Schneider P, Klamt S. Characterizing and ranking computed metabolic engineering strategies.
Bioinformatics 2020;
35:3063-3072. [PMID:
30649194 PMCID:
PMC6735923 DOI:
10.1093/bioinformatics/bty1065]
[Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/28/2018] [Accepted: 01/07/2019] [Indexed: 01/06/2023] Open
Abstract
MOTIVATION
The computer-aided design of metabolic intervention strategies has become a key component of an integrated metabolic engineering approach and a broad range of methods and algorithms has been developed for this task. Many of these algorithms enforce coupling of growth with product synthesis and may return thousands of possible intervention strategies from which the most suitable strategy must then be selected.
RESULTS
This work focuses on how to evaluate and rank, in a meaningful way, a given pool of computed metabolic engineering strategies for growth-coupled product synthesis. Apart from straightforward criteria, such as a preferably small number of necessary interventions, a reasonable growth rate and a high product yield, we present several new criteria useful to pick the most suitable intervention strategy. Among others, we investigate the robustness of the intervention strategies by searching for metabolites that may disrupt growth coupling when accumulated or secreted and by checking whether the interventions interrupt pathways at their origin (preferable) or at downstream steps. We also assess thermodynamic properties of the pathway(s) favored by the intervention strategy. Furthermore, strategies that have a significant overlap with alternative solutions are ranked higher because they provide flexibility in implementation. We also introduce the notion of equivalence classes for grouping intervention strategies with identical solution spaces. Our ranking procedure involves in total ten criteria and we demonstrate its applicability by assessing knockout-based intervention strategies computed in a genome-scale model of E.coli for the growth-coupled synthesis of l-methionine and of the heterologous product 1,4-butanediol.
AVAILABILITY AND IMPLEMENTATION
The MATLAB scripts that were used to characterize and rank the example intervention strategies are available at http://www2.mpi-magdeburg.mpg.de/projects/cna/etcdownloads.html.
SUPPLEMENTARY INFORMATION
Supplementary data are available at Bioinformatics online.
Collapse