have shown that microRNA (miRNA) plays an important role in human diseases. Because traditional biological experiments are time-consuming and laborious, new calculation methods have recently been developed to predict associations between miRNA and diseases. In this review, we collected various miRNA-disease association prediction models proposed in recent years and used two common data sets to evaluate the performance of the prediction models. First, we systematically summarized the commonly used databases and similarity data for predicting miRNA-disease associations, and then divided the various calculation models into four categories for summary and detailed introduction. In this study, two independent datasets (D5430 and D6088) were compiled to systematically evaluate 11 publicly available prediction tools for miRNA-disease associations. The experimental results indicate that the methods based on information dissemination and the method based on scoring function require shorter running time. The method based on matrix transformation often requires a longer running time, but the overall prediction result is better than the previous two methods. We hope that the summary of work related to miRNA and disease will provide comprehensive knowledge for predicting the relationship between miRNA and disease and contribute to advanced computation tools in the future.
Collapse
Affiliation(s)
- Liang Yu
- School of Computer Science and Technology, Xidian University, Xi'an, China
| | - Yujia Zheng
- School of Computer Science and Technology, Xidian University, Xi'an, China
| | - Bingyi Ju
- School of Computer Science and Technology, Xidian University, Xi'an, China
| | - Chunyan Ao
- School of Computer Science and Technology, Xidian University, Xi'an, China
| | - Lin Gao
- School of Computer Science and Technology, Xidian University, Xi'an, China
| |
Collapse
|
21
|
Wang CC, Li TH, Huang L, Chen X. Prediction of potential miRNA-disease associations based on stacked autoencoder. Brief Bioinform 2022; 23:6529883. [PMID: 35176761 DOI: 10.1093/bib/bbac021] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/05/2022] [Accepted: 01/14/2022] [Indexed: 12/11/2022] Open
Abstract
In recent years, increasing biological experiments and scientific studies have demonstrated that microRNA (miRNA) plays an important role in the development of human complex diseases. Therefore, discovering miRNA-disease associations can contribute to accurate diagnosis and effective treatment of diseases. Identifying miRNA-disease associations through computational methods based on biological data has been proven to be low-cost and high-efficiency. In this study, we proposed a computational model named Stacked Autoencoder for potential MiRNA-Disease Association prediction (SAEMDA). In SAEMDA, all the miRNA-disease samples were used to pretrain a Stacked Autoencoder (SAE) in an unsupervised manner. Then, the positive samples and the same number of selected negative samples were utilized to fine-tune SAE in a supervised manner after adding an output layer with softmax classifier to the SAE. SAEMDA can make full use of the feature information of all unlabeled miRNA-disease pairs. Therefore, SAEMDA is suitable for our dataset containing small labeled samples and large unlabeled samples. As a result, SAEMDA achieved AUCs of 0.9210 and 0.8343 in global and local leave-one-out cross validation. Besides, SAEMDA obtained an average AUC and standard deviation of 0.9102 ± /-0.0029 in 100 times of 5-fold cross validation. These results were better than those of previous models. Moreover, we carried out three case studies to further demonstrate the predictive accuracy of SAEMDA. As a result, 82% (breast neoplasms), 100% (lung neoplasms) and 90% (esophageal neoplasms) of the top 50 predicted miRNAs were verified by databases. Thus, SAEMDA could be a useful and reliable model to predict potential miRNA-disease associations.
Collapse
Affiliation(s)
- Chun-Chun Wang
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, 221116, China.,Artificial Intelligence Research Institute, China University of Mining and Technology, Xuzhou, 221116, China
| | - Tian-Hao Li
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, 221116, China
| | - Li Huang
- Academy of Arts and Design, Tsinghua University, Beijing, 10084, China.,The Future Laboratory, Tsinghua University, Beijing, 10084, China
| | - Xing Chen
- Artificial Intelligence Research Institute, China University of Mining and Technology, Xuzhou, 221116, China
| |
Collapse
|
22
|
Li Z, Zhong T, Huang D, You ZH, Nie R. Hierarchical graph attention network for miRNA-disease association prediction. Mol Ther 2022; 30:1775-1786. [PMID: 35121109 PMCID: PMC9077381 DOI: 10.1016/j.ymthe.2022.01.041] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 12/29/2021] [Accepted: 01/28/2022] [Indexed: 11/25/2022] Open
Abstract
Many biological studies show that the mutation and abnormal expression of microRNAs (miRNAs) could cause a variety of diseases. As an important biomarker for disease diagnosis, miRNA is helpful to understand pathogenesis, and could promote the identification, diagnosis and treatment of diseases. However, the pathogenic mechanism how miRNAs affect these diseases has not been fully understood. Therefore, predicting the potential miRNA-disease associations is of great importance for the development of clinical medicine and drug research. In this study, we proposed a novel deep learning model based on hierarchical graph attention network for predicting miRNA-disease associations (HGANMDA). Firstly, we constructed a miRNA-disease-lncRNA heterogeneous graph based on known miRNA-disease associations, miRNA-lncRNA associations and disease-lncRNA associations. Secondly, the node-layer attention was applied to learn the importance of neighbor nodes based on different meta-paths. Thirdly, the semantic-layer attention was applied to learn the importance of different meta-paths. Finally, a bilinear decoder was employed to reconstruct the connections between miRNAs and diseases. The extensive experimental results indicated that our model achieved good performance and satisfactory results in predicting miRNA-disease associations.
Collapse
|
23
|
Nguyen VT, Le TTK, Than K, Tran DH. Predicting miRNA-disease associations using improved random walk with restart and integrating multiple similarities. Sci Rep 2021; 11:21071. [PMID: 34702958 PMCID: PMC8548500 DOI: 10.1038/s41598-021-00677-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/15/2021] [Indexed: 12/20/2022] Open
Abstract
Predicting beneficial and valuable miRNA-disease associations (MDAs) by doing biological laboratory experiments is costly and time-consuming. Proposing a forceful and meaningful computational method for predicting MDAs is essential and captivated many computer scientists in recent years. In this paper, we proposed a new computational method to predict miRNA-disease associations using improved random walk with restart and integrating multiple similarities (RWRMMDA). We used a WKNKN algorithm as a pre-processing step to solve the problem of sparsity and incompletion of data to reduce the negative impact of a large number of missing associations. Two heterogeneous networks in disease and miRNA spaces were built by integrating multiple similarity networks, respectively, and different walk probabilities could be designated to each linked neighbor node of the disease or miRNA node in line with its degree in respective networks. Finally, an improve extended random walk with restart algorithm based on miRNA similarity-based and disease similarity-based heterogeneous networks was used to calculate miRNA-disease association prediction probabilities. The experiments showed that our proposed method achieved a momentous performance with Global LOOCV AUC (Area Under Roc Curve) and AUPR (Area Under Precision-Recall Curve) values of 0.9882 and 0.9066, respectively. And the best AUC and AUPR values under fivefold cross-validation of 0.9855 and 0.8642 which are proven by statistical tests, respectively. In comparison with other previous related methods, it outperformed than NTSHMDA, PMFMDA, IMCMDA and MCLPMDA methods in both AUC and AUPR values. In case studies of Breast Neoplasms, Carcinoma Hepatocellular and Stomach Neoplasms diseases, it inferred 1, 12 and 7 new associations out of top 40 predicted associated miRNAs for each disease, respectively. All of these new inferred associations have been confirmed in different databases or literatures.
Collapse
Affiliation(s)
- Van Tinh Nguyen
- Faculty of Information Technology, Hanoi National University of Education, Hanoi, Vietnam
- Faculty of Information Technology, Hanoi University of Industry, 298 Cau Dien Street, Bac Tu Liem District, Hanoi, Vietnam
| | - Thi Tu Kien Le
- Faculty of Information Technology, Hanoi National University of Education, Hanoi, Vietnam
| | - Khoat Than
- Hanoi University of Science and Technology, Hanoi, Vietnam
| | - Dang Hung Tran
- Faculty of Information Technology, Hanoi National University of Education, Hanoi, Vietnam.
| |
Collapse
|
24
|
Qu J, Wang CC, Cai SB, Zhao WD, Cheng XL, Ming Z. Biased Random Walk With Restart on Multilayer Heterogeneous Networks for MiRNA-Disease Association Prediction. Front Genet 2021; 12:720327. [PMID: 34447416 PMCID: PMC8384471 DOI: 10.3389/fgene.2021.720327] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 07/13/2021] [Indexed: 01/07/2023] Open
Abstract
Numerous experiments have proved that microRNAs (miRNAs) could be used as diagnostic biomarkers for many complex diseases. Thus, it is conceivable that predicting the unobserved associations between miRNAs and diseases is extremely significant for the medical field. Here, based on heterogeneous networks built on the information of known miRNA-disease associations, miRNA function similarity, disease semantic similarity, and Gaussian interaction profile kernel similarity for miRNAs and diseases, we developed a computing model of biased random walk with restart on multilayer heterogeneous networks for miRNA-disease association prediction (BRWRMHMDA) through enforcing degree-based biased random walk with restart (BRWR). Assessment results reflected that an AUC of 0.8310 was gained in local leave-one-out cross-validation (LOOCV), which proved the calculation algorithm's good performance. Besides, we carried out BRWRMHMDA to prioritize candidate miRNAs for esophageal neoplasms based on HMDD v2.0. We further prioritize candidate miRNAs for breast neoplasms based on HMDD v1.0. The local LOOCV results and performance analysis of the case study all showed that the proposed model has good and stable performance.
Collapse
Affiliation(s)
- Jia Qu
- School of Computer Science and Artificial Intelligence & Aliyun School of Big Data, Changzhou University, Changzhou, China
| | - Chun-Chun Wang
- Information and Control Engineering, China University of Mining and Technology, Xuzhou, China
| | - Shu-Bin Cai
- College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China
| | - Wen-Di Zhao
- School of Computer Science and Artificial Intelligence & Aliyun School of Big Data, Changzhou University, Changzhou, China
| | - Xiao-Long Cheng
- School of Computer Science and Artificial Intelligence & Aliyun School of Big Data, Changzhou University, Changzhou, China
| | - Zhong Ming
- College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China
| |
Collapse
|
25
|
Zhu CC, Wang CC, Zhao Y, Zuo M, Chen X. Identification of miRNA-disease associations via multiple information integration with Bayesian ranking. Brief Bioinform 2021; 22:6338537. [PMID: 34347021 DOI: 10.1093/bib/bbab302] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/06/2021] [Accepted: 07/14/2021] [Indexed: 12/22/2022] Open
Abstract
In recent years, increasing microRNA (miRNA)-disease associations were identified through traditionally biological experiments. These associations contribute to revealing molecular mechanism of diseases and preventing and curing diseases. To improve the efficiency of miRNA-disease association discovery, some calculation methods were developed as auxiliary tools for researchers. In the current study, we raised a novel model named Bayesian Ranking for MiRNA-Disease Association prediction (BRMDA) by improving Bayesian Personalized Ranking from three aspects: (i) taking advantage of similarity of diseases and miRNAs; (ii) incorporating miRNA bias for miRNAs associated with different number of diseases; and (iii) implementing neighborhood-based approach for new miRNAs and diseases. For each investigated disease, BRMDA used the set of triples (i.e. disease, labeled miRNA, unlabeled miRNA) that reflected association preference of the disease to miRNAs as training set, which made full use of unknown samples rather than simply considering them as negative samples. To investigate the predictive performance of BRMDA, we employed leave-one-out cross-validation and obtained Area Under the Curve of 0.8697, which outperformed many classical methods. Besides, we further implemented three distinct classes of case studies for three common Neoplasms. As a result, there are 44 (Colon Neoplasms), 49 (Esophageal Neoplasms) and 49 (Lung Neoplasms) among the top 50 predicted miRNAs validated through experiments. In short, BRMDA would be a trustable tool for inferring valuable associations.
Collapse
Affiliation(s)
- Chi-Chi Zhu
- Artificial Intelligence Research Institute, China University of Mining and Technology, Xuzhou 221116, China.,School of Information and Control Engineering, China University of Mining and Technology, Xuzhou 221116, China
| | - Chun-Chun Wang
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou 221116, China
| | - Yan Zhao
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou 221116, China
| | - Mingcheng Zuo
- Artificial Intelligence Research Institute, China University of Mining and Technology, Xuzhou 221116, China
| | - Xing Chen
- Artificial Intelligence Research Institute, China University of Mining and Technology, Xuzhou 221116, China
| |
Collapse
|
26
|
Dai Q, Chu Y, Li Z, Zhao Y, Mao X, Wang Y, Xiong Y, Wei DQ. MDA-CF: Predicting MiRNA-Disease associations based on a cascade forest model by fusing multi-source information. Comput Biol Med 2021; 136:104706. [PMID: 34371319 DOI: 10.1016/j.compbiomed.2021.104706] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/26/2021] [Accepted: 07/26/2021] [Indexed: 01/17/2023]
Abstract
MicroRNAs (miRNAs) are significant regulators in various biological processes. They may become promising biomarkers or therapeutic targets, which provide a new perspective in diagnosis and treatment of multiple diseases. Since the experimental methods are always costly and resource-consuming, prediction of disease-related miRNAs using computational methods is in great need. In this study, we developed MDA-CF to identify underlying miRNA-disease associations based on a cascade forest model. In this method, multi-source information was integrated to represent miRNAs and diseases comprehensively, and the autoencoder was utilized for dimension reduction to obtain the optimal feature space. The cascade forest model was then employed for miRNA-disease association prediction. As a result, the average AUC of MDA-CF was 0.9464 on HMDD v3.2 in five-fold cross-validation. Compared with previous computational methods, MDA-CF performed better on HMDD v2.0 with an average AUC of 0.9258. Moreover, MDA-CF was implemented to investigate colon neoplasm, breast neoplasm, and gastric neoplasm, and 100%, 86%, 88% of the top 50 potential miRNAs were validated by authoritative databases. In conclusion, MDA-CF appears to be a reliable method to uncover disease-associated miRNAs. The source code of MDA-CF is available at https://github.com/a1622108/MDA-CF.
Collapse
Affiliation(s)
- Qiuying Dai
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yanyi Chu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhiqi Li
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yusong Zhao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xueying Mao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yanjing Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yi Xiong
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Dong-Qing Wei
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China; Peng Cheng Laboratory, Vanke Cloud City Phase I Building 8, Xili Street, Nanshan District, Shenzhen, Guangdong, 518055, China.
| |
Collapse
|
27
|
ShengPeng Y, Hong W. RSCMDA: Prediction of Potential miRNA-Disease Associations Based on a Robust Similarity Constraint Learning Method. Interdiscip Sci 2021; 13:559-571. [PMID: 34247324 DOI: 10.1007/s12539-021-00459-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 11/25/2022]
Abstract
With the rapid development of biotechnology and computer technology, increasing studies have shown that the occurrence of many diseases in the human body is closely related to the dysfunction of miRNA, and the relationship between them has become a new research hotspot. Exploring disease-related miRNAs information provides a new perspective for understanding the etiology and pathogenesis of diseases. In this study, we proposed a new method based on similarity constrained learning (RSCMDA) to infer disease-associated miRNAs. Considering the problems of noise and incomplete information in current biological datasets, we designed a new framework RSCMDA, which can learn a new disease similarity network and miRNA similarity network based on the existing biological information, and then update the predicted miRNA-disease associations using robust similarity constraint learning method. Consequently, the AUC scores obtained in the global and local cross-validation of RSCMDA are 0.9465 and 0.8494, respectively, which are superior to the other methods. Besides, the prediction performance of RSCMDA is further confirmed by the case study on lung Neoplasms, because 94% of the top 50 miRNAs predicted by the RSCMDA method are confirmed from the existing biological databases or research results. All the results show that RSCMDA is a reliable and effective framework, which can be used as new technology to explore the relationship between miRNA and disease.
Collapse
Affiliation(s)
- Yu ShengPeng
- School of Information Science and Engineering, Shandong Normal University, Jinan, 250358, China
| | - Wang Hong
- School of Information Science and Engineering, Shandong Normal University, Jinan, 250358, China.
| |
Collapse
|
28
|
Li HY, Chen HY, Wang L, Song SJ, You ZH, Yan X, Yu JQ. A structural deep network embedding model for predicting associations between miRNA and disease based on molecular association network. Sci Rep 2021; 11:12640. [PMID: 34135401 PMCID: PMC8209151 DOI: 10.1038/s41598-021-91991-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 04/30/2021] [Indexed: 02/05/2023] Open
Abstract
Previous studies indicated that miRNA plays an important role in human biological processes especially in the field of diseases. However, constrained by biotechnology, only a small part of the miRNA-disease associations has been verified by biological experiment. This impel that more and more researchers pay attention to develop efficient and high-precision computational methods for predicting the potential miRNA-disease associations. Based on the assumption that molecules are related to each other in human physiological processes, we developed a novel structural deep network embedding model (SDNE-MDA) for predicting miRNA-disease association using molecular associations network. Specifically, the SDNE-MDA model first integrating miRNA attribute information by Chao Game Representation (CGR) algorithm and disease attribute information by disease semantic similarity. Secondly, we extract feature by structural deep network embedding from the heterogeneous molecular associations network. Then, a comprehensive feature descriptor is constructed by combining attribute information and behavior information. Finally, Convolutional Neural Network (CNN) is adopted to train and classify these feature descriptors. In the five-fold cross validation experiment, SDNE-MDA achieved AUC of 0.9447 with the prediction accuracy of 87.38% on the HMDD v3.0 dataset. To further verify the performance of SDNE-MDA, we contrasted it with different feature extraction models and classifier models. Moreover, the case studies with three important human diseases, including Breast Neoplasms, Kidney Neoplasms, Lymphoma were implemented by the proposed model. As a result, 47, 46 and 46 out of top-50 predicted disease-related miRNAs have been confirmed by independent databases. These results anticipate that SDNE-MDA would be a reliable computational tool for predicting potential miRNA-disease associations.
Collapse
Affiliation(s)
- Hao-Yuan Li
- grid.411510.00000 0000 9030 231XSchool of Computer Science and Technology, China University of Mining and Technology, Xuzhou, 221116 China
| | - Hai-Yan Chen
- Xinjiang Autonomous Region tax Service, State Taxation Administration, Urumqi, 830011 China
| | - Lei Wang
- grid.9227.e0000000119573309Xinjiang Technical Institutes of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011 China
| | - Shen-Jian Song
- Science & Technology Department of Xinjiang Uygur Autonomous Region, Urumqi, 830011 China
| | - Zhu-Hong You
- grid.9227.e0000000119573309Xinjiang Technical Institutes of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011 China
| | - Xin Yan
- grid.411510.00000 0000 9030 231XSchool of Computer Science and Technology, China University of Mining and Technology, Xuzhou, 221116 China
| | - Jin-Qian Yu
- grid.411510.00000 0000 9030 231XSchool of Computer Science and Technology, China University of Mining and Technology, Xuzhou, 221116 China
| |
Collapse
|
29
|
Chu Y, Wang X, Dai Q, Wang Y, Wang Q, Peng S, Wei X, Qiu J, Salahub DR, Xiong Y, Wei DQ. MDA-GCNFTG: identifying miRNA-disease associations based on graph convolutional networks via graph sampling through the feature and topology graph. Brief Bioinform 2021; 22:6261915. [PMID: 34009265 DOI: 10.1093/bib/bbab165] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/02/2021] [Accepted: 04/08/2021] [Indexed: 11/13/2022] Open
Abstract
Accurate identification of the miRNA-disease associations (MDAs) helps to understand the etiology and mechanisms of various diseases. However, the experimental methods are costly and time-consuming. Thus, it is urgent to develop computational methods towards the prediction of MDAs. Based on the graph theory, the MDA prediction is regarded as a node classification task in the present study. To solve this task, we propose a novel method MDA-GCNFTG, which predicts MDAs based on Graph Convolutional Networks (GCNs) via graph sampling through the Feature and Topology Graph to improve the training efficiency and accuracy. This method models both the potential connections of feature space and the structural relationships of MDA data. The nodes of the graphs are represented by the disease semantic similarity, miRNA functional similarity and Gaussian interaction profile kernel similarity. Moreover, we considered six tasks simultaneously on the MDA prediction problem at the first time, which ensure that under both balanced and unbalanced sample distribution, MDA-GCNFTG can predict not only new MDAs but also new diseases without known related miRNAs and new miRNAs without known related diseases. The results of 5-fold cross-validation show that the MDA-GCNFTG method has achieved satisfactory performance on all six tasks and is significantly superior to the classic machine learning methods and the state-of-the-art MDA prediction methods. Moreover, the effectiveness of GCNs via the graph sampling strategy and the feature and topology graph in MDA-GCNFTG has also been demonstrated. More importantly, case studies for two diseases and three miRNAs are conducted and achieved satisfactory performance.
Collapse
Affiliation(s)
- Yanyi Chu
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, China
| | - Xuhong Wang
- School of Electronic, Information and Electrical Engineering (SEIEE), Shanghai Jiao Tong University, China
| | - Qiuying Dai
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, China
| | - Yanjing Wang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, China
| | - Qiankun Wang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, China
| | - Shaoliang Peng
- College of Computer Science and Electronic Engineering, Hunan University, China
| | | | | | - Dennis Russell Salahub
- Department of Chemistry, University of Calgary, Fellow Royal Society of Canada and Fellow of the American Association for the Advancement of Science, China
| | - Yi Xiong
- State Key Laboratory of Microbial Metabolism, Shanghai-Islamabad-Belgrade Joint Innovation Center on Antibacterial Resistances, Joint International Research Laboratory of Metabolic & Developmental Sciences and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Dong-Qing Wei
- State Key Laboratory of Microbial Metabolism, Shanghai-Islamabad-Belgrade Joint Innovation Center on Antibacterial Resistances, Joint International Research Laboratory of Metabolic & Developmental Sciences and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| |
Collapse
|
30
|
Zhang W, Li Z, Guo W, Yang W, Huang F. A Fast Linear Neighborhood Similarity-Based Network Link Inference Method to Predict MicroRNA-Disease Associations. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2021; 18:405-415. [PMID: 31369383 DOI: 10.1109/tcbb.2019.2931546] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Increasing evidences revealed that microRNAs (miRNAs) play critical roles in important biological processes. The identification of disease-related miRNAs is critical to understand the molecular mechanisms of human diseases. Most existing computational methods require diverse features to predict miRNA-disease associations. However, diverse features are not available for all miRNAs or diseases. In addition, most methods can't predict links for miRNAs or diseases without association information. In this paper, we propose a fast linear neighborhood similarity-based network link inference method, named FLNSNLI, to predict miRNA-disease associations. First, known miRNA-disease associations are formulated as a bipartite network, and miRNAs (or diseases) are expressed as association profiles. Second, miRNA-miRNA similarity and disease-disease similarity are calculated by fast linear neighborhood similarity measure and association profiles. Third, the label propagation algorithm is respectively implemented on two sides to score candidate miRNA-disease associations. Finally, FLNSNLI adopts the weighted average strategy and makes predictions. Moreover, we develop a link complementing approach, and extend FLNSNLI to predict links for miRNAs (or diseases) without known associations. In computational experiments, FLNSNLI produces high-accuracy performances, and outperforms other state-of-the-art methods. More importantly, FLNSNLI requires less information but performs well. Case studies on three popular diseases show that FLNSNLI is useful for the microRNA-disease association prediction.
Collapse
|
31
|
Ding Y, Jiang L, Tang J, Guo F. Identification of human microRNA-disease association via hypergraph embedded bipartite local model. Comput Biol Chem 2020; 89:107369. [DOI: 10.1016/j.compbiolchem.2020.107369] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/03/2020] [Accepted: 08/31/2020] [Indexed: 12/16/2022]
|
32
|
Wang M, Zhu P. MRWMDA: A novel framework to infer miRNA-disease associations. Biosystems 2020; 199:104292. [PMID: 33221377 DOI: 10.1016/j.biosystems.2020.104292] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 10/31/2020] [Accepted: 11/15/2020] [Indexed: 01/03/2023]
Abstract
MicroRNAs (miRNAs) are widely involved in a series of significant biological processes, which have been revealed and verified by accumulating experimental studies. The computational inference of the correlation between miRNAs and diseases is essential to facilitate the detection of disease biomarkers for disease diagnosis, prevention, treatment and prognosis. In this paper, a model with Multiple use of Random Walk with restart algorithm was introduced for the prediction of the MiRNA-Disease Association (MRWMDA). Based on diverse similarity measures, the model first implemented the random walk with restart (RWR) algorithm on the integrated similarity network to construct the topological similarity of miRNAs and diseases, which took full advantage of the network topology information. Then, the RWR algorithm was applied in the miRNA topological similarity network, and a steady probability of each miRNA-disease pair was obtained to prioritize miRNA candidates. In particular, the initial probability of the RWR algorithm was determined by utilizing the combination of the recommendation algorithm and the maximum similarity method. The proposed model achieved significant improvement in prediction compared with previous models, with an AUC of 0.9353 and an AUPR of 0.4809. In addition, case studies of breast neoplasms and lung neoplasms representing different disease types further demonstrated the excellent ability of MRWMDA in detecting potential disease-associated miRNAs. These performance analyses indicated that MRWMDA could be an effective and powerful biological computational tool in relevant biomedical studies.
Collapse
Affiliation(s)
- Meixi Wang
- School of Science, Jiangnan University, Wuxi 214122, China
| | - Ping Zhu
- School of Science, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
33
|
Zhang L, Liu B, Li Z, Zhu X, Liang Z, An J. Predicting MiRNA-disease associations by multiple meta-paths fusion graph embedding model. BMC Bioinformatics 2020; 21:470. [PMID: 33087064 PMCID: PMC7579830 DOI: 10.1186/s12859-020-03765-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 09/17/2020] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Many studies prove that miRNAs have significant roles in diagnosing and treating complex human diseases. However, conventional biological experiments are too costly and time-consuming to identify unconfirmed miRNA-disease associations. Thus, computational models predicting unidentified miRNA-disease pairs in an efficient way are becoming promising research topics. Although existing methods have performed well to reveal unidentified miRNA-disease associations, more work is still needed to improve prediction performance. RESULTS In this work, we present a novel multiple meta-paths fusion graph embedding model to predict unidentified miRNA-disease associations (M2GMDA). Our method takes full advantage of the complex structure and rich semantic information of miRNA-disease interactions in a self-learning way. First, a miRNA-disease heterogeneous network was derived from verified miRNA-disease pairs, miRNA similarity and disease similarity. All meta-path instances connecting miRNAs with diseases were extracted to describe intrinsic information about miRNA-disease interactions. Then, we developed a graph embedding model to predict miRNA-disease associations. The model is composed of linear transformations of miRNAs and diseases, the means encoder of a single meta-path instance, the attention-aware encoder of meta-path type and attention-aware multiple meta-path fusion. We innovatively integrated meta-path instances, meta-path based neighbours, intermediate nodes in meta-paths and more information to strengthen the prediction in our model. In particular, distinct contributions of different meta-path instances and meta-path types were combined with attention mechanisms. The data sets and source code that support the findings of this study are available at https://github.com/dangdangzhang/M2GMDA . CONCLUSIONS M2GMDA achieved AUCs of 0.9323 and 0.9182 in global leave-one-out cross validation and fivefold cross validation with HDMM V2.0. The results showed that our method outperforms other prediction methods. Three kinds of case studies with lung neoplasms, breast neoplasms, prostate neoplasms, pancreatic neoplasms, lymphoma and colorectal neoplasms demonstrated that 47, 50, 49, 48, 50 and 50 out of the top 50 candidate miRNAs predicted by M2GMDA were validated by biological experiments. Therefore, it further confirms the prediction performance of our method.
Collapse
Affiliation(s)
- Lei Zhang
- Engineering Research Center of Mine Digitalization of Ministry of Education, China University of Mining and Technology, Xuzhou, China
- School of Computer Science and Technology, China University of Mining and Technology, Xuzhou, China
| | - Bailong Liu
- Engineering Research Center of Mine Digitalization of Ministry of Education, China University of Mining and Technology, Xuzhou, China.
- School of Computer Science and Technology, China University of Mining and Technology, Xuzhou, China.
| | - Zhengwei Li
- Engineering Research Center of Mine Digitalization of Ministry of Education, China University of Mining and Technology, Xuzhou, China.
- School of Computer Science and Technology, China University of Mining and Technology, Xuzhou, China.
| | - Xiaoyan Zhu
- Engineering Research Center of Mine Digitalization of Ministry of Education, China University of Mining and Technology, Xuzhou, China
- School of Computer Science and Technology, China University of Mining and Technology, Xuzhou, China
| | - Zhizhen Liang
- Engineering Research Center of Mine Digitalization of Ministry of Education, China University of Mining and Technology, Xuzhou, China
- School of Computer Science and Technology, China University of Mining and Technology, Xuzhou, China
| | - Jiyong An
- Engineering Research Center of Mine Digitalization of Ministry of Education, China University of Mining and Technology, Xuzhou, China
- School of Computer Science and Technology, China University of Mining and Technology, Xuzhou, China
| |
Collapse
|
34
|
Li Z, Li J, Nie R, You ZH, Bao W. A graph auto-encoder model for miRNA-disease associations prediction. Brief Bioinform 2020; 22:5929824. [PMID: 34293850 DOI: 10.1093/bib/bbaa240] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 02/06/2023] Open
Abstract
Emerging evidence indicates that the abnormal expression of miRNAs involves in the evolution and progression of various human complex diseases. Identifying disease-related miRNAs as new biomarkers can promote the development of disease pathology and clinical medicine. However, designing biological experiments to validate disease-related miRNAs is usually time-consuming and expensive. Therefore, it is urgent to design effective computational methods for predicting potential miRNA-disease associations. Inspired by the great progress of graph neural networks in link prediction, we propose a novel graph auto-encoder model, named GAEMDA, to identify the potential miRNA-disease associations in an end-to-end manner. More specifically, the GAEMDA model applies a graph neural networks-based encoder, which contains aggregator function and multi-layer perceptron for aggregating nodes' neighborhood information, to generate the low-dimensional embeddings of miRNA and disease nodes and realize the effective fusion of heterogeneous information. Then, the embeddings of miRNA and disease nodes are fed into a bilinear decoder to identify the potential links between miRNA and disease nodes. The experimental results indicate that GAEMDA achieves the average area under the curve of $93.56\pm 0.44\%$ under 5-fold cross-validation. Besides, we further carried out case studies on colon neoplasms, esophageal neoplasms and kidney neoplasms. As a result, 48 of the top 50 predicted miRNAs associated with these diseases are confirmed by the database of differentially expressed miRNAs in human cancers and microRNA deregulation in human disease database, respectively. The satisfactory prediction performance suggests that GAEMDA model could serve as a reliable tool to guide the following researches on the regulatory role of miRNAs. Besides, the source codes are available at https://github.com/chimianbuhetang/GAEMDA.
Collapse
Affiliation(s)
- Zhengwei Li
- Engineering Research Center of Mine Digitalization of Ministry of Education and School of Computer Science and Technology, China University of Mining and Technology
| | - Jiashu Li
- School of Computer Science and Technology, China University of Mining and Technology
| | - Ru Nie
- School of Computer Science and Technology, China University of Mining and Technology
| | - Zhu-Hong You
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Science
| | - Wenzheng Bao
- School of Information Engineering, Xuzhou University of Technology
| |
Collapse
|
35
|
Chen X, Li TH, Zhao Y, Wang CC, Zhu CC. Deep-belief network for predicting potential miRNA-disease associations. Brief Bioinform 2020; 22:5898648. [PMID: 34020550 DOI: 10.1093/bib/bbaa186] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/09/2020] [Accepted: 07/21/2020] [Indexed: 12/14/2022] Open
Abstract
MicroRNA (miRNA) plays an important role in the occurrence, development, diagnosis and treatment of diseases. More and more researchers begin to pay attention to the relationship between miRNA and disease. Compared with traditional biological experiments, computational method of integrating heterogeneous biological data to predict potential associations can effectively save time and cost. Considering the limitations of the previous computational models, we developed the model of deep-belief network for miRNA-disease association prediction (DBNMDA). We constructed feature vectors to pre-train restricted Boltzmann machines for all miRNA-disease pairs and applied positive samples and the same number of selected negative samples to fine-tune DBN to obtain the final predicted scores. Compared with the previous supervised models that only use pairs with known label for training, DBNMDA innovatively utilizes the information of all miRNA-disease pairs during the pre-training process. This step could reduce the impact of too few known associations on prediction accuracy to some extent. DBNMDA achieves the AUC of 0.9104 based on global leave-one-out cross validation (LOOCV), the AUC of 0.8232 based on local LOOCV and the average AUC of 0.9048 ± 0.0026 based on 5-fold cross validation. These AUCs are better than other previous models. In addition, three different types of case studies for three diseases were implemented to demonstrate the accuracy of DBNMDA. As a result, 84% (breast neoplasms), 100% (lung neoplasms) and 88% (esophageal neoplasms) of the top 50 predicted miRNAs were verified by recent literature. Therefore, we could conclude that DBNMDA is an effective method to predict potential miRNA-disease associations.
Collapse
Affiliation(s)
- Xing Chen
- Artificial Intelligence Research Institute, China University of Mining and Technology
| | - Tian-Hao Li
- School of Information and Control Engineering, China University of Mining and Technology
| | - Yan Zhao
- School of Information and Control Engineering, China University of Mining and Technology
| | - Chun-Chun Wang
- School of Information and Control Engineering, China University of Mining and Technology
| | - Chi-Chi Zhu
- School of Information and Control Engineering, China University of Mining and Technology
| |
Collapse
|
36
|
FCGCNMDA: predicting miRNA-disease associations by applying fully connected graph convolutional networks. Mol Genet Genomics 2020; 295:1197-1209. [DOI: 10.1007/s00438-020-01693-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 05/27/2020] [Indexed: 01/02/2023]
|
37
|
Yan C, Wu FX, Wang J, Duan G. PESM: predicting the essentiality of miRNAs based on gradient boosting machines and sequences. BMC Bioinformatics 2020; 21:111. [PMID: 32183740 PMCID: PMC7079416 DOI: 10.1186/s12859-020-3426-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 02/21/2020] [Indexed: 11/16/2022] Open
Abstract
Background MicroRNAs (miRNAs) are a kind of small noncoding RNA molecules that are direct posttranscriptional regulations of mRNA targets. Studies have indicated that miRNAs play key roles in complex diseases by taking part in many biological processes, such as cell growth, cell death and so on. Therefore, in order to improve the effectiveness of disease diagnosis and treatment, it is appealing to develop advanced computational methods for predicting the essentiality of miRNAs. Result In this study, we propose a method (PESM) to predict the miRNA essentiality based on gradient boosting machines and miRNA sequences. First, PESM extracts the sequence and structural features of miRNAs. Then it uses gradient boosting machines to predict the essentiality of miRNAs. We conduct the 5-fold cross-validation to assess the prediction performance of our method. The area under the receiver operating characteristic curve (AUC), F-measure and accuracy (ACC) are used as the metrics to evaluate the prediction performance. We also compare PESM with other three competing methods which include miES, Gaussian Naive Bayes and Support Vector Machine. Conclusion The results of experiments show that PESM achieves the better prediction performance (AUC: 0.9117, F-measure: 0.8572, ACC: 0.8516) than other three computing methods. In addition, the relative importance of all features also further shows that newly added features can be helpful to improve the prediction performance of methods.
Collapse
Affiliation(s)
- Cheng Yan
- Hunan Provincial Key Lab on Bioinformtics, School of Computer Science and Engineering, Central South University, 932 South Lushan Rd, ChangSha, 410083, China.,School of Computer and Information,Qiannan Normal University for Nationalities, Longshan Road, DuYun, 558000, China
| | - Fang-Xiang Wu
- Biomedical Engineering and Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, SKS7N5A9, Canada
| | - Jianxin Wang
- Hunan Provincial Key Lab on Bioinformtics, School of Computer Science and Engineering, Central South University, 932 South Lushan Rd, ChangSha, 410083, China
| | - Guihua Duan
- Hunan Provincial Key Lab on Bioinformtics, School of Computer Science and Engineering, Central South University, 932 South Lushan Rd, ChangSha, 410083, China.
| |
Collapse
|
38
|
Sui M, Wang Z, Xi D, Wang H. miR‐142‐5P regulates triglyceride by targeting
CTNNB1
in goat mammary epithelial cells. Reprod Domest Anim 2020; 55:613-623. [DOI: 10.1111/rda.13660] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 02/20/2020] [Indexed: 12/23/2022]
Affiliation(s)
- MeiXia Sui
- College of Biological and Agricultural Engineering Weifang University Weifang China
- Shandong Key Laboratory of Biochemistry and Molecular Biology in Universities Weifang University Weifang China
| | - ZongWei Wang
- Administrative Examination and Approval Service Bureau of Shouguang Weifang China
| | - Dan Xi
- College of Biological and Agricultural Engineering Weifang University Weifang China
- Shandong Key Laboratory of Biochemistry and Molecular Biology in Universities Weifang University Weifang China
| | - HanHai Wang
- College of Biological and Agricultural Engineering Weifang University Weifang China
- Shandong Key Laboratory of Biochemistry and Molecular Biology in Universities Weifang University Weifang China
| |
Collapse
|
39
|
Peng LH, Zhou LQ, Chen X, Piao X. A Computational Study of Potential miRNA-Disease Association Inference Based on Ensemble Learning and Kernel Ridge Regression. Front Bioeng Biotechnol 2020; 8:40. [PMID: 32117922 PMCID: PMC7015868 DOI: 10.3389/fbioe.2020.00040] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 01/17/2020] [Indexed: 12/11/2022] Open
Abstract
As increasing experimental studies have shown that microRNAs (miRNAs) are closely related to multiple biological processes and the prevention, diagnosis and treatment of human diseases, a growing number of researchers are focusing on the identification of associations between miRNAs and diseases. Identifying such associations purely via experiments is costly and demanding, which prompts researchers to develop computational methods to complement the experiments. In this paper, a novel prediction model named Ensemble of Kernel Ridge Regression based MiRNA-Disease Association prediction (EKRRMDA) was developed. EKRRMDA obtained features of miRNAs and diseases by integrating the disease semantic similarity, the miRNA functional similarity and the Gaussian interaction profile kernel similarity for diseases and miRNAs. Under the computational framework that utilized ensemble learning and feature dimensionality reduction, multiple base classifiers that combined two Kernel Ridge Regression classifiers from the miRNA side and disease side, respectively, were obtained based on random selection of features. Then average strategy for these base classifiers was adopted to obtain final association scores of miRNA-disease pairs. In the global and local leave-one-out cross validation, EKRRMDA attained the AUCs of 0.9314 and 0.8618, respectively. Moreover, the model’s average AUC with standard deviation in 5-fold cross validation was 0.9275 ± 0.0008. In addition, we implemented three different types of case studies on predicting miRNAs associated with five important diseases. As a result, there were 90% (Esophageal Neoplasms), 86% (Kidney Neoplasms), 86% (Lymphoma), 98% (Lung Neoplasms), and 96% (Breast Neoplasms) of the top 50 predicted miRNAs verified to have associations with these diseases.
Collapse
Affiliation(s)
- Li-Hong Peng
- School of Computer Science, Hunan University of Technology, Zhuzhou, China
| | - Li-Qian Zhou
- School of Computer Science, Hunan University of Technology, Zhuzhou, China
| | - Xing Chen
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, China
| | - Xue Piao
- School of Medical Informatics, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
40
|
Wu M, Yang Y, Wang H, Ding J, Zhu H, Xu Y. IMPMD: An Integrated Method for Predicting Potential Associations Between miRNAs and Diseases. Curr Genomics 2020; 20:581-591. [PMID: 32581646 PMCID: PMC7290057 DOI: 10.2174/1389202920666191023090215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/07/2019] [Accepted: 10/16/2019] [Indexed: 01/06/2023] Open
Abstract
Background With the rapid development of biological research, microRNAs (miRNAs) have increasingly attracted worldwide attention. The increasing biological studies and scientific experiments have proven that miRNAs are related to the occurrence and development of a large number of key biological processes which cause complex human diseases. Thus, identifying the association between miRNAs and disease is helpful to diagnose the diseases. Although some studies have found considerable associations between miRNAs and diseases, there are still a lot of associations that need to be identified. Experimental methods to uncover miRNA-disease associations are time-consuming and expensive. Therefore, effective computational methods are urgently needed to predict new associations. Methodology In this work, we propose an integrated method for predicting potential associations between miRNAs and diseases (IMPMD). The enhanced similarity for miRNAs is obtained by combination of functional similarity, gaussian similarity and Jaccard similarity. To diseases, it is obtained by combination of semantic similarity, gaussian similarity and Jaccard similarity. Then, we use these two enhanced similarities to construct the features and calculate cumulative score to choose robust features. Finally, the general linear regression is applied to assign weights for Support Vector Machine, K-Nearest Neighbor and Logistic Regression algorithms. Results IMPMD obtains AUC of 0.9386 in 10-fold cross-validation, which is better than most of the previous models. To further evaluate our model, we implement IMPMD on two types of case studies for lung cancer and breast cancer. 49 (Lung Cancer) and 50 (Breast Cancer) out of the top 50 related miRNAs are validated by experimental discoveries. Conclusion We built a software named IMPMD which can be freely downloaded from https://github.com/Sunmile/IMPMD.
Collapse
Affiliation(s)
- Meiqi Wu
- 1Department of Information and Computer Science, University of Science and Technology Beijing, Beijing100083, China; 2Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology, Hong Kong, China; 3Institute of Computing Technology, Chinese Academy of Sciences, Beijing100080, China
| | - Yingxi Yang
- 1Department of Information and Computer Science, University of Science and Technology Beijing, Beijing100083, China; 2Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology, Hong Kong, China; 3Institute of Computing Technology, Chinese Academy of Sciences, Beijing100080, China
| | - Hui Wang
- 1Department of Information and Computer Science, University of Science and Technology Beijing, Beijing100083, China; 2Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology, Hong Kong, China; 3Institute of Computing Technology, Chinese Academy of Sciences, Beijing100080, China
| | - Jun Ding
- 1Department of Information and Computer Science, University of Science and Technology Beijing, Beijing100083, China; 2Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology, Hong Kong, China; 3Institute of Computing Technology, Chinese Academy of Sciences, Beijing100080, China
| | - Huan Zhu
- 1Department of Information and Computer Science, University of Science and Technology Beijing, Beijing100083, China; 2Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology, Hong Kong, China; 3Institute of Computing Technology, Chinese Academy of Sciences, Beijing100080, China
| | - Yan Xu
- 1Department of Information and Computer Science, University of Science and Technology Beijing, Beijing100083, China; 2Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology, Hong Kong, China; 3Institute of Computing Technology, Chinese Academy of Sciences, Beijing100080, China
| |
Collapse
|
41
|
Chen X, Sun LG, Zhao Y. NCMCMDA: miRNA-disease association prediction through neighborhood constraint matrix completion. Brief Bioinform 2020; 22:485-496. [PMID: 31927572 DOI: 10.1093/bib/bbz159] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 11/01/2019] [Accepted: 11/11/2019] [Indexed: 12/13/2022] Open
Abstract
Emerging evidence shows that microRNAs (miRNAs) play a critical role in diverse fundamental and important biological processes associated with human diseases. Inferring potential disease related miRNAs and employing them as the biomarkers or drug targets could contribute to the prevention, diagnosis and treatment of complex human diseases. In view of that traditional biological experiments cost much time and resources, computational models would serve as complementary means to uncover potential miRNA-disease associations. In this study, we proposed a new computational model named Neighborhood Constraint Matrix Completion for MiRNA-Disease Association prediction (NCMCMDA) to predict potential miRNA-disease associations. The main task of NCMCMDA was to recover the missing miRNA-disease associations based on the known miRNA-disease associations and integrated disease (miRNA) similarity. In this model, we innovatively integrated neighborhood constraint with matrix completion, which provided a novel idea of utilizing similarity information to assist the prediction. After the recovery task was transformed into an optimization problem, we solved it with a fast iterative shrinkage-thresholding algorithm. As a result, the AUCs of NCMCMDA in global and local leave-one-out cross validation were 0.9086 and 0.8453, respectively. In 5-fold cross validation, NCMCMDA achieved an average AUC of 0.8942 and standard deviation of 0.0015, which demonstrated NCMCMDA's superior performance than many previous computational methods. Furthermore, NCMCMDA was applied to three different types of case studies to further evaluate its prediction reliability and accuracy. As a result, 84% (colon neoplasms), 98% (esophageal neoplasms) and 98% (breast neoplasms) of the top 50 predicted miRNAs were verified by recent literature.
Collapse
Affiliation(s)
- Xing Chen
- School of Information and Control Engineering, China University of Mining and Technology
| | - Lian-Gang Sun
- School of Information and Control Engineering, China University of Mining and Technology
| | - Yan Zhao
- School of Information and Control Engineering, China University of Mining and Technology
| |
Collapse
|
42
|
Li J, Zhang S, Liu T, Ning C, Zhang Z, Zhou W. Neural inductive matrix completion with graph convolutional networks for miRNA-disease association prediction. Bioinformatics 2020; 36:2538-2546. [DOI: 10.1093/bioinformatics/btz965] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 12/17/2019] [Accepted: 12/31/2019] [Indexed: 12/26/2022] Open
Abstract
AbstractMotivationPredicting the association between microRNAs (miRNAs) and diseases plays an import role in identifying human disease-related miRNAs. As identification of miRNA-disease associations via biological experiments is time-consuming and expensive, computational methods are currently used as effective complements to determine the potential associations between disease and miRNA.ResultsWe present a novel method of neural inductive matrix completion with graph convolutional network (NIMCGCN) for predicting miRNA-disease association. NIMCGCN first uses graph convolutional networks to learn miRNA and disease latent feature representations from the miRNA and disease similarity networks. Then, learned features were input into a novel neural inductive matrix completion (NIMC) model to generate an association matrix completion. The parameters of NIMCGCN were learned based on the known miRNA-disease association data in a supervised end-to-end way. We compared the proposed method with other state-of-the-art methods. The area under the receiver operating characteristic curve results showed that our method is significantly superior to existing methods. Furthermore, 50, 47 and 48 of the top 50 predicted miRNAs for three high-risk human diseases, namely, colon cancer, lymphoma and kidney cancer, were verified using experimental literature. Finally, 100% prediction accuracy was achieved when breast cancer was used as a case study to evaluate the ability of NIMCGCN for predicting a new disease without any known related miRNAs.Availability and implementationhttps://github.com/ljatynu/NIMCGCN/Supplementary informationSupplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Jin Li
- School of Software, Yunnan University, Kunming 650091, China
| | - Sai Zhang
- School of Software, Yunnan University, Kunming 650091, China
| | - Tao Liu
- School of Software, Yunnan University, Kunming 650091, China
| | - Chenxi Ning
- School of Software, Yunnan University, Kunming 650091, China
| | - Zhuoxuan Zhang
- School of Software, Yunnan University, Kunming 650091, China
| | - Wei Zhou
- School of Software, Yunnan University, Kunming 650091, China
| |
Collapse
|
43
|
Potential miRNA-disease association prediction based on kernelized Bayesian matrix factorization. Genomics 2020; 112:809-819. [DOI: 10.1016/j.ygeno.2019.05.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/09/2019] [Accepted: 05/24/2019] [Indexed: 12/19/2022]
|
44
|
An improved random forest-based computational model for predicting novel miRNA-disease associations. BMC Bioinformatics 2019; 20:624. [PMID: 31795954 PMCID: PMC6889672 DOI: 10.1186/s12859-019-3290-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 11/21/2019] [Indexed: 01/29/2023] Open
Abstract
Background A large body of evidence shows that miRNA regulates the expression of its target genes at post-transcriptional level and the dysregulation of miRNA is related to many complex human diseases. Accurately discovering disease-related miRNAs is conductive to the exploring of the pathogenesis and treatment of diseases. However, because of the limitation of time-consuming and expensive experimental methods, predicting miRNA-disease associations by computational models has become a more economical and effective mean. Results Inspired by the work of predecessors, we proposed an improved computational model based on random forest (RF) for identifying miRNA-disease associations (IRFMDA). First, the integrated similarity of diseases and the integrated similarity of miRNAs were calculated by combining the semantic similarity and Gaussian interaction profile kernel (GIPK) similarity of diseases, the functional similarity and GIPK similarity of miRNAs, respectively. Then, the integrated similarity of diseases and the integrated similarity of miRNAs were combined to represent each miRNA-disease relationship pair. Next, the miRNA-disease relationship pairs contained in the HMDD (v2.0) database were considered positive samples, and the randomly constructed miRNA-disease relationship pairs not included in HMDD (v2.0) were considered negative samples. Next, the feature selection based on the variable importance score of RF was performed to choose more useful features to represent samples to optimize the model’s ability of inferring miRNA-disease associations. Finally, a RF regression model was trained on reduced sample space to score the unknown miRNA-disease associations. The AUCs of IRFMDA under local leave-one-out cross-validation (LOOCV), global LOOCV and 5-fold cross-validation achieved 0.8728, 0.9398 and 0.9363, which were better than several excellent models for predicting miRNA-disease associations. Moreover, case studies on oesophageal cancer, lymphoma and lung cancer showed that 94 (oesophageal cancer), 98 (lymphoma) and 100 (lung cancer) of the top 100 disease-associated miRNAs predicted by IRFMDA were supported by the experimental data in the dbDEMC (v2.0) database. Conclusions Cross-validation and case studies demonstrated that IRFMDA is an excellent miRNA-disease association prediction model, and can provide guidance and help for experimental studies on the regulatory mechanism of miRNAs in complex human diseases in the future.
Collapse
|
45
|
Guan NN, Wang CC, Zhang L, Huang L, Li JQ, Piao X. In silico prediction of potential miRNA-disease association using an integrative bioinformatics approach based on kernel fusion. J Cell Mol Med 2019; 24:573-587. [PMID: 31747722 PMCID: PMC6933403 DOI: 10.1111/jcmm.14765] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 08/13/2019] [Accepted: 09/20/2019] [Indexed: 12/18/2022] Open
Abstract
Accumulating experimental evidence has demonstrated that microRNAs (miRNAs) have a huge impact on numerous critical biological processes and they are associated with different complex human diseases. Nevertheless, the task to predict potential miRNAs related to diseases remains difficult. In this paper, we developed a Kernel Fusion-based Regularized Least Squares for MiRNA-Disease Association prediction model (KFRLSMDA), which applied kernel fusion technique to fuse similarity matrices and then utilized regularized least squares to predict potential miRNA-disease associations. To prove the effectiveness of KFRLSMDA, we adopted leave-one-out cross-validation (LOOCV) and 5-fold cross-validation and then compared KFRLSMDA with 10 previous computational models (MaxFlow, MiRAI, MIDP, RKNNMDA, MCMDA, HGIMDA, RLSMDA, HDMP, WBSMDA and RWRMDA). Outperforming other models, KFRLSMDA achieved AUCs of 0.9246 in global LOOCV, 0.8243 in local LOOCV and average AUC of 0.9175 ± 0.0008 in 5-fold cross-validation. In addition, respectively, 96%, 100% and 90% of the top 50 potential miRNAs for breast neoplasms, colon neoplasms and oesophageal neoplasms were confirmed by experimental discoveries. We also predicted potential miRNAs related to hepatocellular cancer by removing all known related miRNAs of this cancer and 98% of the top 50 potential miRNAs were verified. Furthermore, we predicted potential miRNAs related to lymphoma using the data set in the old version of the HMDD database and 80% of the top 50 potential miRNAs were confirmed. Therefore, it can be concluded that KFRLSMDA has reliable prediction performance.
Collapse
Affiliation(s)
- Na-Na Guan
- College of Big Data Statistics, Guizhou University of Finance and Economics, Guiyang, China.,College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China
| | - Chun-Chun Wang
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, China
| | - Li Zhang
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, China
| | - Li Huang
- Academy of Arts and Design, Tsinghua University, Beijing, China.,The Future Laboratory, Tsinghua University, Beijing, China
| | - Jian-Qiang Li
- College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China
| | - Xue Piao
- School of Medical Informatics, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
46
|
Chen X, Wang L, Qu J, Guan NN, Li JQ. Predicting miRNA-disease association based on inductive matrix completion. Bioinformatics 2019; 34:4256-4265. [PMID: 29939227 DOI: 10.1093/bioinformatics/bty503] [Citation(s) in RCA: 255] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Accepted: 06/20/2018] [Indexed: 12/17/2022] Open
Abstract
Motivation It has been shown that microRNAs (miRNAs) play key roles in variety of biological processes associated with human diseases. In Consideration of the cost and complexity of biological experiments, computational methods for predicting potential associations between miRNAs and diseases would be an effective complement. Results This paper presents a novel model of Inductive Matrix Completion for MiRNA-Disease Association prediction (IMCMDA). The integrated miRNA similarity and disease similarity are calculated based on miRNA functional similarity, disease semantic similarity and Gaussian interaction profile kernel similarity. The main idea is to complete the missing miRNA-disease association based on the known associations and the integrated miRNA similarity and disease similarity. IMCMDA achieves AUC of 0.8034 based on leave-one-out-cross-validation and improved previous models. In addition, IMCMDA was applied to five common human diseases in three types of case studies. In the first type, respectively, 42, 44, 45 out of top 50 predicted miRNAs of Colon Neoplasms, Kidney Neoplasms, Lymphoma were confirmed by experimental reports. In the second type of case study for new diseases without any known miRNAs, we chose Breast Neoplasms as the test example by hiding the association information between the miRNAs and Breast Neoplasms. As a result, 50 out of top 50 predicted Breast Neoplasms-related miRNAs are verified. In the third type of case study, IMCMDA was tested on HMDD V1.0 to assess the robustness of IMCMDA, 49 out of top 50 predicted Esophageal Neoplasms-related miRNAs are verified. Availability and implementation The code and dataset of IMCMDA are freely available at https://github.com/IMCMDAsourcecode/IMCMDA. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Xing Chen
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, China
| | - Lei Wang
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, China
| | - Jia Qu
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, China
| | - Na-Na Guan
- College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China
| | - Jian-Qiang Li
- College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China
| |
Collapse
|
47
|
Zhang Y, Chen M, Cheng X, Chen Z. LSGSP: a novel miRNA-disease association prediction model using a Laplacian score of the graphs and space projection federated method. RSC Adv 2019; 9:29747-29759. [PMID: 35531537 PMCID: PMC9071959 DOI: 10.1039/c9ra05554a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 09/09/2019] [Indexed: 12/31/2022] Open
Abstract
Lots of research findings have indicated that miRNAs (microRNAs) are involved in many important biological processes; their mutations and disorders are closely related to diseases, therefore, determining the associations between human diseases and miRNAs is key to understand pathogenic mechanisms. Existing biological experimental methods for identifying miRNA-disease associations are usually expensive and time consuming. Therefore, the development of efficient and reliable computational methods for identifying disease-related miRNAs has become an important topic in the field of biological research in recent years. In this study, we developed a novel miRNA-disease association prediction model using a Laplacian score of the graphs and space projection federated method (LSGSP). This integrates experimentally validated miRNA-disease associations, disease semantic similarity scores, miRNA functional scores, and miRNA family information to build a new disease similarity network and miRNA similarity network, and then obtains the global similarities of these networks through calculating the Laplacian score of the graphs, based on which the miRNA-disease weighted network can be constructed through combination with the miRNA-disease Boolean network. Finally, the miRNA-disease score was obtained via projecting the miRNA space and disease space onto the miRNA-disease weighted network. Compared with several other state-of-the-art methods, using leave-one-out cross validation (LOOCV) to evaluate the accuracy of LSGSP with respect to a benchmark dataset, prediction dataset and compare dataset, LSGSP showed excellent predictive performance with high AUC values of 0.9221, 0.9745 and 0.9194, respectively. In addition, for prostate neoplasms and lung neoplasms, the consistencies between the top 50 predicted miRNAs (obtained from LSGSP) and the results (confirmed from the updated HMDD, miR2Disease, and dbDEMC databases) reached 96% and 100%, respectively. Similarly, for isolated diseases (diseases not associated with any miRNAs), the consistencies between the top 50 predicted miRNAs (obtained from LSGSP) and the results (confirmed from the above-mentioned three databases) reached 98% and 100%, respectively. These results further indicate that LSGSP can effectively predict potential associations between miRNAs and diseases.
Collapse
Affiliation(s)
- Yi Zhang
- School of Information Science and Engineering, Guilin University of Technology 541004 Guilin China
| | - Min Chen
- School of Computer Science and Technology, Hunan Institute of Technology 421002 Hengyang China
| | - Xiaohui Cheng
- School of Information Science and Engineering, Guilin University of Technology 541004 Guilin China
| | - Zheng Chen
- School of Computer Science and Technology, Hunan Institute of Technology 421002 Hengyang China
| |
Collapse
|
48
|
Zhang L, Chen X, Yin J. Prediction of Potential miRNA-Disease Associations Through a Novel Unsupervised Deep Learning Framework with Variational Autoencoder. Cells 2019; 8:cells8091040. [PMID: 31489920 PMCID: PMC6770222 DOI: 10.3390/cells8091040] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 08/31/2019] [Accepted: 09/02/2019] [Indexed: 12/22/2022] Open
Abstract
The important role of microRNAs (miRNAs) in the formation, development, diagnosis, and treatment of diseases has attracted much attention among researchers recently. In this study, we present an unsupervised deep learning model of the variational autoencoder for MiRNA–disease association prediction (VAEMDA). Through combining the integrated miRNA similarity and the integrated disease similarity with known miRNA–disease associations, respectively, we constructed two spliced matrices. These matrices were applied to train the variational autoencoder (VAE), respectively. The final predicted association scores between miRNAs and diseases were obtained by integrating the scores from the two trained VAE models. Unlike previous models, VAEMDA can avoid noise introduced by the random selection of negative samples and reveal associations between miRNAs and diseases from the perspective of data distribution. Compared with previous methods, VAEMDA obtained higher area under the receiver operating characteristics curves (AUCs) of 0.9118, 0.8652, and 0.9091 ± 0.0065 in global leave-one-out cross validation (LOOCV), local LOOCV, and five-fold cross validation, respectively. Further, the AUCs of VAEMDA were 0.8250 and 0.8237 in global leave-one-disease-out cross validation (LODOCV), and local LODOCV, respectively. In three different types of case studies on three important diseases, the results showed that most of the top 50 potentially associated miRNAs were verified by databases and the literature.
Collapse
Affiliation(s)
- Li Zhang
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou 221116, China.
| | - Xing Chen
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou 221116, China.
| | - Jun Yin
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou 221116, China.
| |
Collapse
|
49
|
Chen X, Xie D, Zhao Q, You ZH. MicroRNAs and complex diseases: from experimental results to computational models. Brief Bioinform 2019; 20:515-539. [PMID: 29045685 DOI: 10.1093/bib/bbx130] [Citation(s) in RCA: 405] [Impact Index Per Article: 81.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 08/13/2017] [Indexed: 12/22/2022] Open
Abstract
Plenty of microRNAs (miRNAs) were discovered at a rapid pace in plants, green algae, viruses and animals. As one of the most important components in the cell, miRNAs play a growing important role in various essential and important biological processes. For the recent few decades, amounts of experimental methods and computational models have been designed and implemented to identify novel miRNA-disease associations. In this review, the functions of miRNAs, miRNA-target interactions, miRNA-disease associations and some important publicly available miRNA-related databases were discussed in detail. Specially, considering the important fact that an increasing number of miRNA-disease associations have been experimentally confirmed, we selected five important miRNA-related human diseases and five crucial disease-related miRNAs and provided corresponding introductions. Identifying disease-related miRNAs has become an important goal of biomedical research, which will accelerate the understanding of disease pathogenesis at the molecular level and molecular tools design for disease diagnosis, treatment and prevention. Computational models have become an important means for novel miRNA-disease association identification, which could select the most promising miRNA-disease pairs for experimental validation and significantly reduce the time and cost of the biological experiments. Here, we reviewed 20 state-of-the-art computational models of predicting miRNA-disease associations from different perspectives. Finally, we summarized four important factors for the difficulties of predicting potential disease-related miRNAs, the framework of constructing powerful computational models to predict potential miRNA-disease associations including five feasible and important research schemas, and future directions for further development of computational models.
Collapse
Affiliation(s)
- Xing Chen
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, China
| | - Di Xie
- School of Mathematics, Liaoning University
| | - Qi Zhao
- School of Mathematics, Liaoning University
| | - Zhu-Hong You
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Science
| |
Collapse
|
50
|
Ensemble of decision tree reveals potential miRNA-disease associations. PLoS Comput Biol 2019; 15:e1007209. [PMID: 31329575 PMCID: PMC6675125 DOI: 10.1371/journal.pcbi.1007209] [Citation(s) in RCA: 141] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 08/01/2019] [Accepted: 06/24/2019] [Indexed: 12/14/2022] Open
Abstract
In recent years, increasing associations between microRNAs (miRNAs) and human diseases have been identified. Based on accumulating biological data, many computational models for potential miRNA-disease associations inference have been developed, which saves time and expenditure on experimental studies, making great contributions to researching molecular mechanism of human diseases and developing new drugs for disease treatment. In this paper, we proposed a novel computational method named Ensemble of Decision Tree based MiRNA-Disease Association prediction (EDTMDA), which innovatively built a computational framework integrating ensemble learning and dimensionality reduction. For each miRNA-disease pair, the feature vector was extracted by calculating the statistical measures, graph theoretical measures, and matrix factorization results for the miRNA and disease, respectively. Then multiple base learnings were built to yield many decision trees (DTs) based on random selection of negative samples and miRNA/disease features. Particularly, Principal Components Analysis was applied to each base learning to reduce feature dimensionality and hence remove the noise or redundancy. Average strategy was adopted for these DTs to get final association scores between miRNAs and diseases. In model performance evaluation, EDTMDA showed AUC of 0.9309 in global leave-one-out cross validation (LOOCV) and AUC of 0.8524 in local LOOCV. Additionally, AUC of 0.9192+/-0.0009 in 5-fold cross validation proved the model's reliability and stability. Furthermore, three types of case studies for four human diseases were implemented. As a result, 94% (Esophageal Neoplasms), 86% (Kidney Neoplasms), 96% (Breast Neoplasms) and 88% (Carcinoma Hepatocellular) of top 50 predicted miRNAs were confirmed by experimental evidences in literature.
Collapse
|