1
|
Naing MD, Juliano SA, Angeles-Boza AM. Synergy between the clavanins as a weapon against multidrug-resistant Enterobacter cloacae. RSC Med Chem 2024; 15:2160-2164. [PMID: 38911167 PMCID: PMC11187565 DOI: 10.1039/d4md00070f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/14/2024] [Indexed: 06/25/2024] Open
Abstract
Finding new antibiotics that can act synergistically with each other offers many benefits such as lower dosages used for each drug, improved pathogen clearance, and ability to act against multi-drug resistant strains. In this study, six peptides isolated from the tunicate Styela clava were evaluated for their synergistic interaction using the checkerboard assay and the time kill kinetics assay. Using two different tests, we report synergy between clavanin D and clavaspirin in both tests and synergy between clavanin A and B only in the checkerboard test when used against the multidrug resistant E. cloacae 0136. This work demonstrates the possible cooperativity between homologous AMPs from a single organism and the advantage of using two susceptibility tests instead of one when testing synergistic combinations.
Collapse
Affiliation(s)
- Marvin D Naing
- Department of Chemistry, University of Connecticut Storrs 06269 USA
| | - Samuel A Juliano
- Department of Chemistry, University of Connecticut Storrs 06269 USA
| | - Alfredo M Angeles-Boza
- Department of Chemistry, University of Connecticut Storrs 06269 USA
- Institute of Materials Science, University of Connecticut Storrs 06269 USA
| |
Collapse
|
2
|
de Andrade VM, de Oliveira VDM, Barcick U, Ramu VG, Heras M, Bardají ER, Castanho MARB, Zelanis A, Capella A, Junqueira JC, Conceição K. Mechanistic insights on the antibacterial action of the kyotorphin peptide derivatives revealed by in vitro studies and Galleria mellonella proteomic analysis. Microb Pathog 2024; 189:106607. [PMID: 38437995 DOI: 10.1016/j.micpath.2024.106607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/21/2024] [Accepted: 03/01/2024] [Indexed: 03/06/2024]
Abstract
OBJECTIVES The selected kyotorphin derivatives were tested to improve their antimicrobial and antibiofilm activity. The antimicrobial screening of the KTP derivatives were ascertained in the representative strains of bacteria, including Streptococcus pneumoniae, Streptococcus pyogenes, Escherichia coli and Pseudomonas aeruginosa. METHODS Kyotorphin derivatives, KTP-NH2, KTP-NH2-DL, IbKTP, IbKTP-NH2, MetKTP-DL, MetKTP-LD, were designed and synthesized to improve lipophilicity and resistance to enzymatic degradation. Peptides were synthesized by standard solution or solid-phase peptide synthesis and purified using RP-HPLC, which resulted in >95 % purity, and were fully characterized by mass spectrometry and 1H NMR. The minimum inhibitory concentrations (MIC) determined for bacterial strains were between 20 and 419 μM. The direct effect of IbKTP-NH2 on bacterial cells was imaged using scanning electron microscopy. The absence of toxicity, high survival after infection and an increase in the hemocytes count was evaluated by injections of derivatives in Galleria mellonella larvae. Proteomics analyses of G. mellonella hemolymph were performed to investigate the underlying mechanism of antibacterial activity of IbKTP-NH2 at MIC. RESULTS IbKTP-NH2 induces morphological changes in bacterial cell, many differentially expressed proteins involved in DNA replication, synthesis of cell wall, and virulence were up-regulated after the treatment of G. mellonella with IbKTP-NH2. CONCLUSION We suggest that this derivative, in addition to its physical activity on the bacterial membranes, can elicit a cellular and humoral immune response, therefore, it could be considered for biomedical applications.
Collapse
Affiliation(s)
- Vitor M de Andrade
- Laboratório de Bioquímica de Peptídeos, Departamento de Ciência e Tecnologia - Universidade Federal de São Paulo - UNIFESP, Rua Talim, 330, São José dos Campos, SP, 12231-280, Brazil
| | - Vitor D M de Oliveira
- Laboratório de Bioquímica de Peptídeos, Departamento de Ciência e Tecnologia - Universidade Federal de São Paulo - UNIFESP, Rua Talim, 330, São José dos Campos, SP, 12231-280, Brazil
| | - Uilla Barcick
- Laboratório de Proteômica Funcional, Departamento de Ciência e Tecnologia, Universidade Federal de São Paulo - Universidade Federal de São Paulo - UNIFESP, Rua Talim, 330, São José dos Campos, SP, 12231-280, Brazil
| | - Vasanthakumar G Ramu
- Laboratori d'Innovació en Processos i Productes de Síntesi Orgànica (LIPPSO), Departament de Química, Universitat de Girona, Campus Montilivi, 17071, Girona, Spain; Peptides and Complex Generics, #2700, Neovantage, Genome Valley, Shameerpet, Hyderabad, 500078, Telengana, India
| | - Montserrat Heras
- Laboratori d'Innovació en Processos i Productes de Síntesi Orgànica (LIPPSO), Departament de Química, Universitat de Girona, Campus Montilivi, 17071, Girona, Spain
| | - Eduard R Bardají
- Laboratori d'Innovació en Processos i Productes de Síntesi Orgànica (LIPPSO), Departament de Química, Universitat de Girona, Campus Montilivi, 17071, Girona, Spain
| | - Miguel A R B Castanho
- Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Av. Professor Egas Moniz, 1649-028, Lisboa, Portugal
| | - André Zelanis
- Laboratório de Proteômica Funcional, Departamento de Ciência e Tecnologia, Universidade Federal de São Paulo - Universidade Federal de São Paulo - UNIFESP, Rua Talim, 330, São José dos Campos, SP, 12231-280, Brazil
| | - Aline Capella
- Laboratório ProLaser, Departamento de Ciência e Tecnologia, Universidade Federal de São Paulo - UNIFESP, Rua Talim, 330, São José dos Campos, SP, 12231-280, Brazil
| | - Juliana C Junqueira
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (Unesp), São José dos Campos, 12245-000, SP, Brazil
| | - Katia Conceição
- Laboratório de Bioquímica de Peptídeos, Departamento de Ciência e Tecnologia - Universidade Federal de São Paulo - UNIFESP, Rua Talim, 330, São José dos Campos, SP, 12231-280, Brazil.
| |
Collapse
|
3
|
Raileanu M, Borlan R, Campu A, Janosi L, Turcu I, Focsan M, Bacalum M. No country for old antibiotics! Antimicrobial peptides (AMPs) as next-generation treatment for skin and soft tissue infection. Int J Pharm 2023:123169. [PMID: 37356506 DOI: 10.1016/j.ijpharm.2023.123169] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/01/2023] [Accepted: 06/20/2023] [Indexed: 06/27/2023]
Abstract
In recent years, the unprecedented rise of bacterial antibiotic resistance together with the lack of adequate therapies have made the treatment of skin infections and chronic wounds challenging, urging the scientific community to focus on the development of new and more efficient treatment strategies. In this context, there is a growing interest in the use of natural molecules with antimicrobial features, capable of supporting wound healing i.e., antimicrobial peptides (AMPs), for the treatment of skin and soft tissue infections. In this review, we give a short overview of the bacterial skin infections as well as some of the classic treatments used for topical application. We then summarize the AMPs classes, stressing the importance of the appropriate selection of the peptides based on their characteristics and physicochemical properties in order to maximize the antibacterial efficacy of the therapeutic systems against multi-drug resistant pathogens. Additionally, the present paper provides a comprehensive and rigorous assessment of the latest clinical trials investigating the efficacy of AMPs in the treatment of skin and soft tissue infections, highlighting the relevant outcomes. Seeking to obtain novel and improved compounds with synergistic activity, while also decreasing some of the known side effects of AMPs, we present two employed strategies using AMPs: (i) AMPs-conjugated nanosystems for systemic and topical drug delivery systems and (ii) antibiotics-peptide conjugates as a strategy to overcome antibiotics resistance. Finally, an important property of some of the AMPs used in wound treatment is highlighted: their ability to help in wound healing by generally promoting cell proliferation and migration, and in some cases re-epithelialization and angiogenesis among others. Thus, as the pursuit of improvement is an ongoing effort, this work presents the advances made in the treatment of skin and soft tissue infections along with their advantages and limitations, while the still remaining challenges are addressed by providing future prospects and strategies to overcome them.
Collapse
Affiliation(s)
- Mina Raileanu
- Department of Life and Environmental Physics, Horia Hulubei National Institute for Physics and Nuclear Engineering, Reactorului 30, Măgurele 077125, Romania
| | - Raluca Borlan
- Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, Treboniu Laurian No. 42, 400271 Cluj-Napoca, Romania
| | - Andreea Campu
- Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, Treboniu Laurian No. 42, 400271 Cluj-Napoca, Romania
| | - Lorant Janosi
- Molecular and Biomolecular Physics Department, National Institute for Research and Development of Isotopic and Molecular Technologies, 65-103 Donath Street, 400293 Cluj-Napoca, Romania
| | - Ioan Turcu
- Molecular and Biomolecular Physics Department, National Institute for Research and Development of Isotopic and Molecular Technologies, 65-103 Donath Street, 400293 Cluj-Napoca, Romania
| | - Monica Focsan
- Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, Treboniu Laurian No. 42, 400271 Cluj-Napoca, Romania.
| | - Mihaela Bacalum
- Department of Life and Environmental Physics, Horia Hulubei National Institute for Physics and Nuclear Engineering, Reactorului 30, Măgurele 077125, Romania.
| |
Collapse
|
4
|
Akbarian M, Chen SH. Instability Challenges and Stabilization Strategies of Pharmaceutical Proteins. Pharmaceutics 2022; 14:2533. [PMID: 36432723 PMCID: PMC9699111 DOI: 10.3390/pharmaceutics14112533] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/13/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
Maintaining the structure of protein and peptide drugs has become one of the most important goals of scientists in recent decades. Cold and thermal denaturation conditions, lyophilization and freeze drying, different pH conditions, concentrations, ionic strength, environmental agitation, the interaction between the surface of liquid and air as well as liquid and solid, and even the architectural structure of storage containers are among the factors that affect the stability of these therapeutic biomacromolecules. The use of genetic engineering, side-directed mutagenesis, fusion strategies, solvent engineering, the addition of various preservatives, surfactants, and additives are some of the solutions to overcome these problems. This article will discuss the types of stress that lead to instabilities of different proteins used in pharmaceutics including regulatory proteins, antibodies, and antibody-drug conjugates, and then all the methods for fighting these stresses will be reviewed. New and existing analytical methods that are used to detect the instabilities, mainly changes in their primary and higher order structures, are briefly summarized.
Collapse
Affiliation(s)
| | - Shu-Hui Chen
- Department of Chemistry, National Cheng Kung University, Tainan 701, Taiwan
| |
Collapse
|
5
|
Martins IBS, Viegas TG, Dos Santos Alvares D, de Souza BM, Palma MS, Ruggiero Neto J, de Araujo AS. The effect of acidic pH on the adsorption and lytic activity of the peptides Polybia-MP1 and its histidine-containing analog in anionic lipid membrane: a biophysical study by molecular dynamics and spectroscopy. Amino Acids 2021; 53:753-767. [PMID: 33890127 DOI: 10.1007/s00726-021-02982-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 04/12/2021] [Indexed: 01/09/2023]
Abstract
Antimicrobial peptides (AMPs) are part of the innate immune system of many species. AMPs are short sequences rich in charged and non-polar residues. They act on the lipid phase of the plasma membrane without requiring membrane receptors. Polybia-MP1 (MP1), extracted from a native wasp, is a broad-spectrum bactericide, an inhibitor of cancer cell proliferation being non-hemolytic and non-cytotoxic. MP1 mechanism of action and its adsorption mode is not yet completely known. Its adsorption to lipid bilayer and lytic activity is most likely dependent on the ionization state of its two acidic and three basic residues and consequently on the bulk pH. Here we investigated the effect of bulk acidic (pH 5.5) and neutral pH (7.4) solution on the adsorption, insertion, and lytic activity of MP1 and its analog H-MP1 to anionic (7POPC:3POPG) model membrane. H-MP1 is a synthetic analog of MP1 with lysines replaced by histidines. Bulk pH changes could modulate this peptide efficiency. The combination of different experimental techniques and molecular dynamics (MD) simulations showed that the adsorption, insertion, and lytic activity of H-MP1 are highly sensitive to bulk pH in opposition to MP1. The atomistic details, provided by MD simulations, showed peptides contact their N-termini to the bilayer before the insertion and then lay parallel to the bilayer. Their hydrophobic faces inserted into the acyl chain phase disturb the lipid-packing.
Collapse
Affiliation(s)
- Ingrid Bernardes Santana Martins
- Department of Physics, IBILCE, UNESP-São Paulo State University, Cristóvão Colombo, 2265-Jardim Nazareth, São José do Rio Preto, SP, 15054-000, Brazil
| | - Taisa Giordano Viegas
- Department of Physics, IBILCE, UNESP-São Paulo State University, Cristóvão Colombo, 2265-Jardim Nazareth, São José do Rio Preto, SP, 15054-000, Brazil
| | - Dayane Dos Santos Alvares
- Department of Physics, IBILCE, UNESP-São Paulo State University, Cristóvão Colombo, 2265-Jardim Nazareth, São José do Rio Preto, SP, 15054-000, Brazil
| | - Bibiana Monson de Souza
- Department of Basic and Applied Biology, Institute of Biosciences, UNESP-São Paulo State University, Rio Claro, SP, Brazil
| | - Mário Sérgio Palma
- Department of Basic and Applied Biology, Institute of Biosciences, UNESP-São Paulo State University, Rio Claro, SP, Brazil
| | - João Ruggiero Neto
- Department of Physics, IBILCE, UNESP-São Paulo State University, Cristóvão Colombo, 2265-Jardim Nazareth, São José do Rio Preto, SP, 15054-000, Brazil.
| | - Alexandre Suman de Araujo
- Department of Physics, IBILCE, UNESP-São Paulo State University, Cristóvão Colombo, 2265-Jardim Nazareth, São José do Rio Preto, SP, 15054-000, Brazil.
| |
Collapse
|
6
|
Portelinha J, Duay SS, Yu SI, Heilemann K, Libardo MDJ, Juliano SA, Klassen JL, Angeles-Boza AM. Antimicrobial Peptides and Copper(II) Ions: Novel Therapeutic Opportunities. Chem Rev 2021; 121:2648-2712. [PMID: 33524257 DOI: 10.1021/acs.chemrev.0c00921] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The emergence of new pathogens and multidrug resistant bacteria is an important public health issue that requires the development of novel classes of antibiotics. Antimicrobial peptides (AMPs) are a promising platform with great potential for the identification of new lead compounds that can combat the aforementioned pathogens due to their broad-spectrum antimicrobial activity and relatively low rate of resistance emergence. AMPs of multicellular organisms made their debut four decades ago thanks to ingenious researchers who asked simple questions about the resistance to bacterial infections of insects. Questions such as "Do fruit flies ever get sick?", combined with pioneering studies, have led to an understanding of AMPs as universal weapons of the immune system. This review focuses on a subclass of AMPs that feature a metal binding motif known as the amino terminal copper and nickel (ATCUN) motif. One of the metal-based strategies of hosts facing a pathogen, it includes wielding the inherent toxicity of copper and deliberately trafficking this metal ion into sites of infection. The sudden increase in the concentration of copper ions in the presence of ATCUN-containing AMPs (ATCUN-AMPs) likely results in a synergistic interaction. Herein, we examine common structural features in ATCUN-AMPs that exist across species, and we highlight unique features that deserve additional attention. We also present the current state of knowledge about the molecular mechanisms behind their antimicrobial activity and the methods available to study this promising class of AMPs.
Collapse
Affiliation(s)
- Jasmin Portelinha
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, United States
| | - Searle S Duay
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, United States.,Chemistry Department, Adamson University, 900 San Marcelino Street, Ermita, Manila 1000, Philippines
| | - Seung I Yu
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Storrs, Connecticut 06269, United States
| | - Kara Heilemann
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, United States
| | - M Daben J Libardo
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, United States
| | - Samuel A Juliano
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, United States
| | - Jonathan L Klassen
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Storrs, Connecticut 06269, United States
| | - Alfredo M Angeles-Boza
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, United States.,Institute of Material Science, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, United States
| |
Collapse
|
7
|
Vergis J, Malik SS, Pathak R, Kumar M, Ramanjaneya S, Kurkure NV, Barbuddhe SB, Rawool DB. Exploiting Lactoferricin (17-30) as a Potential Antimicrobial and Antibiofilm Candidate Against Multi-Drug-Resistant Enteroaggregative Escherichia coli. Front Microbiol 2020; 11:575917. [PMID: 33072040 PMCID: PMC7531601 DOI: 10.3389/fmicb.2020.575917] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 08/17/2020] [Indexed: 12/28/2022] Open
Abstract
The study evaluated the in vitro antimicrobial and antibiofilm efficacy of an antimicrobial peptide (AMP), lactoferricin (17–30) [Lfcin (17–30)], against biofilm-forming multi-drug-resistant (MDR) strains of enteroaggregative Escherichia coli (EAEC), and subsequently, the in vivo antimicrobial efficacy was assessed in a Galleria mellonella larval model. Initially, minimum inhibitory concentration (MIC; 32 μM), minimum bactericidal concentration (MBC; 32 μM), and minimum biofilm eradication concentration (MBEC; 32 μM) of Lfcin (17–30) were determined against MDR-EAEC field isolates (n = 3). Lfcin (17–30) was tested stable against high-end temperatures (70 and 90°C), physiological concentration of cationic salts (150 mM NaCl and 2 mM MgCl2), and proteases (proteinase-K and lysozyme). Further, at lower MIC, Lfcin (17–30) proved to be safe for sheep RBCs, secondary cell lines (HEp-2 and RAW 264.7), and beneficial gut lactobacilli. In the in vitro time-kill assay, Lfcin (17–30) inhibited the MDR-EAEC strains 3 h post-incubation, and the antibacterial effect was due to membrane permeation of Lfcin (17–30) in the inner and outer membranes of MDR-EAEC. Furthermore, in the in vivo experiments, G. mellonella larvae treated with Lfcin (17–30) exhibited an increased survival rate, lower MDR-EAEC counts (P < 0.001), mild to moderate histopathological changes, and enhanced immunomodulatory effect and were safe to larval cells when compared with infection control. Besides, Lfcin (17–30) proved to be an effective antibiofilm agent, as it inhibited and eradicated the preformed biofilm formed by MDR-EAEC strains in a significant (P < 0.05) manner both by microtiter plate assay and live/dead bacterial quantification-based confocal microscopy. We recommend further investigation of Lfcin (17–30) in an appropriate animal model before its application in target host against MDR-EAEC strains.
Collapse
Affiliation(s)
- Jess Vergis
- Division of Veterinary Public Health, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - Satyaveer Singh Malik
- Division of Veterinary Public Health, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - Richa Pathak
- Division of Veterinary Public Health, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - Manesh Kumar
- Division of Veterinary Public Health, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - Sunitha Ramanjaneya
- Division of Veterinary Public Health, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | | | | | - Deepak Bhiwa Rawool
- Division of Veterinary Public Health, ICAR-Indian Veterinary Research Institute, Izatnagar, India.,ICAR-National Research Centre on Meat, Hyderabad, India
| |
Collapse
|
8
|
Juliano SA, Serafim LF, Duay SS, Heredia Chavez M, Sharma G, Rooney M, Comert F, Pierce S, Radulescu A, Cotten ML, Mihailescu M, May ER, Greenwood AI, Prabhakar R, Angeles-Boza AM. A Potent Host Defense Peptide Triggers DNA Damage and Is Active against Multidrug-Resistant Gram-Negative Pathogens. ACS Infect Dis 2020; 6:1250-1263. [PMID: 32251582 DOI: 10.1021/acsinfecdis.0c00051] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Gram-negative bacteria are some of the biggest threats to public health due to a large prevalence of antibiotic resistance. The difficulty in treating bacterial infections, stemming from their double membrane structure combined with efflux pumps in the outer membrane, has resulted in a much greater need for antimicrobials with activity against these pathogens. Tunicate host defense peptide (HDP), Clavanin A, is capable of not only inhibiting Gram-negative growth but also potentiating activity in the presence of Zn(II). Here, we provide evidence that the improvements of Clavanin A activity in the presence of Zn(II) are due to its novel mechanism of action. We employed E. coli TD172 (ΔrecA::kan) and the terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay to show in cellulae that DNA damage occurs upon treatment with Clavanin A. In vitro assays demonstrated that Zn(II) ions are required for the nuclease activity of the peptide. The quantum mechanics/molecular mechanics (QM/MM) calculations were used to investigate the mechanism of DNA damage. In the rate-determining step of the proposed mechanism, due to its Lewis acidity, the Zn(II) ion activates the scissile P-O bond of DNA and creates a hydroxyl nucleophile from a water molecule. A subsequent attack by this group to the electrophilic phosphorus cleaves the scissile phosphoester bond. Additionally, we utilized bacterial cytological profiling (BCP), circular dichroism (CD) spectroscopy in the presence of lipid vesicles, and surface plasmon resonance combined with electrical impedance spectroscopy in order to address the apparent discrepancies between our results and the previous studies regarding the mechanism of action of Clavanin A. Finally, our approach may lead to the identification of additional Clavanin A like HDPs and promote the development of antimicrobial peptide based therapeutics.
Collapse
Affiliation(s)
- Samuel A. Juliano
- Department of Chemistry, University of Connecticut, 55 N. Eagleville Road, Storrs, Connecticut 06269, United States
| | - Leonardo F. Serafim
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| | - Searle S. Duay
- Department of Chemistry, University of Connecticut, 55 N. Eagleville Road, Storrs, Connecticut 06269, United States
| | - Maria Heredia Chavez
- Department of Chemistry, University of Connecticut, 55 N. Eagleville Road, Storrs, Connecticut 06269, United States
| | - Gaurav Sharma
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| | - Mary Rooney
- Department of Applied Science, William and Mary, Williamsburg, Virginia 23187-8795, United States
| | - Fatih Comert
- Institute for Bioscience and Biotechnology Research, University of Maryland, 9600 Gudelsky Drive, Rockville, Maryland 20850, United States
| | - Scott Pierce
- Department of Chemistry, University of Connecticut, 55 N. Eagleville Road, Storrs, Connecticut 06269, United States
| | - Andrei Radulescu
- Department of Chemistry, University of Connecticut, 55 N. Eagleville Road, Storrs, Connecticut 06269, United States
| | - Myriam L. Cotten
- Department of Applied Science, William and Mary, Williamsburg, Virginia 23187-8795, United States
| | - Mihaela Mihailescu
- Institute for Bioscience and Biotechnology Research, University of Maryland, 9600 Gudelsky Drive, Rockville, Maryland 20850, United States
| | - Eric R. May
- Department of Molecular and Cell Biology, University of Connecticut, 91 N. Eagleville Road, Storrs, Connecticut 06269, United States
| | - Alexander I. Greenwood
- Department of Applied Science, William and Mary, Williamsburg, Virginia 23187-8795, United States
| | - Rajeev Prabhakar
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| | - Alfredo M. Angeles-Boza
- Department of Chemistry, University of Connecticut, 55 N. Eagleville Road, Storrs, Connecticut 06269, United States
- Institute of Materials Science, University of Connecticut, 97 N. Eagleville Road, Storrs, Connecticut 06269, United States
| |
Collapse
|
9
|
van den Bergen G, Stroet M, Caron B, Poger D, Mark AE. Curved or linear? Predicting the 3-dimensional structure of α-helical antimicrobial peptides in an amphipathic environment. FEBS Lett 2019; 594:1062-1080. [PMID: 31794050 DOI: 10.1002/1873-3468.13705] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/21/2019] [Accepted: 11/23/2019] [Indexed: 12/13/2022]
Abstract
α-Helical membrane-active antimicrobial peptides (AMPs) are known to act via a range of mechanisms, including the formation of barrel-stave and toroidal pores and the micellisation of the membrane (carpet mechanism). Different mechanisms imply that the peptides adopt different 3D structures when bound at the water-membrane interface, a highly amphipathic environment. Here, an evolutionary algorithm is used to predict the 3D structure of a range of α-helical membrane-active AMPs at the water-membrane interface by optimising amphipathicity. This amphipathic structure prediction (ASP) is capable of distinguishing between curved and linear peptides solved experimentally, potentially allowing the activity and mechanism of action of different membrane-active AMPs to be predicted. The ASP algorithm is accessible via a web interface at http://atb.uq.edu.au/asp/.
Collapse
Affiliation(s)
- Glen van den Bergen
- School of Chemistry & Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Martin Stroet
- School of Chemistry & Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Bertrand Caron
- School of Chemistry & Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - David Poger
- School of Chemistry & Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Alan E Mark
- School of Chemistry & Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
10
|
Der Torossian Torres M, de la Fuente-Nunez C. Reprogramming biological peptides to combat infectious diseases. Chem Commun (Camb) 2019; 55:15020-15032. [PMID: 31782426 DOI: 10.1039/c9cc07898c] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
With the rapid spread of resistance among parasites and bacterial pathogens, antibiotic-resistant infections have drawn much attention worldwide. Consequently, there is an urgent need to develop new strategies to treat neglected diseases and drug-resistant infections. Here, we outline several new strategies that have been developed to counter pathogenic microorganisms by designing and constructing antimicrobial peptides (AMPs). In addition to traditional discovery and design mechanisms guided by chemical biology, synthetic biology and computationally-based approaches offer useful tools for the discovery and generation of bioactive peptides. We believe that the convergence of such fields, coupled with systematic experimentation in animal models, will help translate biological peptides into the clinic. The future of anti-infective therapeutics is headed towards specifically designed molecules whose form is driven by computer-based frameworks. These molecules are selective, stable, and active at therapeutic doses.
Collapse
Affiliation(s)
- Marcelo Der Torossian Torres
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, and Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| | - Cesar de la Fuente-Nunez
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, and Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
11
|
Vincenzi M, Mercurio FA, Leone M. About TFE: Old and New Findings. Curr Protein Pept Sci 2019; 20:425-451. [PMID: 30767740 DOI: 10.2174/1389203720666190214152439] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 07/16/2018] [Accepted: 07/18/2018] [Indexed: 01/28/2023]
Abstract
The fluorinated alcohol 2,2,2-Trifluoroethanol (TFE) has been implemented for many decades now in conformational studies of proteins and peptides. In peptides, which are often disordered in aqueous solutions, TFE acts as secondary structure stabilizer and primarily induces an α -helical conformation. The exact mechanism through which TFE plays its stabilizing roles is still debated and direct and indirect routes, relying either on straight interaction between TFE and molecules or indirect pathways based on perturbation of solvation sphere, have been proposed. Another still unanswered question is the capacity of TFE to favor in peptides a bioactive or a native-like conformation rather than simply stimulate the raise of secondary structure elements that reflect only the inherent propensity of a specific amino-acid sequence. In protein studies, TFE destroys unique protein tertiary structure and often leads to the formation of non-native secondary structure elements, but, interestingly, gives some hints about early folding intermediates. In this review, we will summarize proposed mechanisms of TFE actions. We will also describe several examples, in which TFE has been successfully used to reveal structural properties of different molecular systems, including antimicrobial and aggregation-prone peptides, as well as globular folded and intrinsically disordered proteins.
Collapse
Affiliation(s)
- Marian Vincenzi
- Institute of Biostructures and Bioimaging, National Research Council (CNR), Via Mezzocannone 16, 80134 Naples, Italy
| | - Flavia A Mercurio
- Institute of Biostructures and Bioimaging, National Research Council (CNR), Via Mezzocannone 16, 80134 Naples, Italy.,Cirpeb, InterUniversity Research Centre on Bioactive Peptides, University of Naples "Federico II", Via Mezzocannone 16, 80134 Naples, Italy
| | - Marilisa Leone
- Institute of Biostructures and Bioimaging, National Research Council (CNR), Via Mezzocannone 16, 80134 Naples, Italy.,Cirpeb, InterUniversity Research Centre on Bioactive Peptides, University of Naples "Federico II", Via Mezzocannone 16, 80134 Naples, Italy
| |
Collapse
|
12
|
A short peptide with selective anti-biofilm activity against Pseudomonas aeruginosa and Klebsiella pneumoniae carbapenemase-producing bacteria. Microb Pathog 2019; 135:103605. [DOI: 10.1016/j.micpath.2019.103605] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 06/10/2019] [Accepted: 06/19/2019] [Indexed: 12/12/2022]
|
13
|
Duay SS, Sharma G, Prabhakar R, Angeles-Boza AM, May ER. Molecular Dynamics Investigation into the Effect of Zinc(II) on the Structure and Membrane Interactions of the Antimicrobial Peptide Clavanin A. J Phys Chem B 2019; 123:3163-3176. [PMID: 30908921 DOI: 10.1021/acs.jpcb.8b11496] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Clavanin A (ClavA) is an antimicrobial peptide (AMP) whose antimicrobial activity is enhanced in the presence of Zn(II) ions. The antimicrobial activity of ClavA has been shown to increase 16-fold in the presence of Zn(II) ions. In this study, we investigate the potential sources of this enhancement, namely, the effect of Zn(II) binding on the helical conformation of ClavA and on the ClavA interaction with a model for gram-negative bacterial membranes. In addition, we investigate the effect of Zn(II) on the membrane mechanical properties. We employed all-atom equilibrium molecular dynamics simulations initiated from both fully helical and random coil structures of ClavA. We observe that Zn(II) can stabilize an existing helical conformation in the Zn(II)-binding region, but we do not observe induction of helical conformations in systems initiated in random coil configurations. Zn(II) binding to ClavA provides more favorable electrostatics for membrane association in the C-terminal region. This is evidenced by longer and stronger C-terminal-lipid interactions. Zn(II) is also capable of modulating the membrane properties in a manner which favors ClavA insertion and the potential for enhanced translocation into the cell. This work provides insights into the role of divalent metal cations in the antimicrobial activity of ClavA. This information can be used for the development of synthetic AMPs containing motifs that can bind metals (metalloAMPs) for therapeutic and medical purposes.
Collapse
Affiliation(s)
| | - Gaurav Sharma
- Department of Chemistry , University of Miami , Coral Gables , Florida 33146 , United States
| | - Rajeev Prabhakar
- Department of Chemistry , University of Miami , Coral Gables , Florida 33146 , United States
| | | | - Eric R May
- Department of Molecular and Cell Biology , University of Connecticut , 91 N. Eagleville Road , Storrs , Connecticut 06269 , United States
| |
Collapse
|
14
|
Cardoso MH, Cândido ES, Chan LY, Der Torossian Torres M, Oshiro KGN, Rezende SB, Porto WF, Lu TK, de la Fuente-Nunez C, Craik DJ, Franco OL. A Computationally Designed Peptide Derived from Escherichia coli as a Potential Drug Template for Antibacterial and Antibiofilm Therapies. ACS Infect Dis 2018; 4:1727-1736. [PMID: 30346140 DOI: 10.1021/acsinfecdis.8b00219] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Computer-aided screening of antimicrobial peptides (AMPs) is a promising approach for discovering novel therapies against multidrug-resistant bacterial infections. Here, we functionally and structurally characterized an Escherichia coli-derived AMP (EcDBS1R5) previously designed through pattern identification [α-helical set (KK[ILV](3)[AILV])], followed by sequence optimization. EcDBS1R5 inhibited the growth of Gram-negative and Gram-positive, susceptible and resistant bacterial strains at low doses (2-32 μM), with no cytotoxicity observed against non-cancerous and cancerous cell lines in the concentration range analyzed (<100 μM). Furthermore, EcDBS1R5 (16 μM) acted on Pseudomonas aeruginosa pre-formed biofilms by compromising the viability of biofilm-constituting cells. The in vivo antibacterial potential of EcDBS1R5 was confirmed as the peptide reduced bacterial counts by two-logs 2 days post-infection using a skin scarification mouse model. Structurally, circular dichroism analysis revealed that EcDBS1R5 is unstructured in hydrophilic environments, but has strong helicity in 2,2,2-trifluoroethanol (TFE)/water mixtures (v/v) and sodium dodecyl sulfate (SDS) micelles. The TFE-induced nuclear magnetic resonance structure of EcDBS1R5 was determined and showed an amphipathic helical segment with flexible termini. Moreover, we observed that the amide protons for residues Met2-Ala8, Arg10, Ala13-Ala16, and Trp19 in EcDBS1R5 are protected from the solvent, as their temperature coefficients values are more positive than -4.6 ppb·K-1. In summary, this study reports a novel dual-antibacterial/antibiofilm α-helical peptide with therapeutic potential in vitro and in vivo against clinically relevant bacterial strains.
Collapse
Affiliation(s)
- Marlon H. Cardoso
- Programa de Pós-Graduação em Patologia Molecular, Faculdade de Medicina, Universidade de Brasília, Campus Darcy Ribeiro, Asa Norte, Brasília, DF 70910900, Brazil
- Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, SGAN 916 Módulo B, Asa Norte, Brasília, DF 70790160, Brazil
- S-inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco Avenida Tamandaré 6000, Campo Grande, MS 79117900, Brazil
- Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Road, Brisbane, QLD 4072, Australia
| | - Elizabete S. Cândido
- Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, SGAN 916 Módulo B, Asa Norte, Brasília, DF 70790160, Brazil
- S-inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco Avenida Tamandaré 6000, Campo Grande, MS 79117900, Brazil
| | - Lai Y. Chan
- Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Road, Brisbane, QLD 4072, Australia
| | - Marcelo Der Torossian Torres
- Synthetic Biology Group, MIT Synthetic Biology Center; The Center for Microbiome Informatics and Therapeutics; Research Laboratory of Electronics, Department of Biological Engineering, and Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02139, United States
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, SP 09210170, Brazil
| | - Karen G. N. Oshiro
- Programa de Pós-Graduação em Patologia Molecular, Faculdade de Medicina, Universidade de Brasília, Campus Darcy Ribeiro, Asa Norte, Brasília, DF 70910900, Brazil
- S-inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco Avenida Tamandaré 6000, Campo Grande, MS 79117900, Brazil
| | - Samilla B. Rezende
- S-inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco Avenida Tamandaré 6000, Campo Grande, MS 79117900, Brazil
| | - William F. Porto
- Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, SGAN 916 Módulo B, Asa Norte, Brasília, DF 70790160, Brazil
- S-inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco Avenida Tamandaré 6000, Campo Grande, MS 79117900, Brazil
- Porto Reports, Brasília, DF 70790160, Brazil
| | - Timothy K. Lu
- Synthetic Biology Group, MIT Synthetic Biology Center; The Center for Microbiome Informatics and Therapeutics; Research Laboratory of Electronics, Department of Biological Engineering, and Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02139, United States
| | - Cesar de la Fuente-Nunez
- Synthetic Biology Group, MIT Synthetic Biology Center; The Center for Microbiome Informatics and Therapeutics; Research Laboratory of Electronics, Department of Biological Engineering, and Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02139, United States
| | - David J. Craik
- Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Road, Brisbane, QLD 4072, Australia
| | - Octávio L. Franco
- Programa de Pós-Graduação em Patologia Molecular, Faculdade de Medicina, Universidade de Brasília, Campus Darcy Ribeiro, Asa Norte, Brasília, DF 70910900, Brazil
- Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, SGAN 916 Módulo B, Asa Norte, Brasília, DF 70790160, Brazil
- S-inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco Avenida Tamandaré 6000, Campo Grande, MS 79117900, Brazil
| |
Collapse
|
15
|
Marine Antimicrobial Peptides: A Promising Source of New Generation Antibiotics and Other Bio-active Molecules. Int J Pept Res Ther 2018. [DOI: 10.1007/s10989-018-9789-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
16
|
Ribeiro KL, Frías IAM, Franco OL, Dias SC, Sousa-Junior AA, Silva ON, Bakuzis AF, Oliveira MDL, Andrade CAS. Clavanin A-bioconjugated Fe 3O 4/Silane core-shell nanoparticles for thermal ablation of bacterial biofilms. Colloids Surf B Biointerfaces 2018; 169:72-81. [PMID: 29751343 DOI: 10.1016/j.colsurfb.2018.04.055] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 03/13/2018] [Accepted: 04/26/2018] [Indexed: 01/27/2023]
Abstract
The use of central venous catheters (CVC) is highly associated with nosocomial blood infections and its use largely requires a systematic assessment of benefits and risks. Bacterial contamination of these tubes is frequent and may result in development of microbial consortia also known as biofilm. The woven nature of biofilm provides a practical defense against antimicrobial agents, facilitating bacterial dissemination through the patient's body and development of antimicrobial resistance. In this work, the authors describe the modification of CVC tubing by immobilizing Fe3O4-aminosilane core-shell nanoparticles functionalized with antimicrobial peptide clavanin A (clavA) as an antimicrobial prophylactic towards Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa and Klebsiella pneumoniae. Its anti-biofilm-attachment characteristic relies in clavA natural activity to disrupt the bacterial lipidic membrane. The aminosilane shell prevents iron leaching, which is an important nutrient for bacterial growth. Fe3O4-clavA-modified CVCs showed to decrease Gram-negative bacteria attachment up to 90% when compared to control clean CVC. Additionally, when hyperthermal treatment is triggered for 5 min at 80 °C in a tubing that already presents bacterial biofilm (CVC-BF), the viability of attached bacteria reduces up to 88%, providing an efficient solution to avoid changing catheter.
Collapse
Affiliation(s)
- Kalline L Ribeiro
- Programa de Pós-Graduação em Inovação Terapêutica, Universidade Federal de Pernambuco, 50670-901 Recife, PE, Brazil.
| | - Isaac A M Frías
- Rede Pesquisa em Biotecnologia e Biodiversidade Pró-Centro-Oeste, Instituto Nacional de Ciência e Tecnologia, Universidade Federal de Pernambuco, Brazil.
| | - Octavio L Franco
- Centro de Análise Proteômicas e Bioquímicas de Brasília, Universidade Católica de Brasília, Brasília, DF, Brazil; S-Inova Biotech, Pós-graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, MS, Brazil.
| | - Simoni C Dias
- Centro de Análise Proteômicas e Bioquímicas de Brasília, Universidade Católica de Brasília, Brasília, DF, Brazil; Pós-Graduação em Biologia Animal, Campus Darcy Ribeiro, Universidade de Brasilia, DF, Brazil.
| | | | - Osmar N Silva
- S-Inova Biotech, Pós-graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, MS, Brazil.
| | - Andris F Bakuzis
- Instituto de Física, Universidade Federal de Goiás, 74690-900 Goiânia, GO, Brazil.
| | - Maria D L Oliveira
- Programa de Pós-Graduação em Inovação Terapêutica, Universidade Federal de Pernambuco, 50670-901 Recife, PE, Brazil; Departamento de Bioquímica, Universidade Federal de Pernambuco, 50670-901 Recife, PE, Brazil.
| | - Cesar A S Andrade
- Programa de Pós-Graduação em Inovação Terapêutica, Universidade Federal de Pernambuco, 50670-901 Recife, PE, Brazil; Departamento de Bioquímica, Universidade Federal de Pernambuco, 50670-901 Recife, PE, Brazil.
| |
Collapse
|
17
|
Strategies for transitioning macrocyclic peptides to cell-permeable drug leads. Curr Opin Biotechnol 2017; 48:242-250. [DOI: 10.1016/j.copbio.2017.07.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 07/17/2017] [Accepted: 07/20/2017] [Indexed: 11/23/2022]
|
18
|
Mandal SM, Khan J, Mahata D, Saha S, Sengupta J, Silva ON, Das S, Mandal M, Franco OL. A self-assembled clavanin A-coated amniotic membrane scaffold for the prevention of biofilm formation by ocular surface fungal pathogens. BIOFOULING 2017; 33:881-891. [PMID: 29047302 DOI: 10.1080/08927014.2017.1383400] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 09/15/2017] [Indexed: 06/07/2023]
Abstract
Amniotic membrane (AM) is frequently used in ophthalmologic surgery for rapid ocular surface reconstruction. Sometimes it may create a major problem with associated infections after biofilm formation over the membrane. To overcome this problem, AM was coated with the antimicrobial peptide clavanin A. The antifungal activity of clavanin A in the native and self-assembled form was determined against the common ocular surface pathogens Candida albicans, Aspergillus fumigatus, Alternaria sp. and Fusarium sp. Biofilm formation over the coated surface was significantly reduced in comparison with the uncoated membrane. The coated membrane revealed effectiveness in terms of biocompatibility, cell attachment colonization when tested in non-cancerous 3T3 and human embryonic kidney (HEK)-293 cell lines. Clavanin A-coated AM also exhibited excellent physical, morphological and antifungal characteristics, indicating potential applicability for ocular surface infection control.
Collapse
Affiliation(s)
- Santi M Mandal
- a Central Research Facility , Indian Institute of Technology Kharagpur , Kharagpur , India
| | - Jahangir Khan
- a Central Research Facility , Indian Institute of Technology Kharagpur , Kharagpur , India
| | - Denial Mahata
- b Rubber Technology Centre , Indian Institute of Technology Kharagpur , Kharagpur , India
| | - Suman Saha
- c Priyamvada Birla Aravind Eye Hospital , Kolkata , India
| | | | - Osmar N Silva
- d S-Inova Biotech, Pos-Graduação em Biotecnologia , Universidade Católica Dom Bosco , Campo Grande , Brazil
| | - Subhayan Das
- e School of Medical Science and Technology , Indian Institute of Technology , Kharagpur , India
| | - Mahitosh Mandal
- e School of Medical Science and Technology , Indian Institute of Technology , Kharagpur , India
| | - Octavio L Franco
- d S-Inova Biotech, Pos-Graduação em Biotecnologia , Universidade Católica Dom Bosco , Campo Grande , Brazil
- f Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Centro de Analises Proteômicas e Bioquímicas , Universidade Católica de Brasília , Brasília , Brazil
| |
Collapse
|
19
|
Wang Z, Shen Y, Haapasalo M. Antibiofilm peptides against oral biofilms. J Oral Microbiol 2017; 9:1327308. [PMID: 28748031 PMCID: PMC5508375 DOI: 10.1080/20002297.2017.1327308] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 05/01/2017] [Accepted: 04/12/2017] [Indexed: 12/21/2022] Open
Abstract
The oral cavity is a major entry point for bacteria and other microorganisms. Oral biofilms are formed by mixed communities of microorganisms embedded in an exopolysaccharide matrix. Biofilms forming on dental hard or soft tissue are the major cause of caries and endodontic and periodontal disease. Human oral biofilms exhibit high resistance to antimicrobial agents. Antibiofilm peptides constitute a diverse class of host-defense molecules that act to combat invasion and infection with biofilms. Different in vitro and in vivo biofilm models with quantitative analysis have been established to provide predictable platforms for the evaluation of the antibiofilm effect of oral antibiofilm peptides. These peptides have engendered considerable interest in the past decades as potential alternatives to traditional disinfecting agents due to their ability to target bacterial biofilms specifically, leading to the prevention of biofilm formation and destruction of pre-existing biofilms by Gram-positive and -negative bacterial pathogens and fungi. At the same time, challenges associated with the application of these antibiofilm peptides in dental practice also exist. The production of effective, nontoxic, and stable antibiofilm peptides is desired in both academic and industrial fields. This review focuses on the antibiofilm properties of current synthetic peptides and their application in different areas of dentistry.
Collapse
Affiliation(s)
- Zhejun Wang
- Division of Endodontics, Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, Canada
| | - Ya Shen
- Division of Endodontics, Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, Canada
| | - Markus Haapasalo
- Division of Endodontics, Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, Canada
| |
Collapse
|
20
|
Donati M, Cenacchi G, Biondi R, Papa V, Borel N, Vecchio Nepita E, Magnino S, Pasquinelli G, Levi A, Franco OL. Activity of synthetic peptides against Chlamydia. Biopolymers 2017; 108. [PMID: 28555934 DOI: 10.1002/bip.23032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 05/22/2017] [Accepted: 05/23/2017] [Indexed: 12/13/2022]
Abstract
The in vitro activity of six synthetic peptides against 36 strains of Chlamydia from different origins was investigated. Clavanin MO (CMO) proved to be the most active peptide, reducing the inclusion number of all Chlamydia strains from eight different species tested by ≥50% at 10 µg mL-1 . Mastoparan L showed an equal activity against C. trachomatis, C. pneumoniae, C. suis, and C. muridarum, but did not exert any inhibitory effect against C. psittaci, C. pecorum, C. abortus, and C. avium even at 80 µg mL-1 . These data suggest that CMO could be a promising compound in the prevention and treatment of chlamydial infections.
Collapse
Affiliation(s)
| | | | | | | | - Nicole Borel
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Switzerland
| | | | - Simone Magnino
- National Reference laboratory for Animal Chlamydioses, IZSLER, Pavia, Italy
| | | | - Aurora Levi
- DIMES, Microbiology, University of Bologna, Italy
| | - Octavio L Franco
- Centre of Proteomics and Biochemistry, Catholic University of Brasilia, Brazil
- S-Inova Biotech, Pos-Graduação em Biotecnologia, Universidade Catolica Dom Bosco, Campo Grande, MS, Brazil
| |
Collapse
|
21
|
Juliano SA, Pierce S, deMayo JA, Balunas MJ, Angeles-Boza AM. Exploration of the Innate Immune System of Styela clava: Zn2+ Binding Enhances the Antimicrobial Activity of the Tunicate Peptide Clavanin A. Biochemistry 2017; 56:1403-1414. [DOI: 10.1021/acs.biochem.6b01046] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Samuel A. Juliano
- Department
of Chemistry, University of Connecticut, Storrs, Connecticut 06269-3060, United States
| | - Scott Pierce
- Department
of Chemistry, University of Connecticut, Storrs, Connecticut 06269-3060, United States
| | - James A. deMayo
- Division
of Medicinal Chemistry, Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Marcy J. Balunas
- Division
of Medicinal Chemistry, Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Alfredo M. Angeles-Boza
- Department
of Chemistry, University of Connecticut, Storrs, Connecticut 06269-3060, United States
| |
Collapse
|
22
|
Trimble MJ, Hancock REW. An alternative approach to treating antibiotic-resistant infections. Future Microbiol 2017; 12:201-204. [DOI: 10.2217/fmb-2016-0222] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Affiliation(s)
- Michael J Trimble
- Centre for Microbial Diseases & Immunity Research, Department of Microbiology & Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Robert EW Hancock
- Centre for Microbial Diseases & Immunity Research, Department of Microbiology & Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
23
|
Silva ON, de la Fuente-Núñez C, Haney EF, Fensterseifer ICM, Ribeiro SM, Porto WF, Brown P, Faria-Junior C, Rezende TMB, Moreno SE, Lu TK, Hancock REW, Franco OL. An anti-infective synthetic peptide with dual antimicrobial and immunomodulatory activities. Sci Rep 2016; 6:35465. [PMID: 27804992 PMCID: PMC5090204 DOI: 10.1038/srep35465] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 09/30/2016] [Indexed: 12/31/2022] Open
Abstract
Antibiotic-resistant infections are predicted to kill 10 million people per year by 2050, costing the global economy $100 trillion. Therefore, there is an urgent need to develop alternative technologies. We have engineered a synthetic peptide called clavanin-MO, derived from a marine tunicate antimicrobial peptide, which exhibits potent antimicrobial and immunomodulatory properties both in vitro and in vivo. The peptide effectively killed a panel of representative bacterial strains, including multidrug-resistant hospital isolates. Antimicrobial activity of the peptide was demonstrated in animal models, reducing bacterial counts by six orders of magnitude, and contributing to infection clearance. In addition, clavanin-MO was capable of modulating innate immunity by stimulating leukocyte recruitment to the site of infection, and production of immune mediators GM-CSF, IFN-γ and MCP-1, while suppressing an excessive and potentially harmful inflammatory response by increasing synthesis of anti-inflammatory cytokines such as IL-10 and repressing the levels of pro-inflammatory cytokines IL-12 and TNF-α. Finally, treatment with the peptide protected mice against otherwise lethal infections caused by both Gram-negative and -positive drug-resistant strains. The peptide presented here directly kills bacteria and further helps resolve infections through its immune modulatory properties. Peptide anti-infective therapeutics with combined antimicrobial and immunomodulatory properties represent a new approach to treat antibiotic-resistant infections.
Collapse
Affiliation(s)
- O N Silva
- Departamento de Biologia, Instituto de Ciências Biológicas, Programa de pós-graduação em Genética e Biotecnologia, Universidade Federal de Juiz de Fora, Juiz de Fora-MG, Brazil.,S-Inova Biotech, Pós-graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, MS, Brazil
| | - C de la Fuente-Núñez
- Synthetic Biology Group, MIT Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America.,Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America.,Department of Biological Engineering, and Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America.,Harvard Biophysics Program, Harvard University, Boston, Massachusetts, United States of America.,The Center for Microbiome Informatics and Therapeutics, Cambridge, Massachusetts, United States of America
| | - E F Haney
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - I C M Fensterseifer
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brazil.,Programa de Pós-graduação em Patologia Molecular, Universidade de Brasília, Brasília, Brazil
| | - S M Ribeiro
- S-Inova Biotech, Pós-graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, MS, Brazil
| | - W F Porto
- Programa de Pós-graduação em Patologia Molecular, Universidade de Brasília, Brasília, Brazil
| | - P Brown
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - C Faria-Junior
- Curso de Odontologia, Universidade Católica de Brasília, Brazil
| | - T M B Rezende
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brazil.,Curso de Odontologia, Universidade Católica de Brasília, Brazil.,Pós-graduação em Ciências da Saúde, Universidade de Brasília, Brazil
| | - S E Moreno
- S-Inova Biotech, Pós-graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, MS, Brazil
| | - T K Lu
- Synthetic Biology Group, MIT Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America.,Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America.,Department of Biological Engineering, and Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America.,Harvard Biophysics Program, Harvard University, Boston, Massachusetts, United States of America.,The Center for Microbiome Informatics and Therapeutics, Cambridge, Massachusetts, United States of America
| | - R E W Hancock
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - O L Franco
- Departamento de Biologia, Instituto de Ciências Biológicas, Programa de pós-graduação em Genética e Biotecnologia, Universidade Federal de Juiz de Fora, Juiz de Fora-MG, Brazil.,S-Inova Biotech, Pós-graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, MS, Brazil.,Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brazil.,Programa de Pós-graduação em Patologia Molecular, Universidade de Brasília, Brasília, Brazil
| |
Collapse
|