1
|
Riaud M, Maxwell J, Soria-Bretones I, Dankner M, Li M, Rose AAN. The role of CRAF in cancer progression: from molecular mechanisms to precision therapies. Nat Rev Cancer 2024; 24:105-122. [PMID: 38195917 DOI: 10.1038/s41568-023-00650-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/27/2023] [Indexed: 01/11/2024]
Abstract
The RAF family of kinases includes key activators of the pro-tumourigenic mitogen-activated protein kinase pathway. Hyperactivation of RAF proteins, particularly BRAF and CRAF, drives tumour progression and drug resistance in many types of cancer. Although BRAF is the most studied RAF protein, partially owing to its high mutation incidence in melanoma, the role of CRAF in tumourigenesis and drug resistance is becoming increasingly clinically relevant. Here, we summarize the main known regulatory mechanisms and gene alterations that contribute to CRAF activity, highlighting the different oncogenic roles of CRAF, and categorize RAF1 (CRAF) mutations according to the effect on kinase activity. Additionally, we emphasize the effect that CRAF alterations may have on drug resistance and how precision therapies could effectively target CRAF-dependent tumours. Here, we discuss preclinical and clinical findings that may lead to improved treatments for all types of oncogenic RAF1 alterations in cancer.
Collapse
Affiliation(s)
- Melody Riaud
- Gerald Bronfman Department of Oncology, McGill University, Montreal, Quebec, Canada
- Lady Davis Institute, Jewish General Hospital, Montreal, Quebec, Canada
| | - Jennifer Maxwell
- Lady Davis Institute, Jewish General Hospital, Montreal, Quebec, Canada
- Division of Experimental Medicine, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Isabel Soria-Bretones
- Gerald Bronfman Department of Oncology, McGill University, Montreal, Quebec, Canada
- Lady Davis Institute, Jewish General Hospital, Montreal, Quebec, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Matthew Dankner
- Lady Davis Institute, Jewish General Hospital, Montreal, Quebec, Canada
- Faculty of Medicine, McGill University, Montreal, Quebec, Canada
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
| | - Meredith Li
- Gerald Bronfman Department of Oncology, McGill University, Montreal, Quebec, Canada
| | - April A N Rose
- Gerald Bronfman Department of Oncology, McGill University, Montreal, Quebec, Canada.
- Lady Davis Institute, Jewish General Hospital, Montreal, Quebec, Canada.
- Division of Experimental Medicine, Faculty of Medicine, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
2
|
Al Hmada Y, Brodell RT, Kharouf N, Flanagan TW, Alamodi AA, Hassan SY, Shalaby H, Hassan SL, Haikel Y, Megahed M, Santourlidis S, Hassan M. Mechanisms of Melanoma Progression and Treatment Resistance: Role of Cancer Stem-like Cells. Cancers (Basel) 2024; 16:470. [PMID: 38275910 PMCID: PMC10814963 DOI: 10.3390/cancers16020470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
Melanoma is the third most common type of skin cancer, characterized by its heterogeneity and propensity to metastasize to distant organs. Melanoma is a heterogeneous tumor, composed of genetically divergent subpopulations, including a small fraction of melanoma-initiating cancer stem-like cells (CSCs) and many non-cancer stem cells (non-CSCs). CSCs are characterized by their unique surface proteins associated with aberrant signaling pathways with a causal or consequential relationship with tumor progression, drug resistance, and recurrence. Melanomas also harbor significant alterations in functional genes (BRAF, CDKN2A, NRAS, TP53, and NF1). Of these, the most common are the BRAF and NRAS oncogenes, with 50% of melanomas demonstrating the BRAF mutation (BRAFV600E). While the successful targeting of BRAFV600E does improve overall survival, the long-term efficacy of available therapeutic options is limited due to adverse side effects and reduced clinical efficacy. Additionally, drug resistance develops rapidly via mechanisms involving fast feedback re-activation of MAPK signaling pathways. This article updates information relevant to the mechanisms of melanoma progression and resistance and particularly the mechanistic role of CSCs in melanoma progression, drug resistance, and recurrence.
Collapse
Affiliation(s)
- Youssef Al Hmada
- Department of Pathology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA; (Y.A.H.); (R.T.B.)
| | - Robert T. Brodell
- Department of Pathology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA; (Y.A.H.); (R.T.B.)
| | - Naji Kharouf
- Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 67000 Strasbourg, France; (N.K.); (Y.H.)
- Department of Operative Dentistry and Endodontics, Dental Faculty, University of Strasbourg, 67000 Strasbourg, France
| | - Thomas W. Flanagan
- Department of Pharmacology and Experimental Therapeutics, LSU Health Sciences Center, New Orleans, LA 70112, USA;
| | - Abdulhadi A. Alamodi
- College of Health Sciences, Jackson State University, 310 W Woodrow Wilson Ave Ste 300, Jackson, MS 39213, USA;
| | - Sofie-Yasmin Hassan
- Department of Pharmacy, Faculty of Science, Heinrich-Heine University Duesseldorf, 40225 Dusseldorf, Germany;
| | - Hosam Shalaby
- Department of Urology, Tulane University School of Medicine, New Orleans, LA 70112, USA;
| | - Sarah-Lilly Hassan
- Department of Chemistry, Faculty of Science, Heinrich-Heine University Duesseldorf, 40225 Dusseldorf, Germany;
| | - Youssef Haikel
- Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 67000 Strasbourg, France; (N.K.); (Y.H.)
- Department of Operative Dentistry and Endodontics, Dental Faculty, University of Strasbourg, 67000 Strasbourg, France
- Pôle de Médecine et Chirurgie Bucco-Dentaire, Hôpital Civil, Hôpitaux Universitaire de Strasbourg, 67000 Strasbourg, France
| | - Mosaad Megahed
- Clinic of Dermatology, University Hospital of Aachen, 52074 Aachen, Germany;
| | - Simeon Santourlidis
- Epigenetics Core Laboratory, Medical Faculty, Institute of Transplantation Diagnostics and Cell Therapeutics, Heinrich Heine University Düsseldorf, 40225 Dusseldorf, Germany;
| | - Mohamed Hassan
- Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 67000 Strasbourg, France; (N.K.); (Y.H.)
- Department of Operative Dentistry and Endodontics, Dental Faculty, University of Strasbourg, 67000 Strasbourg, France
- Research Laboratory of Surgery-Oncology, Department of Surgery, Tulane University School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
3
|
Wang P, Laster K, Jia X, Dong Z, Liu K. Targeting CRAF kinase in anti-cancer therapy: progress and opportunities. Mol Cancer 2023; 22:208. [PMID: 38111008 PMCID: PMC10726672 DOI: 10.1186/s12943-023-01903-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/16/2023] [Indexed: 12/20/2023] Open
Abstract
The RAS/mitogen-activated protein kinase (MAPK) signaling cascade is commonly dysregulated in human malignancies by processes driven by RAS or RAF oncogenes. Among the members of the RAF kinase family, CRAF plays an important role in the RAS-MAPK signaling pathway, as well as in the progression of cancer. Recent research has provided evidence implicating the role of CRAF in the physiological regulation and the resistance to BRAF inhibitors through MAPK-dependent and MAPK-independent mechanisms. Nevertheless, the effectiveness of solely targeting CRAF kinase activity remains controversial. Moreover, the kinase-independent function of CRAF may be essential for lung cancers with KRAS mutations. It is imperative to develop strategies to enhance efficacy and minimize toxicity in tumors driven by RAS or RAF oncogenes. The review investigates CRAF alterations observed in cancers and unravels the distinct roles of CRAF in cancers propelled by diverse oncogenes. This review also seeks to summarize CRAF-interacting proteins and delineate CRAF's regulation across various cancer hallmarks. Additionally, we discuss recent advances in pan-RAF inhibitors and their combination with other therapeutic approaches to improve treatment outcomes and minimize adverse effects in patients with RAF/RAS-mutant tumors. By providing a comprehensive understanding of the multifaceted role of CRAF in cancers and highlighting the latest developments in RAF inhibitor therapies, we endeavor to identify synergistic targets and elucidate resistance pathways, setting the stage for more robust and safer combination strategies for cancer treatment.
Collapse
Affiliation(s)
- Penglei Wang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
- Tianjian Laboratory for Advanced Biomedical Sciences, Zhengzhou, 450052, Henan, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450000, China
| | - Kyle Laster
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450000, China
| | - Xuechao Jia
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
- Tianjian Laboratory for Advanced Biomedical Sciences, Zhengzhou, 450052, Henan, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450000, China
| | - Zigang Dong
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China.
- Tianjian Laboratory for Advanced Biomedical Sciences, Zhengzhou, 450052, Henan, China.
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450000, China.
- Department of Pathophysiology, School of Basic Medical Sciences, China-US (Henan) Hormel Cancer Institute, AMS, College of Medicine, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, China.
| | - Kangdong Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China.
- Tianjian Laboratory for Advanced Biomedical Sciences, Zhengzhou, 450052, Henan, China.
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450000, China.
- Department of Pathophysiology, School of Basic Medical Sciences, China-US (Henan) Hormel Cancer Institute, AMS, College of Medicine, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, China.
- Basic Medicine Sciences Research Center, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China.
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, 450000, Henan, China.
- Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, 450000, Henan, China.
| |
Collapse
|
4
|
Kroeze LI, Scheijen B, Hebeda KM, Rijntjes J, Luijks JACW, Evers D, Hobo W, Groenen PJTA, van den Brand M. PAX5 P80R-mutated B-cell acute lymphoblastic leukemia with transformation to histiocytic sarcoma: clonal evolution assessment using NGS-based immunoglobulin clonality and mutation analysis. Virchows Arch 2022:10.1007/s00428-022-03428-y. [PMID: 36241730 DOI: 10.1007/s00428-022-03428-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/14/2022] [Accepted: 10/06/2022] [Indexed: 11/30/2022]
Abstract
Clonality assessment by the detection of immunoglobulin (IG) gene rearrangements is an important method to determine whether two concurrent or subsequent lymphoid malignancies in one patient are clonally related. Here, we report the detailed clonality analysis in a patient with a diagnosis of B-cell acute lymphoblastic leukemia (B-ALL) followed by a histiocytic sarcoma (HS), in which we were able to study clonal evolution by applying next generation sequencing (NGS) to identify IG rearrangements and gene mutations. Using the sequence information of the NGS-based IG clonality analysis, multiple related subclones could be distinguished in the PAX5 P80R-mutated B-ALL. Notably, only one of these subclones evolved into HS after acquiring a RAF1 mutation. This case demonstrates that NGS-based IG clonality assessment and mutation analysis provide clear added value for clonal comparison and thereby improves clinicobiological understanding.
Collapse
Affiliation(s)
- Leonie I Kroeze
- Department of Pathology, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525GA, Nijmegen, the Netherlands.
| | - B Scheijen
- Department of Pathology, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525GA, Nijmegen, the Netherlands.,Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands
| | - K M Hebeda
- Department of Pathology, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525GA, Nijmegen, the Netherlands
| | - J Rijntjes
- Department of Pathology, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525GA, Nijmegen, the Netherlands
| | - J A C W Luijks
- Department of Pathology, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525GA, Nijmegen, the Netherlands
| | - D Evers
- Department of Hematology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - W Hobo
- Department of Laboratory Medicine - Laboratory of Hematology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - P J T A Groenen
- Department of Pathology, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525GA, Nijmegen, the Netherlands
| | - M van den Brand
- Department of Pathology, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525GA, Nijmegen, the Netherlands
| |
Collapse
|
5
|
Vinyals A, Ferreres JR, Calbet-Llopart N, Ramos R, Tell-Martí G, Carrera C, Marcoval J, Puig S, Malvehy J, Puig-Butillé JA, Fabra À. Oncogenic properties via MAPK signaling of the SOX5-RAF1 fusion gene identified in a wild-type NRAS/BRAF giant congenital nevus. Pigment Cell Melanoma Res 2022; 35:450-460. [PMID: 35587097 DOI: 10.1111/pcmr.13044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 04/07/2022] [Accepted: 05/02/2022] [Indexed: 01/17/2023]
Abstract
We recently reported an RAF rearrangement without NRAS or BRAF mutations in lesions from Giant Congenital Melanocytic Nevi (CMN). The new gene fusion involves the 5'-end of the promoter-containing N terminus of the SOX5 gene fused to exons 7-16 of the 3'-end of RAF1 gene leading to a SOX5-RAF1 fusion transcript which loses the auto-inhibitory CR1 domain but retains the complete in-frame coding sequence for the C-Terminal kinase domain of the RAF1. Stable expression of SOX5-RAF1 fusion induced growth factor-independent cell growth in murine hematopoietic Ba/F3 cells and melan-a immortalized melanocytes. Besides, it led to the transformation of both Ba/F3 and NIH 3T3 cells as revealed by colony formation assays. Furthermore, its expression results in MAPK activation assessed by increased levels of p-ERK protein in the cytosol of transduced cells. Treatment with Sorafenib and UO126 inhibited proliferation of Ba/F3-SOX5-RAF1 cells in the absence of IL3 but not the PLX 4720, a specific inhibitor of BRAF. Moreover, the tumorigenic and metastatic capacities of SOX5-RAF1 were assessed in vivo. These results indicate that SOX5-RAF1, a driver event for CMN development, has oncogenic capacity. Thus, sequencing of CMN transcriptomes may lead to the identification of this druggable fusion and interfere with the progression toward melanoma.
Collapse
Affiliation(s)
- Antònia Vinyals
- Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Josep R Ferreres
- Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain.,Dermatology Service, IDIBELL - Hospital Universitari de Bellvitge, Barcelona, Spain
| | - Neus Calbet-Llopart
- Dermatology Department, IDIBAPS, Hospital Clínic de Barcelona, University of Barcelona, Barcelona, Spain
| | - Raquel Ramos
- Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Gemma Tell-Martí
- Dermatology Department, IDIBAPS, Hospital Clínic de Barcelona, University of Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain
| | - Cristina Carrera
- Dermatology Department, IDIBAPS, Hospital Clínic de Barcelona, University of Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain
| | - Joaquim Marcoval
- Dermatology Service, IDIBELL - Hospital Universitari de Bellvitge, Barcelona, Spain
| | - Susana Puig
- Dermatology Department, IDIBAPS, Hospital Clínic de Barcelona, University of Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain
| | - Josep Malvehy
- Dermatology Department, IDIBAPS, Hospital Clínic de Barcelona, University of Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain
| | - Joan Anton Puig-Butillé
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain.,Molecular Biology CORE Laboratory, Melanoma Unit, IDIBAPS, Hospital Clínic de Barcelona, University of Barcelona, Barcelona, Spain
| | - Àngels Fabra
- Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| |
Collapse
|
6
|
Zhong J, Yan W, Wang C, Liu W, Lin X, Zou Z, Sun W, Chen Y. BRAF Inhibitor Resistance in Melanoma: Mechanisms and Alternative Therapeutic Strategies. Curr Treat Options Oncol 2022; 23:1503-1521. [PMID: 36181568 PMCID: PMC9596525 DOI: 10.1007/s11864-022-01006-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2022] [Indexed: 01/30/2023]
Abstract
OPINION STATEMENT Melanoma is caused by a variety of somatic mutations, and among these mutations, BRAF mutation occurs most frequently and has routinely been evaluated as a critical diagnostic biomarker in clinical practice. The introduction of targeted agents for BRAF-mutant melanoma has significantly improved overall survival in a large proportion of patients. However, there is BRAF inhibitor resistance in most patients, and its mechanisms are complicated and need further clarification. Additionally, treatment approaches to overcome resistance have evolved rapidly, shifting from monotherapy to multimodality treatment, which has dramatically improved patient outcomes in clinical trials and practice. This review highlights the mechanisms of BRAF inhibitor resistance in melanoma and discusses the current state of its therapeutic approaches that can be further explored in clinical practice.
Collapse
Affiliation(s)
- Jingqin Zhong
- grid.452404.30000 0004 1808 0942Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, 270 Dongan Road, Xuhui, Shanghai, China
| | - Wangjun Yan
- grid.452404.30000 0004 1808 0942Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, 270 Dongan Road, Xuhui, Shanghai, China
| | - Chunmeng Wang
- grid.452404.30000 0004 1808 0942Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, 270 Dongan Road, Xuhui, Shanghai, China
| | - Wanlin Liu
- grid.452404.30000 0004 1808 0942Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, 270 Dongan Road, Xuhui, Shanghai, China
| | - Xinyi Lin
- grid.452404.30000 0004 1808 0942Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, 270 Dongan Road, Xuhui, Shanghai, China
| | - Zijian Zou
- grid.452404.30000 0004 1808 0942Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, 270 Dongan Road, Xuhui, Shanghai, China
| | - Wei Sun
- grid.452404.30000 0004 1808 0942Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, 270 Dongan Road, Xuhui, Shanghai, China
| | - Yong Chen
- grid.452404.30000 0004 1808 0942Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, 270 Dongan Road, Xuhui, Shanghai, China
| |
Collapse
|
7
|
Many Distinct Ways Lead to Drug Resistance in BRAF- and NRAS-Mutated Melanomas. Life (Basel) 2021; 11:life11050424. [PMID: 34063141 PMCID: PMC8148104 DOI: 10.3390/life11050424] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/23/2021] [Accepted: 04/30/2021] [Indexed: 11/17/2022] Open
Abstract
Advanced melanoma is a relentless tumor with a high metastatic potential. The combat of melanoma by using the targeted therapy is impeded because several major driver mutations fuel its growth (predominantly BRAF and NRAS). Both these mutated oncogenes strongly activate the MAPK (MEK/ERK) pathway. Therefore, specific inhibitors of these oncoproteins or MAPK pathway components or their combination have been used for tumor eradication. After a good initial response, resistant cells develop almost universally and need the drug for further expansion. Multiple mechanisms, sometimes very distant from the MAPK pathway, are responsible for the development of resistance. Here, we review many of the mechanisms causing resistance and leading to the dismal final outcome of mutated BRAF and NRAS therapy. Very heterogeneous events lead to drug resistance. Due to this, each individual mechanism would be in fact needed to be determined for a personalized therapy to treat patients more efficiently and causally according to molecular findings. This procedure is practically impossible in the clinic. Other approaches are therefore needed, such as combined treatment with more drugs simultaneously from the beginning of the therapy. This could eradicate tumor cells more rapidly and greatly diminish the possibility of emerging mechanisms that allow the evolution of drug resistance.
Collapse
|
8
|
Williams EA, Shah N, Montesion M, Sharaf R, Pavlick DC, Sokol ES, Alexander BM, Venstrom JM, Elvin JA, Ross JS, Tse JY, Mochel MC. Melanomas with activating RAF1 fusions: clinical, histopathologic, and molecular profiles. Mod Pathol 2020; 33:1466-1474. [PMID: 32123303 PMCID: PMC7384985 DOI: 10.1038/s41379-020-0510-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 02/19/2020] [Accepted: 02/19/2020] [Indexed: 01/08/2023]
Abstract
A subset of melanomas is characterized by fusions involving genes that encode kinases. Melanomas with RAF1 fusions have been rarely reported, mostly in clinical literature. To investigate this distinctive group of melanomas, we searched for melanomas with activating structural variants in RAF1, utilizing our case archive of clinical samples with comprehensive genomic profiling (CGP) by a hybrid capture-based DNA sequencing platform. Clinical data, pathology reports, and histopathology were reviewed for each case. RAF1 breakpoints, fusion partners, and co-occurring genetic alterations were characterized. From a cohort of 7119 melanomas, 40 cases (0.6%) featured fusions that created activating structural variants in RAF1. Cases with activating RAF1 fusions had median age of 62 years, were 58% male, and consisted of 9 primary tumors and 31 metastases. Thirty-nine cases were cutaneous primary, while one case was mucosal (anal) primary. Primary cutaneous melanomas showed variable architectures, including wedge-shaped and nodular growth patterns. Cytomorphology was predominantly epithelioid, with only one case, a desmoplastic melanoma, consisting predominantly of spindle cells. RAF1 5' rearrangement partners were predominantly intrachromosomal (n = 18), and recurrent partners included MAP4 (n = 3), CTNNA1 (n = 2), LRCH3 (n = 2), GOLGA4 (n = 2), CTDSPL (n = 2), and PRKAR2A (n = 2), all 5' of the region encoding the kinase domain. RAF1 breakpoints occurred in intron 7 (n = 32), intron 9 (n = 4), intron 5 (n = 2), and intron 6 (n = 2). Ninety-eight percent (n = 39) were wild type for BRAF, NRAS, and NF1 genomic alterations (triple wild type). Activating RAF1 fusions were present in 2.1% of triple wild-type melanomas overall (39/1882). In melanomas with activating RAF1 fusions, frequently mutated genes included TERTp (62%), CDKN2A (60%), TP53 (13%), ARID2 (10%), and PTEN (10%). Activating RAF1 fusions characterize a significant subset of triple wild-type melanoma (2.1%) with frequent accompanying mutations in TERTp and CDKN2A. CGP of melanomas may improve tumor classification and inform potential therapeutic options, such as consideration of specific kinase inhibitors.
Collapse
Affiliation(s)
- Erik A Williams
- Foundation Medicine, Inc., 150 Second Street, Cambridge, MA, 02141, USA.
| | - Nikunj Shah
- Foundation Medicine, Inc., 150 Second Street, Cambridge, MA, 02141, USA
| | - Meagan Montesion
- Foundation Medicine, Inc., 150 Second Street, Cambridge, MA, 02141, USA
| | - Radwa Sharaf
- Foundation Medicine, Inc., 150 Second Street, Cambridge, MA, 02141, USA
| | - Dean C Pavlick
- Foundation Medicine, Inc., 150 Second Street, Cambridge, MA, 02141, USA
| | - Ethan S Sokol
- Foundation Medicine, Inc., 150 Second Street, Cambridge, MA, 02141, USA
| | - Brian M Alexander
- Foundation Medicine, Inc., 150 Second Street, Cambridge, MA, 02141, USA
| | - Jeff M Venstrom
- Foundation Medicine, Inc., 150 Second Street, Cambridge, MA, 02141, USA
| | - Julia A Elvin
- Foundation Medicine, Inc., 150 Second Street, Cambridge, MA, 02141, USA
| | - Jeffrey S Ross
- Foundation Medicine, Inc., 150 Second Street, Cambridge, MA, 02141, USA
- Department of Pathology, State University of New York Upstate Medical University, 766 Irving Avenue, Syracuse, NY, 13210, USA
| | - Julie Y Tse
- Foundation Medicine, Inc., 150 Second Street, Cambridge, MA, 02141, USA
- Department of Pathology & Laboratory Medicine, Tufts University School of Medicine, 145 Harrison Ave, Boston, MA, 02111, USA
| | - Mark C Mochel
- Departments of Pathology and Dermatology, Virginia Commonwealth University School of Medicine, 1200 East Marshall Street, Richmond, VA, 23298, USA
| |
Collapse
|
9
|
Tian Y, Guo W. A Review of the Molecular Pathways Involved in Resistance to BRAF Inhibitors in Patients with Advanced-Stage Melanoma. Med Sci Monit 2020; 26:e920957. [PMID: 32273491 PMCID: PMC7169438 DOI: 10.12659/msm.920957] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Melanoma is an aggressive malignancy of melanocytes and most commonly arises in the skin. In 2002, BRAF gene mutations were identified in melanoma, and this finding resulted in the development of several small-molecule molecular inhibitors that specifically targeted the BRAF V600E mutation. The development of targeted therapies for advanced-stage melanoma, including tyrosine kinase inhibitors (TKIs) of the BRAF (V600E) kinase, vemurafenib and dabrafenib, have been approved for the treatment of advanced melanoma leading to improved clinical outcomes. However, the development of BRAF inhibitor (BRAFi) resistance has significantly reduced the therapeutic efficacy after prolonged treatment. Recent studies have identified the molecular mechanisms for BRAFi resistance. This review aims to describe the impact of BRAFi resistance on the pathogenesis of melanoma, the current status of molecular pathways involved in BRAFi resistance, including intrinsic resistance, adaptive resistance, and acquired resistance. This review will discuss how an understanding of the mechanisms associated with BRAFi resistance may aid the identification of useful strategies for overcoming the resistance to BRAF-targeted therapy in patients with advanced-stage melanoma.
Collapse
Affiliation(s)
- Yangzi Tian
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China (mainland)
| | - Weinan Guo
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China (mainland)
| |
Collapse
|
10
|
CRAF mutations in lung cancer can be oncogenic and predict sensitivity to combined type II RAF and MEK inhibition. Oncogene 2019; 38:5933-5941. [PMID: 31285551 PMCID: PMC6756226 DOI: 10.1038/s41388-019-0866-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 04/04/2019] [Accepted: 04/28/2019] [Indexed: 12/19/2022]
Abstract
Two out of 41 non-small cell lung cancer patients enrolled in a clinical study were found with a somatic CRAF mutation in their tumor, namely CRAFP261A and CRAFP207S. To our knowledge, both mutations are novel in lung cancer and CRAFP261A has not been previously reported in cancer. Expression of CRAFP261A in HEK293T cells and BEAS-2B lung epithelial cells led to increased ERK pathway activation in a dimer-dependent manner, accompanied with loss of CRAF phosphorylation at the negative regulatory S259 residue. Moreover, stable expression of CRAFP261A in mouse embryonic fibroblasts and BEAS-2B cells led to anchorage-independent growth. Consistent with a previous report, we could not observe a gain-of-function with CRAFP207S. Type II but not type I RAF inhibitors suppressed the CRAFP261A-induced ERK pathway activity in BEAS-2B cells, and combinatorial treatment with type II RAF inhibitors and a MEK inhibitor led to a stronger ERK pathway inhibition and growth arrest. Our findings suggest that the acquisition of a CRAFP261A mutation can provide oncogenic properties to cells, and that such cells are sensitive to combined MEK and type II RAF inhibitors. CRAF mutations should be diagnostically and therapeutically explored in lung and perhaps other cancers.
Collapse
|
11
|
Luebker SA, Koepsell SA. Diverse Mechanisms of BRAF Inhibitor Resistance in Melanoma Identified in Clinical and Preclinical Studies. Front Oncol 2019; 9:268. [PMID: 31058079 PMCID: PMC6478763 DOI: 10.3389/fonc.2019.00268] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 03/25/2019] [Indexed: 12/13/2022] Open
Abstract
BRAF inhibitor therapy may provide profound initial tumor regression in metastatic melanoma with BRAF V600 mutations, but treatment resistance often leads to disease progression. A multi-center analysis of BRAF inhibitor resistant patient tissue samples detected genomic changes after disease progression including multiple secondary mutations in the MAPK/Erk signaling pathway, mutant BRAF copy number gains, and BRAF alternative splicing as the predominant putative mechanisms of resistance, but 41.7% of samples had no known resistance drivers. In vitro models of BRAF inhibitor resistance have been developed under a wide variety of experimental conditions to investigate unknown drivers of resistance. Several in vitro models developed genetic alterations observed in patient tissue, but others modulate the response to BRAF inhibitors through increased expression of receptor tyrosine kinases. Both secondary genetic alterations and expression changes in receptor tyrosine kinases may increase activation of MAPK/Erk signaling in the presence of BRAF inhibitors as well as activate PI3K/Akt signaling to support continued growth. Melanoma cells that develop resistance in vitro may have increased dependence on serine or glutamine metabolism and have increased cell motility and metastatic capacity. Future studies of BRAF inhibitor resistance in vitro would benefit from adhering to experimental parameters that reflect development of BRAF inhibitor resistance in patients through using multiple cell lines, fully characterizing the dosing strategy, and reporting the fold change in drug sensitivity.
Collapse
Affiliation(s)
- Stephen A Luebker
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Scott A Koepsell
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
12
|
Strickler JH, Wu C, Bekaii-Saab T. Targeting BRAF in metastatic colorectal cancer: Maximizing molecular approaches. Cancer Treat Rev 2017; 60:109-119. [PMID: 28946014 DOI: 10.1016/j.ctrv.2017.08.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 08/08/2017] [Accepted: 08/11/2017] [Indexed: 02/07/2023]
Abstract
Oncogenic mutations in B-type Raf kinase (BRAF) occur in 7-10% of metastatic colorectal cancers (mCRC). Despite recent improvements in survival in the general population of patients with mCRC, patients with BRAF-mutant mCRC continue to have poor response to most systemic therapies, and prognosis remains poor. There is a substantial unmet need for novel therapeutic strategies to treat patients with BRAF-mutant mCRC. This review outlines the epidemiology, molecular pathogenesis, prognosis, and mechanisms of treatment resistance of BRAF-mutated CRC. Additionally, this review highlights novel therapeutic strategies aimed at enhancing response and improving outcomes.
Collapse
Affiliation(s)
- John H Strickler
- Duke University School of Medicine, 20 Duke Medicine Circle, Durham, NC 27710, USA
| | - Christina Wu
- Emory University, 1365-C Clifton Rd NE, Atlanta, GA 30322, USA
| | | |
Collapse
|
13
|
Brachelente C, Cappelli K, Capomaccio S, Porcellato I, Silvestri S, Bongiovanni L, De Maria R, Verini Supplizi A, Mechelli L, Sforna M. Transcriptome Analysis of Canine Cutaneous Melanoma and Melanocytoma Reveals a Modulation of Genes Regulating Extracellular Matrix Metabolism and Cell Cycle. Sci Rep 2017; 7:6386. [PMID: 28743863 PMCID: PMC5526991 DOI: 10.1038/s41598-017-06281-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 06/12/2017] [Indexed: 12/16/2022] Open
Abstract
Interactions between tumor cells and tumor microenvironment are considered critical in carcinogenesis, tumor invasion and metastasis. To examine transcriptome changes and to explore the relationship with tumor microenvironment in canine cutaneous melanocytoma and melanoma, we extracted RNA from formalin-fixed, paraffin-embedded (FFPE) specimens and analyzed them by means of RNA-seq for transcriptional analysis. Melanocytoma and melanoma samples were compared to detect differential gene expressions and significant enriched pathways were explored to reveal functional relations between differentially expressed genes. The study demonstrated a differential expression of 60 genes in melanomas compared to melanocytomas. The differentially expressed genes cluster in the extracellular matrix-receptor interaction, protein digestion and absorption, focal adhesion and PI3K-Akt (phosphoinositide 3-kinase/protein kinase B) signaling pathways. Genes encoding for several collagen proteins were more commonly differentially expressed. Results of the RNA-seq were validated by qRT-PCR and protein expression of some target molecules was investigated by means of immunohistochemistry. We hypothesize that the developing melanoma actively promotes collagen metabolism and extracellular matrix remodeling as well as enhancing cell proliferation and survival contributing to disease progression and metastasis. In this study, we also detected unidentified genes in human melanoma expression studies and uncover new candidate drug targets for further testing in canine melanoma.
Collapse
Affiliation(s)
| | - Katia Cappelli
- Department of Veterinary Medicine, 06126, Perugia, Italy
| | | | | | | | - Laura Bongiovanni
- Faculty of Veterinary Medicine, 64100, Teramo, Italy
- Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | | | | | - Luca Mechelli
- Department of Veterinary Medicine, 06126, Perugia, Italy
| | - Monica Sforna
- Department of Veterinary Medicine, 06126, Perugia, Italy
| |
Collapse
|