1
|
Zhu Y, Luo B, Mou X, Song Y, Zhou Y, Luo Y, Sun B, Luo Y, Tang H, Su Z, Bao R. Pseudomonas aeruginosa regulator PvrA binds simultaneously to multiple pseudo-palindromic sites for efficient transcription activation. SCIENCE CHINA. LIFE SCIENCES 2024; 67:900-912. [PMID: 37938507 DOI: 10.1007/s11427-022-2363-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 05/10/2023] [Indexed: 11/09/2023]
Abstract
Tetracycline repressor (TetR) family regulators (TFRs) are the largest group of DNA-binding transcription factors and are widely distributed in bacteria and archaea. TFRs play vital roles in controlling the expression of various genes and regulating diverse physiological processes. Recently, a TFR protein Pseudomonas virulence regulator A (PvrA), was identified from Pseudomonas aeruginosa as the transcriptional activator of genes involved in fatty acid utilization and bacterial virulence. Here, we show that PvrA can simultaneously bind to multiple pseudo-palindromic sites and upregulate the expression levels of target genes. Cryo-electron microscopy (cryo-EM) analysis indicates the simultaneous DNA recognition mechanism of PvrA and suggests that the bound DNA fragments consist of a distorted B-DNA double helix. The crystal structure and functional analysis of PvrA reveal a hinge region that secures the correct domain motion for recognition of the promiscuous promoter. Additionally, our results showed that mutations disrupting the regulatory hinge region have differential effects on biofilm formation and pyocyanin biosynthesis, resulting in attenuated bacterial virulence. Collectively, these findings will improve the understanding of the relationship between the structure and function of the TetR family and provide new insights into the mechanism of regulation of P. aeruginosa virulence.
Collapse
Affiliation(s)
- Yibo Zhu
- Center of Infectious Diseases, Division of Infectious Diseases in State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- Accurate Biotechnology (Hunan) Co., Ltd, Changsha, 410006, China
| | - Bingnan Luo
- Center of Infectious Diseases, Division of Infectious Diseases in State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xingyu Mou
- Center of Infectious Diseases, Division of Infectious Diseases in State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yingjie Song
- College of Life Science, Sichuan Normal University, Chengdu, 610101, China
| | - Yonghong Zhou
- Key Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau, Ministry of Education, School of Ecology and Environment, Tibet University, Lhasa, 850000, China
| | - Yongbo Luo
- Center of Infectious Diseases, Division of Infectious Diseases in State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Bo Sun
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Youfu Luo
- Center of Infectious Diseases, Division of Infectious Diseases in State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hong Tang
- Center of Infectious Diseases, Division of Infectious Diseases in State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Zhaoming Su
- Center of Infectious Diseases, Division of Infectious Diseases in State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Rui Bao
- Center of Infectious Diseases, Division of Infectious Diseases in State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
2
|
Gopi Reji J, K Edison L, Raghunandanan S, Pushparajan AR, Kurthkoti K, Ajay Kumar R. Rv1255c, a dormancy-related transcriptional regulator of TetR family in Mycobacterium tuberculosis, enhances isoniazid tolerance in Mycobacterium smegmatis. J Antibiot (Tokyo) 2023; 76:720-727. [PMID: 37821540 DOI: 10.1038/s41429-023-00661-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 08/29/2023] [Accepted: 09/12/2023] [Indexed: 10/13/2023]
Abstract
Mycobacterium tuberculosis is exposed to diverse stresses inside the host during dormancy. Meanwhile, many metabolic and transcriptional regulatory changes occur, resulting in physiological modifications that help M. tuberculosis to adapt to these stresses. The same physiological changes also cause antibiotic tolerance in dormant M. tuberculosis. However, the transcriptional regulatory mechanism of antibiotic tolerance during dormancy remains unclear. Here, we showed that the expression of Rv1255c, an uncharacterised member of the tetracycline repressor family of transcriptional regulators, is upregulated during different stresses and hypoxia-induced dormancy. Antibiotic tolerance and efflux activities of Mycobacterium smegmatis constitutively expressing Rv1255c were analysed, and interestingly, it showed increased isoniazid tolerance and efflux activity. The intrabacterial isoniazid concentrations were found to be low in M. smegmatis expressing Rv1255c. Moreover, orthologs of the M. tuberculosis katG, gene of the enzyme which activates the first-line prodrug isoniazid, are overexpressed in this strain. Structural analysis of isoforms of KatG enzymes in M. smegmatis identified major amino acid substitutions associated with isoniazid resistance. Thus, we showed that Rv1255c helps M. smegmatis tolerate isoniazid by orchestrating drug efflux machinery. In addition, we showed that Rv1255c also causes overexpression of katG isoform in M. smegmatis which has amino acid substitutions as found in isoniazid-resistant katG in M. tuberculosis.
Collapse
Affiliation(s)
- Jijimole Gopi Reji
- Mycobacterium Research Laboratory, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, 695014, India
| | - Lakshmi K Edison
- Mycobacterium Research Laboratory, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, 695014, India
| | - Sajith Raghunandanan
- Mycobacterium Research Laboratory, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, 695014, India
| | - Akhil Raj Pushparajan
- Mycobacterium Research Laboratory, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, 695014, India
| | - Krishna Kurthkoti
- Mycobacterium Research Laboratory, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, 695014, India
| | - Ramakrsihnan Ajay Kumar
- Mycobacterium Research Laboratory, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, 695014, India.
| |
Collapse
|
3
|
Patil RS, Sharma S, Bhaskarwar AV, Nambiar S, Bhat NA, Koppolu MK, Bhukya H. TetR and OmpR family regulators in natural product biosynthesis and resistance. Proteins 2023. [PMID: 37874037 DOI: 10.1002/prot.26621] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 08/30/2023] [Accepted: 10/06/2023] [Indexed: 10/25/2023]
Abstract
This article provides a comprehensive review and sequence-structure analysis of transcription regulator (TR) families, TetR and OmpR/PhoB, involved in specialized secondary metabolite (SSM) biosynthesis and resistance. Transcription regulation is a fundamental process, playing a crucial role in orchestrating gene expression to confer a survival advantage in response to frequent environmental stress conditions. This process, coupled with signal sensing, enables bacteria to respond to a diverse range of intra and extracellular signals. Thus, major bacterial signaling systems use a receptor domain to sense chemical stimuli along with an output domain responsible for transcription regulation through DNA-binding. Sensory and output domains on a single polypeptide chain (one component system, OCS) allow response to stimuli by allostery, that is, DNA-binding affinity modulation upon signal presence/absence. On the other hand, two component systems (TCSs) allow cross-talk between the sensory and output domains as they are disjoint and transmit information by phosphorelay to mount a response. In both cases, however, TRs play a central role. Biosynthesis of SSMs, which includes antibiotics, is heavily regulated by TRs as it diverts the cell's resources towards the production of these expendable compounds, which also have clinical applications. These TRs have evolved to relay information across specific signals and target genes, thus providing a rich source of unique mechanisms to explore towards addressing the rapid escalation in antimicrobial resistance (AMR). Here, we focus on the TetR and OmpR family TRs, which belong to OCS and TCS, respectively. These TR families are well-known examples of regulators in secondary metabolism and are ubiquitous across different bacteria, as they also participate in a myriad of cellular processes apart from SSM biosynthesis and resistance. As a result, these families exhibit higher sequence divergence, which is also evident from our bioinformatic analysis of 158 389 and 77 437 sequences from TetR and OmpR family TRs, respectively. The analysis of both sequence and structure allowed us to identify novel motifs in addition to the known motifs responsible for TR function and its structural integrity. Understanding the diverse mechanisms employed by these TRs is essential for unraveling the biosynthesis of SSMs. This can also help exploit their regulatory role in biosynthesis for significant pharmaceutical, agricultural, and industrial applications.
Collapse
Affiliation(s)
- Rachit S Patil
- Department of Biology, Indian Institute of Science Education and Research, Tirupati, India
| | - Siddhant Sharma
- Department of Biology, Indian Institute of Science Education and Research, Tirupati, India
| | - Aditya V Bhaskarwar
- Department of Biology, Indian Institute of Science Education and Research, Tirupati, India
| | - Souparnika Nambiar
- Department of Biology, Indian Institute of Science Education and Research, Tirupati, India
| | - Niharika A Bhat
- Department of Biology, Indian Institute of Science Education and Research, Tirupati, India
| | - Mani Kanta Koppolu
- Department of Biology, Indian Institute of Science Education and Research, Tirupati, India
| | - Hussain Bhukya
- Department of Biology, Indian Institute of Science Education and Research, Tirupati, India
| |
Collapse
|
4
|
Vatlin AA, Bekker OB, Shur KV, Ilyasov RA, Shatrov PA, Maslov DA, Danilenko VN. Kanamycin and Ofloxacin Activate the Intrinsic Resistance to Multiple Antibiotics in Mycobacterium smegmatis. BIOLOGY 2023; 12:biology12040506. [PMID: 37106707 PMCID: PMC10135989 DOI: 10.3390/biology12040506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/16/2023] [Accepted: 03/25/2023] [Indexed: 03/30/2023]
Abstract
Drug resistance (DR) in Mycobacterium tuberculosis is the main problem in fighting tuberculosis (TB). This pathogenic bacterium has several types of DR implementation: acquired and intrinsic DR. Recent studies have shown that exposure to various antibiotics activates multiple genes, including genes responsible for intrinsic DR. To date, there is evidence of the acquisition of resistance at concentrations well below the standard MICs. In this study, we aimed to investigate the mechanism of intrinsic drug cross-resistance induction by subinhibitory concentrations of antibiotics. We showed that pretreatment of M. smegmatis with low doses of antibiotics (kanamycin and ofloxacin) induced drug resistance. This effect may be caused by a change in the expression of transcriptional regulators of the mycobacterial resistome, in particular the main transcriptional regulator whiB7.
Collapse
|
5
|
Gorzynski M, Week T, Jaramillo T, Dzalamidze E, Danelishvili L. Mycobacterium abscessus Genetic Determinants Associated with the Intrinsic Resistance to Antibiotics. Microorganisms 2021; 9:microorganisms9122527. [PMID: 34946129 PMCID: PMC8707978 DOI: 10.3390/microorganisms9122527] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/25/2021] [Accepted: 12/04/2021] [Indexed: 12/02/2022] Open
Abstract
Mycobacterium abscessus
subsp. abscessus (MAB) is a fast-growing nontuberculous mycobacterium causing pulmonary infections in immunocompromised and immunocompetent individuals. The treatment of MAB infections in clinics is extremely challenging, as this organism is naturally resistant to most available antibiotics. There is limited knowledge on the mechanisms of MAB intrinsic resistance and on the genes that are involved in the tolerance to antimicrobials. To identify the MAB genetic factors, including the components of the cell surface transport systems related to the efflux pumps, major known elements contributing to antibiotic resistance, we screened the MAB transposon library of 2000 gene knockout mutants. The library was exposed at either minimal inhibitory (MIC) or bactericidal concentrations (BC) of amikacin, clarithromycin, or cefoxitin, and MAB susceptibility was determined through the optical density. The 98 susceptible and 36 resistant mutants that exhibited sensitivity below the MIC and resistance to BC, respectively, to all three drugs were sequenced, and 16 mutants were found to belong to surface transport systems, such as the efflux pumps, porins, and carrier membrane enzymes associated with different types of molecule transport. To establish the relevance of the identified transport systems to antibiotic tolerance, the gene expression levels of the export related genes were evaluated in nine MAB clinical isolates in the presence or absence of antibiotics. The selected mutants were also evaluated for their ability to form biofilms and for their intracellular survival in human macrophages. In this study, we identified numerous MAB genes that play an important role in the intrinsic mechanisms to antimicrobials and further demonstrated that, by targeting components of the drug efflux system, we can significantly increase the efficacy of the current antibiotics.
Collapse
Affiliation(s)
- Mylene Gorzynski
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA; (M.G.); (T.W.); (T.J.); (E.D.)
- Department of Biochemistry & Molecular Biology, Oregon State University, Corvallis, OR 97331, USA
| | - Tiana Week
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA; (M.G.); (T.W.); (T.J.); (E.D.)
- Department of Bioengineering, College of Engineering, Oregon State University, Corvallis, OR 97331, USA
| | - Tiana Jaramillo
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA; (M.G.); (T.W.); (T.J.); (E.D.)
- Department of Animal Sciences, College of Agricultural Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Elizaveta Dzalamidze
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA; (M.G.); (T.W.); (T.J.); (E.D.)
- BioHealth Sciences, Department of Microbiology, College of Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Lia Danelishvili
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA; (M.G.); (T.W.); (T.J.); (E.D.)
- Correspondence:
| |
Collapse
|
6
|
Dey U, Sarkar S, Teronpi V, Yella VR, Kumar A. G-quadruplex motifs are functionally conserved in cis-regulatory regions of pathogenic bacteria: An in-silico evaluation. Biochimie 2021; 184:40-51. [PMID: 33548392 DOI: 10.1016/j.biochi.2021.01.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 01/28/2021] [Accepted: 01/29/2021] [Indexed: 02/06/2023]
Abstract
The role of G-quadruplexes in the cellular physiology of human pathogenesis is an intriguing area of research. Nonetheless, their functional roles and evolutionary conservation have not been compared comprehensively in pathogenic forms of various bacterial genera and species. In the current in silico study, we addressed the role of G-quadruplex-forming sequences (G4 motifs) in the context of cis-regulation, expression variation, regulatory networks, gene orthology and ontology. Genome-wide screening across seven pathogenic genomes using the G4Hunter tool revealed the significant prevalence of G4 motifs in cis-regulatory regions compared to the intragenic regions. Significant conservation of G4 motifs was observed in the regulatory region of 300 orthologous genes. Further analysis of published ChIP-Seq data (Minch et al., 2015) of 91 DNA-binding proteins of the M. tuberculosis genome revealed significant links between G4 motifs and target sites of transcriptional regulators. Interestingly, the transcription factors entangled with virulence, in specific, CsoR, Rv0081, DevR/DosR, and TetR family are found to have G4 motifs in their target regulatory regions. Overall the current study applies positional-functional relationship computation to delve into the cis-regulation of G-quadruplex structures in the context of gene orthology in pathogenic bacteria.
Collapse
Affiliation(s)
- Upalabdha Dey
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, 784028, Assam, India
| | - Sharmilee Sarkar
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, 784028, Assam, India
| | - Valentina Teronpi
- Department of Zoology, Pandit Deendayal Upadhyaya Adarsha Mahavidyalaya, Behali, Biswanath, 784184, Assam, India
| | - Venkata Rajesh Yella
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation, Guntur, 522502, Andhra Pradesh, India.
| | - Aditya Kumar
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, 784028, Assam, India.
| |
Collapse
|
7
|
Colclough AL, Scadden J, Blair JMA. TetR-family transcription factors in Gram-negative bacteria: conservation, variation and implications for efflux-mediated antimicrobial resistance. BMC Genomics 2019; 20:731. [PMID: 31606035 PMCID: PMC6790063 DOI: 10.1186/s12864-019-6075-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 08/30/2019] [Indexed: 12/13/2022] Open
Abstract
Background TetR-family transcriptional regulators (TFTRs) are DNA binding factors that regulate gene expression in bacteria. Well-studied TFTRs, such as AcrR, which regulates efflux pump expression, are usually encoded alongside target operons. Recently, it has emerged that there are many TFTRs which act as global multi-target regulators. Our classical view of TFTRs as simple, single-target regulators therefore needs to be reconsidered. As some TFTRs regulate essential processes (e.g. metabolism) or processes which are important determinants of resistance and virulence (e.g. biofilm formation and efflux gene expression) and as TFTRs are present throughout pathogenic bacteria, they may be good drug discovery targets for tackling antimicrobial resistant infections. However, the prevalence and conservation of individual TFTR genes in Gram-negative species, has to our knowledge, not yet been studied. Results Here, a wide-scale search for TFTRs in available proteomes of clinically relevant pathogens Salmonella and Escherichia species was performed and these regulators further characterised. The majority of identified TFTRs are involved in efflux regulation in both Escherichia and Salmonella. The percentage variance in TFTR genes of these genera was found to be higher in those regulating genes involved in efflux, bleach survival or biofilm formation than those regulating more constrained processes. Some TFTRs were found to be present in all strains and species of these two genera, whereas others (i.e. TetR) are only present in some strains and some (i.e. RamR) are genera-specific. Two further pathogens on the WHO priority pathogen list (K. pneumoniae and P. aeruginosa) were then searched for the presence of the TFTRs conserved in Escherichia and Salmonella. Conclusions Through bioinformatics and literature analyses, we present that TFTRs are a varied and heterogeneous family of proteins required for the regulation of numerous important processes, with consequences to antimicrobial resistance and virulence, and that the roles and responses of these proteins are frequently underestimated. Electronic supplementary material The online version of this article (10.1186/s12864-019-6075-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- A L Colclough
- Institute of Microbiology and Infection, Biosciences Building, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - J Scadden
- Institute of Microbiology and Infection, Biosciences Building, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - J M A Blair
- Institute of Microbiology and Infection, Biosciences Building, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| |
Collapse
|
8
|
Chen Y, Xu Y, Yang S, Li S, Ding W, Zhang W. Deficiency of D-alanyl-D-alanine ligase A attenuated cell division and greatly altered the proteome of Mycobacterium smegmatis. Microbiologyopen 2019; 8:e00819. [PMID: 30828981 PMCID: PMC6741128 DOI: 10.1002/mbo3.819] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/24/2019] [Accepted: 01/25/2019] [Indexed: 12/14/2022] Open
Abstract
D‐Alanyl‐D‐alanine ligase A (DdlA) catalyses the dimerization of two D‐alanines yielding D‐alanyl‐D‐alanine required for mycobacterial peptidoglycan biosynthesis, and is a promising antimycobacterial drug target. To better understand the roles of DdlA in mycobacteria in vivo, we established a cell model in which DdlA expression was specifically downregulated by ddlA antisense RNA by introducing a 380 bp ddlA fragment into pMind followed by transforming the construct into nonpathogenic Mycobacterium smegmatis. The M. smegmatis cell model was verified by plotting the growth inhibition curves and quantifying endogenous DdlA expression using a polyclonal anti‐DdlA antibody produced from the expressed DdlA. Scanning electron microscopy and transmission electron microscopy were used to investigate mycobacterial morphology. Bidimensional gel electrophoresis and mass spectrometry were used to analyze differentially expressed proteins. Consequently, the successful construction of the M. smegmatis cell model was verified. The morphological investigation of the model indicated that DdlA deficiency led to an increased number of Z rings and a rearrangement of intracellular content, including a clear nucleoid and visible filamentous DNA. Proteomic techniques identified six upregulated and 14 downregulated proteins that interacted with each other to permit cell survival by forming a regulatory network under DdlA deficiency. Finally, our data revealed that DdlA deficiency inhibited cell division in mycobacteria and attenuated the process of carbohydrate catabolism and the pathway of fatty acid anabolism, while maintaining active protein degradation and synthesis. N‐Nitrosodimethylamine (NDMA)‐dependent methanol dehydrogenase (MSMEG_6242) and fumonisin (MSMEG_1419) were identified as potential antimycobacterial drug targets.
Collapse
Affiliation(s)
- Yingfei Chen
- Dalian Yuming Senior High School, Liaoning, China
| | - Yuefei Xu
- Biochemistry and Molecular Biology Department of College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Shufeng Yang
- Department of Microbiology, Dalian Medical University, Dalian, China
| | - Sheng Li
- Biochemistry and Molecular Biology Department of College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Wenyong Ding
- Biochemistry and Molecular Biology Department of College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Wenli Zhang
- Biochemistry and Molecular Biology Department of College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| |
Collapse
|
9
|
Zhu C, Liu Y, Hu L, Yang M, He ZG. Molecular mechanism of the synergistic activity of ethambutol and isoniazid against Mycobacterium tuberculosis. J Biol Chem 2018; 293:16741-16750. [PMID: 30185616 DOI: 10.1074/jbc.ra118.002693] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 08/26/2018] [Indexed: 11/06/2022] Open
Abstract
Isoniazid (INH) and ethambutol (EMB) are two major first-line drugs for managing tuberculosis (TB), caused by the microbe Mycobacterium tuberculosis Although co-use of these two drugs is common in clinical practice, the mechanism for the potential synergistic interplay between them remains unclear. Here, we present first evidence that INH and EMB act synergistically through a transcriptional repressor of the inhA gene, the target gene of INH encoding an enoyl-acyl carrier protein reductase of the fatty acid synthase type II system required for bacterial cell wall integrity. We report that EMB binds a hypothetical transcription factor encoded by the Rv0273c gene, designated here as EtbR. Using DNA footprinting, we found that EtbR specifically recognizes a motif sequence in the upstream region of the inhA gene. Using isothermal titration calorimetry and surface plasmon resonance assays, we observed that EMB binds EtbR in a 1:1 ratio and thereby stimulates its DNA-binding activity. When a nonlethal dose of EMB was delivered in combination with INH, EMB increased the INH susceptibility of cultured M. tuberculosis cells. In summary, EMB induces EtbR-mediated repression of inhA and thereby enhances the mycobactericidal effect of INH. Our findings uncover a molecular mechanism for the synergistic activity of two important anti-TB drugs.
Collapse
Affiliation(s)
- Chen Zhu
- From the National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yu Liu
- From the National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Lihua Hu
- From the National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Min Yang
- From the National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zheng-Guo He
- From the National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
10
|
Novel T7 Phage Display Library Detects Classifiers for Active Mycobacterium Tuberculosis Infection. Viruses 2018; 10:v10070375. [PMID: 30029479 PMCID: PMC6070804 DOI: 10.3390/v10070375] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/09/2018] [Accepted: 07/17/2018] [Indexed: 12/18/2022] Open
Abstract
Tuberculosis (TB) is caused by Mycobacterium tuberculosis (MTB) and transmitted through inhalation of aerosolized droplets. Eighty-five percent of new TB cases occur in resource-limited countries in Asia and Africa and fewer than 40% of TB cases are diagnosed due to the lack of accurate and easy-to-use diagnostic assays. Currently, diagnosis relies on the demonstration of the bacterium in clinical specimens by serial sputum smear microscopy and culture. These methods lack sensitivity, are time consuming, expensive, and require trained personnel. An alternative approach is to develop an efficient immunoassay to detect antibodies reactive to MTB antigens in bodily fluids, such as serum. Sarcoidosis and TB have clinical and pathological similarities and sarcoidosis tissue has yielded MTB components. Using sarcoidosis tissue, we developed a T7 phage cDNA library and constructed a microarray platform. We immunoscreened our microarray platform with sera from healthy (n = 45), smear positive TB (n = 24), and sarcoidosis (n = 107) subjects. Using a student t-test, we identified 192 clones significantly differentially expressed between the three groups at a False Discovery Rate (FDR) <0.01. Among those clones, we selected the top ten most significant clones and validated them on independent test set. The area under receiver operating characteristics (ROC) for the top 10 significant clones was 1 with a sensitivity of 1 and a specificity of 1. Sequence analyses of informative phage inserts recognized as antigens by active TB sera may identify immunogenic antigens that could be used to develop therapeutic or prophylactic vaccines, as well as identify molecular targets for therapy.
Collapse
|
11
|
A temporal proteome dynamics study reveals the molecular basis of induced phenotypic resistance in Mycobacterium smegmatis at sub-lethal rifampicin concentrations. Sci Rep 2017; 7:43858. [PMID: 28262820 PMCID: PMC5338346 DOI: 10.1038/srep43858] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 01/31/2017] [Indexed: 12/24/2022] Open
Abstract
In the last 40 years only one new antitubercular drug has been approved, whilst resistance to current drugs, including rifampicin, is spreading. Here, we used the model organism Mycobacterium smegmatis to study mechanisms of phenotypic mycobacterial resistance, employing quantitative mass spectrometry-based proteomics to investigate the temporal effects of sub-lethal concentrations of rifampicin on the mycobacterial proteome at time-points corresponding to early response, onset of bacteriostasis and early recovery. Across 18 samples, a total of 3,218 proteins were identified from 31,846 distinct peptides averaging 16,250 identified peptides per sample. We found evidence that two component signal transduction systems (e.g. MprA/MprB) play a major role during initial mycobacterial adaptive responses to sub-lethal rifampicin and that, after dampening an initial SOS response, the bacteria supress the DevR (DosR) regulon and also upregulate their transcriptional and translational machineries. Furthermore, we found a co-ordinated dysregulation in haeme and mycobactin synthesis. Finally, gradual upregulation of the M. smegmatis-specific rifampin ADP-ribosyl transferase was observed which, together with upregulation of transcriptional and translational machinery, likely explains recovery of normal growth. Overall, our data indicates that in mycobacteria, sub-lethal rifampicin triggers a concerted phenotypic response that contrasts significantly with that observed at higher antimicrobial doses.
Collapse
|