1
|
Muniz TDTP, Rossi MC, de Vasconcelos Machado VM, Alves ALG. Mesenchymal Stem Cells and Tissue Bioengineering Applications in Sheep as Ideal Model. Stem Cells Int 2024; 2024:5176251. [PMID: 39465229 PMCID: PMC11511598 DOI: 10.1155/2024/5176251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 09/18/2024] [Accepted: 09/30/2024] [Indexed: 10/29/2024] Open
Abstract
The most common technologies in tissue engineering include growth factor therapies; metal implants, such as titanium; 3D bioprinting; nanoimprinting for ceramic/polymer scaffolds; and cell therapies, such as mesenchymal stem cells (MSCs). Cell therapy is a promising alternative to organ grafts and transplants in the treatment of numerous musculoskeletal diseases. MSCs have increasingly been used in generative medicine due to their specialized self-renewal, immunomodulation, multiplication, and differentiation properties. To further expand the potential of these cells in tissue repair, significant efforts are currently dedicated to the production of biomaterials with desirable short- and long-term biophysical properties that can aid the differentiation and expansion of MSCs. Biomaterials support MSC differentiation by modulating their characteristics, such as composition, mechanical properties, porosity, and topography. This review aimed to describe recent MSC approaches, including those associated with biomaterials, from experimental, clinical, and preclinical studies with sheep models.
Collapse
Affiliation(s)
- Talita D'Paula Tavares Pereira Muniz
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), 18.618-681, Botucatu, Sao Paulo, Brazil
| | - Mariana Correa Rossi
- Materials Engineering Department (DEMa), São Carlos Federal University (UFSCar), 13.565-905, São Carlos, Sao Paulo, Brazil
| | - Vânia Maria de Vasconcelos Machado
- Department of Veterinary Surgery and Animal Reproduction, Imaging Diagnostic Sector, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), 18.618-681, Botucatu, Sao Paulo, Brazil
| | - Ana Liz Garcia Alves
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), 18.618-681, Botucatu, Sao Paulo, Brazil
| |
Collapse
|
2
|
Mirzababaei S, Towery LAK, Kozminsky M. 3D and 4D assembly of functional structures using shape-morphing materials for biological applications. Front Bioeng Biotechnol 2024; 12:1347666. [PMID: 38605991 PMCID: PMC11008679 DOI: 10.3389/fbioe.2024.1347666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/01/2024] [Indexed: 04/13/2024] Open
Abstract
3D structures are crucial to biological function in the human body, driving interest in their in vitro fabrication. Advances in shape-morphing materials allow the assembly of 3D functional materials with the ability to modulate the architecture, flexibility, functionality, and other properties of the final product that suit the desired application. The principles of these techniques correspond to the principles of origami and kirigami, which enable the transformation of planar materials into 3D structures by folding, cutting, and twisting the 2D structure. In these approaches, materials responding to a certain stimulus will be used to manufacture a preliminary structure. Upon applying the stimuli, the architecture changes, which could be considered the fourth dimension in the manufacturing process. Here, we briefly summarize manufacturing techniques, such as lithography and 3D printing, that can be used in fabricating complex structures based on the aforementioned principles. We then discuss the common architectures that have been developed using these methods, which include but are not limited to gripping, rolling, and folding structures. Then, we describe the biomedical applications of these structures, such as sensors, scaffolds, and minimally invasive medical devices. Finally, we discuss challenges and future directions in using shape-morphing materials to develop biomimetic and bioinspired designs.
Collapse
Affiliation(s)
- Soheyl Mirzababaei
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, United States
| | - Lily Alyssa Kera Towery
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, United States
| | - Molly Kozminsky
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, United States
- Nanovaccine Institute, Iowa State University, Ames, IA, United States
| |
Collapse
|
3
|
Skubis-Sikora A, Sikora B, Małysiak W, Wieczorek P, Czekaj P. Regulation of Adipose-Derived Stem Cell Activity by Melatonin Receptors in Terms of Viability and Osteogenic Differentiation. Pharmaceuticals (Basel) 2023; 16:1236. [PMID: 37765045 PMCID: PMC10535461 DOI: 10.3390/ph16091236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/27/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Melatonin is a hormone secreted mainly by the pineal gland and acts through the Mel1A and Mel1B receptors. Among other actions, melatonin significantly increases osteogenesis during bone regeneration. Human adipose-derived mesenchymal stem cells (ADSCs) are also known to have the potential to differentiate into osteoblast-like cells; however, inefficient culturing due to the loss of properties over time or low cell survival rates on scaffolds is a limitation. Improving the process of ADSC expansion in vitro is crucial for its further successful use in bone regeneration. This study aimed to assess the effect of melatonin on ADSC characteristics, including osteogenicity. We assessed ADSC viability at different melatonin concentrations as well as the effect on its receptor inhibitors (luzindole or 4-P-PDOT). Moreover, we analyzed the ADSC phenotype, apoptosis, cell cycle, and expression of MTNR1A and MTNR1B receptors, and its potential for osteogenic differentiation. We found that ADSCs treated with melatonin at a concentration of 100 µM had a higher viability compared to those treated at higher melatonin concentrations. Melatonin did not change the phenotype of ADSCs or induce apoptosis and it promoted the activity of some osteogenesis-related genes. We concluded that melatonin is safe, non-toxic to normal ADSCs in vitro, and can be used in regenerative medicine at low doses (100 μM) to improve cell viability without negatively affecting the osteogenic potential of these cells.
Collapse
Affiliation(s)
- Aleksandra Skubis-Sikora
- Department of Cytophysiology, Chair of Histology and Embryology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-055 Katowice, Poland
| | | | | | | | | |
Collapse
|
4
|
Wang Z, Chen T, Li X, Guo B, Liu P, Zhu Z, Xu RX. Oxygen-releasing biomaterials for regenerative medicine. J Mater Chem B 2023; 11:7300-7320. [PMID: 37427691 DOI: 10.1039/d3tb00670k] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Oxygen is critical to the survival, function and fate of mammalian cells. Oxygen tension controls cellular behavior through metabolic programming, which in turn controls tissue regeneration. A variety of biomaterials with oxygen-releasing capabilities have been developed to provide oxygen supply to ensure cell survival and differentiation for therapeutic efficacy, and to prevent hypoxia-induced tissue damage and cell death. However, controlling the oxygen release with spatial and temporal accuracy is still technically challenging. In this review, we provide a comprehensive overview of organic and inorganic materials available as oxygen sources, including hemoglobin-based oxygen carriers (HBOCs), perfluorocarbons (PFCs), photosynthetic organisms, solid and liquid peroxides, and some of the latest materials such as metal-organic frameworks (MOFs). Additionally, we introduce the corresponding carrier materials and the oxygen production methods and present state-of-the-art applications and breakthroughs of oxygen-releasing materials. Furthermore, we discuss the current challenges and the future perspectives in the field. After reviewing the recent progress and the future perspectives of oxygen-releasing materials, we predict that smart material systems that combine precise detection of oxygenation and adaptive control of oxygen delivery will be the future trend for oxygen-releasing materials in regenerative medicine.
Collapse
Affiliation(s)
- Zhaojun Wang
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215000, China.
| | - Tianao Chen
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230026, China.
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xin Li
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215000, China.
| | - Buyun Guo
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230026, China.
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Peng Liu
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215000, China.
| | - Zhiqiang Zhu
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230026, China.
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Ronald X Xu
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215000, China.
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230026, China.
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
5
|
Yadav LR, Balagangadharan K, Lavanya K, Selvamurugan N. Orsellinic acid-loaded chitosan nanoparticles in gelatin/nanohydroxyapatite scaffolds for bone formation in vitro. Life Sci 2022; 299:120559. [PMID: 35447131 DOI: 10.1016/j.lfs.2022.120559] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 11/29/2022]
Abstract
AIM Orsellinic acid (2,4-Dimethoxy-6-methylbenzoic acid) (OA) is a hydrophobic polyphenolic compound with therapeutic potential, but its impact on actuating osteogenesis remains unknown. The bioavailability of OA is hampered by its hydrophobic nature. This study aimed to fabricate nano-drug delivery system-based scaffolds for OA and test its potential for osteogenesis in vitro. MATERIALS AND METHODS OA was loaded into chitosan nanoparticles (nCS + OA) using the ionic gelation technique at different concentrations. nCS + OA were incorporated onto the scaffolds containing gelatin (Gel) and nanohydroxyapatite (nHAp) by the lyophilization method. Biocomposite scaffolds were examined for their physicochemical and material characteristic properties. The effect of OA in the scaffolds for osteoblast differentiation was determined by alizarin red and von Kossa staining at the cellular level and by reverse transcriptase-qPCR and western blot analysis at the molecular level. KEY FINDINGS The scaffolds showed excellent physiochemical and material characteristics and remained cyto-friendly to mouse mesenchymal stem cells (mMSCs, C3H10T1/2). The release of OA from Gel/nHAp/nCS scaffolds enhanced the differentiation of mMSCs towards osteoblasts, as observed through cellular and molecular studies. Moreover, the osteogenic potential of OA was mediated by the activation of FAK and ERK signaling pathways through integrins. SIGNIFICANCE The inclusion of OA into Gel/nHAp/nCS biocomposite scaffolds at 80 μM concentration promoted osteoblast differentiation via cell adhesion mediated signaling, compared with that shown by Gel/nHAp/nCS alone. Overall, this study identified the potential therapeutic OA containing Gel/nHAp/nCS scaffolds, accelerating its potential for clinical application towards bone regeneration.
Collapse
Affiliation(s)
- L Roshini Yadav
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - K Balagangadharan
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - K Lavanya
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - N Selvamurugan
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India.
| |
Collapse
|
6
|
Micale L, Morlino S, Carbone A, Carissimo A, Nardella G, Fusco C, Palumbo O, Schirizzi A, Russo F, Mazzoccoli G, Breckpot J, De Luca C, Ferraris A, Giunta C, Grammatico P, Haanpää MK, Mancano G, Forzano G, Cacchiarelli D, Van Esch H, Callewaert B, Rohrbach M, Castori M. Loss-of-function variants in exon 4 of TAB2 cause a recognizable multisystem disorder with cardiovascular, facial, cutaneous, and musculoskeletal involvement. Genet Med 2021; 24:439-453. [PMID: 34906501 DOI: 10.1016/j.gim.2021.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/02/2021] [Accepted: 10/15/2021] [Indexed: 11/19/2022] Open
Abstract
PURPOSE This study aimed to describe a multisystemic disorder featuring cardiovascular, facial, musculoskeletal, and cutaneous anomalies caused by heterozygous loss-of-function variants in TAB2. METHODS Affected individuals were analyzed by next-generation technologies and genomic array. The presumed loss-of-function effect of identified variants was assessed by luciferase assay in cells transiently expressing TAB2 deleterious alleles. In available patients' fibroblasts, variant pathogenicity was further explored by immunoblot and osteoblast differentiation assays. The transcriptomic profile of fibroblasts was investigated by RNA sequencing. RESULTS A total of 11 individuals from 8 families were heterozygotes for a novel TAB2 variant. In total, 7 variants were predicted to be null alleles and 1 was a missense change. An additional subject was heterozygous for a 52 kb microdeletion involving TAB2 exons 1 to 3. Luciferase assay indicated a decreased transcriptional activation mediated by NF-κB signaling for all point variants. Immunoblot analysis showed a reduction of TAK1 phosphorylation while osteoblast differentiation was impaired. Transcriptomic analysis identified deregulation of multiple pleiotropic pathways, such as TGFβ-, Ras-MAPK-, and Wnt-signaling networks. CONCLUSION Our data defined a novel disorder associated with loss-of-function or, more rarely, hypomorphic alleles in a restricted linker region of TAB2. The pleiotropic manifestations in this disorder partly recapitulate the 6q25.1 (TAB2) microdeletion syndrome and deserve the definition of cardio-facial-cutaneous-articular syndrome.
Collapse
Affiliation(s)
- Lucia Micale
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Silvia Morlino
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Annalucia Carbone
- Unit of Chronobiology, Division of Internal Medicine, Fondazione IRCCS-Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Annamaria Carissimo
- Institute for Applied Mathematics "Mauro Picone" National Research Council, Naples, Italy
| | - Grazia Nardella
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Carmela Fusco
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Orazio Palumbo
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Annalisa Schirizzi
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Federica Russo
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Gianluigi Mazzoccoli
- Unit of Chronobiology, Division of Internal Medicine, Fondazione IRCCS-Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Jeroen Breckpot
- Center for Human Genetics, University Hospital Leuven, Leuven, Belgium
| | - Chiara De Luca
- Center for Human Genetics, University Hospital Leuven, Leuven, Belgium
| | - Alessandro Ferraris
- Laboratory of Medical Genetics, Department of Molecular Medicine, Sapienza University, San Camillo-Forlanini Hospital, Rome, Italy
| | - Cecilia Giunta
- Division of Metabolism and Children's Research Center, University Children's Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Paola Grammatico
- Laboratory of Medical Genetics, Department of Molecular Medicine, Sapienza University, San Camillo-Forlanini Hospital, Rome, Italy
| | - Maria K Haanpää
- Department of Clinical Genetics and Genomics, Turku University Hospital and University of Turku, Turku, Finland
| | - Giorgia Mancano
- Medical Genetics Unit, Meyer Children's University Hospital, Florence, Italy
| | - Giulia Forzano
- Medical Genetics Unit, University of Florence, Florence, Italy
| | - Davide Cacchiarelli
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy; Department of Translational Medicine, University of Naples "Federico II", Naples, Italy
| | - Hilde Van Esch
- Center for Human Genetics, University Hospital Leuven, Leuven, Belgium
| | - Bert Callewaert
- Center for Medical Genetics and Department of Biomolecular Medicine, Ghent University Hospital, Ghent, Belgium
| | - Marianne Rohrbach
- Division of Metabolism and Children's Research Center, University Children's Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Marco Castori
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy.
| |
Collapse
|
7
|
Morrison E, Suvarnapathaki S, Blake L, Camci-Unal G. Unconventional biomaterials for cardiovascular tissue engineering. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2021. [DOI: 10.1016/j.cobme.2021.100263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
8
|
Ahmed A, Gauntlett OC, Camci-Unal G. Origami-Inspired Approaches for Biomedical Applications. ACS OMEGA 2021; 6:46-54. [PMID: 33458458 PMCID: PMC7807481 DOI: 10.1021/acsomega.0c05275] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 12/17/2020] [Indexed: 05/05/2023]
Abstract
Modern day biomedical applications require progressions that combine advanced technology with the conformability of naturally occurring, complex biosystems. These advancements yield conformational interactions between the biomedical devices and the biological organisms' structures. Biomedical applications that adapt origami-inspired approaches have accrued aspired advances. Along with application-specific advantages, the most pertinent advances provided by origami-inspired strategies include voluminous structures with the ability to conform to biosystems, shape-shifting from two-dimensional (2D) to three-dimensional (3D) structures, and biocompatibility. Throughout this paper, the exploration of new studies, primarily within the past decade, with origami-based applications of biomedical devices, including their theories, experimental results, and plans for future testing are reviewed. This mini-review contains examples that aid the advancement of biomedical applications and hold promising future discoveries. The origami-inspired applications discussed within this paper are tissue scaffolds, drug delivery approaches, stents and catheters, implants, microfluidic devices, biosensors, and origami usage in surgery.
Collapse
Affiliation(s)
- Abdor
Rahman Ahmed
- Honors
College, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, New Jersey 08901, United States
| | - Olivia C. Gauntlett
- Department
of Chemical Engineering, University of Massachusetts
Lowell, Lowell, Massachusetts 01854, United States
| | - Gulden Camci-Unal
- Department
of Chemical Engineering, University of Massachusetts
Lowell, Lowell, Massachusetts 01854, United States
- Department
of Surgery, University of Massachusetts
Medical School, Worcester, Massachusetts 01655, United States
| |
Collapse
|
9
|
Wu X, Walsh K, Suvarnapathaki S, Lantigua D, McCarthy C, Camci-Unal G. Mineralized paper scaffolds for bone tissue engineering. Biotechnol Bioeng 2020; 118:1411-1418. [PMID: 33305827 DOI: 10.1002/bit.27652] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/26/2020] [Accepted: 12/05/2020] [Indexed: 01/04/2023]
Abstract
Mineralized polymer scaffolds have proven to be effective biomaterials for inducing osteoinductivity in bone tissue engineering. Sequential mineralization is a promising technique for depositing minerals in three-dimensional (3D) scaffolds. Paper, which is made of cellulose fibers, can be used as a tissue scaffold due to its highly porous structure and flexibility, as well as its excellent ability to wick fluids and support the growth of bone cells. In this study, paper-based, mineralized scaffolds were fabricated using sequential mineralization. We conducted experiments with two groups of scaffolds based on different incubation times in the mineralization solutions (30 min and 24 h). Ten cycles of mineralization were performed for each group. We found that the mineral content increased as the cycle number increased and that the 24-h group scaffolds consistently had more mineralization than did the 30-min group scaffolds when measured at the same cycle number. A quantitative reverse transcription-polymerase chain reaction was performed for two osteogenic differentiation markers of the preosteoblasts that were grown on the mineralized paper scaffolds. The gene expression results for bone-specific markers revealed that the mineralized scaffolds were osteoinductive. Subcutaneous implantation of the scaffolds in rats demonstrated favorable biocompatibility, high vascularization, and non-immunogenicity in vivo. The overall results suggest that the sequentially mineralized paper scaffolds are promising materials for use in bone tissue engineering.
Collapse
Affiliation(s)
- Xinchen Wu
- Biomedical Engineering and Biotechnology Program, University of Massachusetts Lowell, Lowell, Massachusetts, USA.,Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, Massachusetts, USA
| | - Kierra Walsh
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, Massachusetts, USA.,Department of Biological Sciences, University of Massachusetts Lowell, Lowell, Massachusetts, USA
| | - Sanika Suvarnapathaki
- Biomedical Engineering and Biotechnology Program, University of Massachusetts Lowell, Lowell, Massachusetts, USA.,Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, Massachusetts, USA
| | - Darlin Lantigua
- Biomedical Engineering and Biotechnology Program, University of Massachusetts Lowell, Lowell, Massachusetts, USA.,Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, Massachusetts, USA
| | - Colleen McCarthy
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, Massachusetts, USA
| | - Gulden Camci-Unal
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, Massachusetts, USA.,Department of Surgery, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
10
|
Ferreira SA, Young G, Jones JR, Rankin S. Bioglass/carbonate apatite/collagen composite scaffold dissolution products promote human osteoblast differentiation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 118:111393. [PMID: 33254998 DOI: 10.1016/j.msec.2020.111393] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/10/2020] [Accepted: 08/12/2020] [Indexed: 12/30/2022]
Abstract
OssiMend® Bioactive (Collagen Matrix Inc., NJ) is a three-component porous composite bone graft device of 45S5 Bioglass/carbonate apatite/collagen. Our in vitro studies showed that conditioned media of the dissolution products of OssiMend Bioactive stimulated primary human osteoblasts to form mineralized bone-like nodules in vitro in one week, in basal culture media (no osteogenic supplements). Osteoblast differentiation was followed by gene expression analysis and a mineralization assay. In contrast, the dissolution products from commercial OssiMend (Bioglass-free carbonate apatite/collagen scaffolds), or from 45S5 Bioglass particulate alone, did not induce the mineralization of the extracellular matrix, but did induce osteoblast differentiation to mature osteoblasts, evidenced by the strong upregulation of BGLAP and IBSP mRNA levels. The calcium ions and soluble silicon species released from 45S5 Bioglass particles and additional phosphorus release from OssiMend mediated the osteostimulatory effects. Medium conditioned with OssiMend Bioactive dissolution had a much higher concentration of phosphorus and silicon than media conditioned with OssiMend and 45S5 Bioglass alone. While OssiMend and OssiMend Bioactive led to calcium precipitation in cell culture media, OssiMend Bioactive produced a higher concentration of soluble silicon than 45S5 Bioglass and higher dissolution of phosphorus than OssiMend. These in vitro results suggest that adding 45S5 Bioglass to OssiMend produces a synergistic osteostimulation effect on primary human osteoblasts. In summary, dissolution products of a Bioglass/carbonate apatite/collagen composite scaffold (OssiMend® Bioactive) stimulate human osteoblast differentiation and mineralization of extracellular matrix in vitro without any osteogenic supplements. The mineralization was faster than for dissolution products of ordinary Bioglass.
Collapse
Affiliation(s)
- Silvia A Ferreira
- National Heart & Lung Institute, Imperial College London, London, UK.
| | - Gloria Young
- Department of Materials, Imperial College London, London, UK.
| | - Julian R Jones
- Department of Materials, Imperial College London, London, UK.
| | - Sara Rankin
- National Heart & Lung Institute, Imperial College London, London, UK.
| |
Collapse
|
11
|
Lantigua D, Nguyen MA, Wu X, Suvarnapathaki S, Kwon S, Gavin W, Camci-Unal G. Synthesis and characterization of photocrosslinkable albumin-based hydrogels for biomedical applications. SOFT MATTER 2020; 16:9242-9252. [PMID: 32929420 DOI: 10.1039/d0sm00977f] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Protein-based biomaterials are widely used to generate three-dimensional (3D) scaffolds for tissue regeneration as well as compact delivery systems for drugs, genes, and peptides. Specifically, albumin-based biomaterials are of particular interest for their ability to facilitate controlled delivery of drugs and other therapeutic agents. These hydrogels possess non-toxic and non-immunogenic properties that are desired in tissue engineering scaffolds. This work employs a rapid ultraviolet (UV) light induced crosslinking to fabricate bovine serum albumin (BSA) hydrogels. Using four different conditions, the BSA hydrogel properties were modulated based on the extent of glycidyl methacrylate modification in each polymer. The highly tunable mechanical behavior of the material was determined through compression tests which yielded a range of material strengths from 4.4 ± 1.5 to 122 ± 7.4 kPa. Pore size measurements also varied from 7.7 ± 1.7 to 23.5 ± 6.6 μm in the photocrosslinked gels. The physical properties of materials such as swelling and degradation were also characterized. In further evaluation, 3D scaffolds were used in cell encapsulation and in vivo implantation studies. The biocompatibility and degradability of the material demonstrated effective integration with the native tissue environment. These modifiable chemical and mechanical properties allow BSA hydrogels to be fine-tuned to a plethora of biomedical applications including regenerative medicine, in vitro cancer study models, and wound healing approaches.
Collapse
Affiliation(s)
- Darlin Lantigua
- Biomedical Engineering and Biotechnology Program, University of Massachusetts Lowell, One University Avenue, Lowell, MA 01854, USA and Department of Chemical Engineering, University of Massachusetts Lowell, One University Avenue, Lowell, MA 01854, USA
| | - Michelle A Nguyen
- Department of Chemical Engineering, University of Massachusetts Lowell, One University Avenue, Lowell, MA 01854, USA
| | - Xinchen Wu
- Biomedical Engineering and Biotechnology Program, University of Massachusetts Lowell, One University Avenue, Lowell, MA 01854, USA and Department of Chemical Engineering, University of Massachusetts Lowell, One University Avenue, Lowell, MA 01854, USA
| | - Sanika Suvarnapathaki
- Biomedical Engineering and Biotechnology Program, University of Massachusetts Lowell, One University Avenue, Lowell, MA 01854, USA and Department of Chemical Engineering, University of Massachusetts Lowell, One University Avenue, Lowell, MA 01854, USA
| | - Seongjin Kwon
- Department of Chemical Engineering, University of Massachusetts Lowell, One University Avenue, Lowell, MA 01854, USA
| | - Wendy Gavin
- Core Research Facilities, University of Massachusetts Lowell, One University Avenue, Lowell, MA 01854, USA
| | - Gulden Camci-Unal
- Department of Chemical Engineering, University of Massachusetts Lowell, One University Avenue, Lowell, MA 01854, USA and Department of Surgery, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01605, USA.
| |
Collapse
|
12
|
Wu X, Walsh K, Hoff BL, Camci-Unal G. Mineralization of Biomaterials for Bone Tissue Engineering. Bioengineering (Basel) 2020; 7:E132. [PMID: 33092121 PMCID: PMC7711498 DOI: 10.3390/bioengineering7040132] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/14/2020] [Accepted: 10/17/2020] [Indexed: 01/20/2023] Open
Abstract
Mineralized biomaterials have been demonstrated to enhance bone regeneration compared to their non-mineralized analogs. As non-mineralized scaffolds do not perform as well as mineralized scaffolds in terms of their mechanical and surface properties, osteoconductivity and osteoinductivity, mineralization strategies are promising methods in the development of functional biomimetic bone scaffolds. In particular, the mineralization of three-dimensional (3D) scaffolds has become a promising approach for guided bone regeneration. In this paper, we review the major approaches used for mineralizing tissue engineering constructs. The resulting scaffolds provide minerals chemically similar to the inorganic component of natural bone, carbonated apatite, Ca5(PO4,CO3)3(OH). In addition, we discuss the characterization techniques that are used to characterize the mineralized scaffolds, such as the degree of mineralization, surface characteristics, mechanical properties of the scaffolds, and the chemical composition of the deposited minerals. In vitro cell culture studies show that the mineralized scaffolds are highly osteoinductive. We also summarize, based on literature examples, the applications of 3D mineralized constructs, as well as the rationale behind their use. The mineralized scaffolds have improved bone regeneration in animal models due to the enhanced mechanical properties and cell recruitment capability making them a preferable option for bone tissue engineering over non-mineralized scaffolds.
Collapse
Affiliation(s)
- Xinchen Wu
- Biomedical Engineering and Biotechnology Program, University of Massachusetts Lowell, Lowell, MA 01854, USA;
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, MA 01854, USA; (K.W.); (B.L.H.)
| | - Kierra Walsh
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, MA 01854, USA; (K.W.); (B.L.H.)
- Department of Biological Sciences, University of Massachusetts Lowell, Lowell, MA 01854, USA
| | - Brianna L. Hoff
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, MA 01854, USA; (K.W.); (B.L.H.)
- Department of Chemistry, University of Massachusetts Lowell, Lowell, MA 01854, USA
| | - Gulden Camci-Unal
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, MA 01854, USA; (K.W.); (B.L.H.)
- Department of Surgery, University of Massachusetts Medical School, Worcester, MA 01655, USA
| |
Collapse
|
13
|
Labedz-Maslowska A, Bryniarska N, Kubiak A, Kaczmarzyk T, Sekula-Stryjewska M, Noga S, Boruczkowski D, Madeja Z, Zuba-Surma E. Multilineage Differentiation Potential of Human Dental Pulp Stem Cells-Impact of 3D and Hypoxic Environment on Osteogenesis In Vitro. Int J Mol Sci 2020; 21:ijms21176172. [PMID: 32859105 PMCID: PMC7504399 DOI: 10.3390/ijms21176172] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/20/2020] [Accepted: 08/25/2020] [Indexed: 02/06/2023] Open
Abstract
Human dental pulp harbours unique stem cell population exhibiting mesenchymal stem/stromal cell (MSC) characteristics. This study aimed to analyse the differentiation potential and other essential functional and morphological features of dental pulp stem cells (DPSCs) in comparison with Wharton’s jelly-derived MSCs from the umbilical cord (UC-MSCs), and to evaluate the osteogenic differentiation of DPSCs in 3D culture with a hypoxic microenvironment resembling the stem cell niche. Human DPSCs as well as UC-MSCs were isolated from primary human tissues and were subjected to a series of experiments. We established a multiantigenic profile of DPSCs with CD45−/CD14−/CD34−/CD29+/CD44+/CD73+/CD90+/CD105+/Stro-1+/HLA-DR− (using flow cytometry) and confirmed their tri-lineage osteogenic, chondrogenic, and adipogenic differentiation potential (using qRT-PCR and histochemical staining) in comparison with the UC-MSCs. The results also demonstrated the potency of DPSCs to differentiate into osteoblasts in vitro. Moreover, we showed that the DPSCs exhibit limited cardiomyogenic and endothelial differentiation potential. Decreased proliferation and metabolic activity as well as increased osteogenic differentiation of DPSCs in vitro, attributed to 3D cell encapsulation and low oxygen concentration, were also observed. DPSCs exhibiting elevated osteogenic potential may serve as potential candidates for a cell-based product for advanced therapy, particularly for bone repair. Novel tissue engineering approaches combining DPSCs, 3D biomaterial scaffolds, and other stimulating chemical factors may represent innovative strategies for pro-regenerative therapies.
Collapse
Affiliation(s)
- Anna Labedz-Maslowska
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland; (A.L.-M.); (N.B.); (A.K.); (S.N.); (Z.M.)
| | - Natalia Bryniarska
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland; (A.L.-M.); (N.B.); (A.K.); (S.N.); (Z.M.)
- Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343 Krakow, Poland
| | - Andrzej Kubiak
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland; (A.L.-M.); (N.B.); (A.K.); (S.N.); (Z.M.)
- Institute of Nuclear Physics, Polish Academy of Sciences, 31-342 Krakow, Poland
| | - Tomasz Kaczmarzyk
- Department of Oral Surgery, Faculty of Medicine, Jagiellonian University Medical College, 31-155 Krakow, Poland;
| | - Malgorzata Sekula-Stryjewska
- Laboratory of Stem Cell Biotechnology, Malopolska Centre of Biotechnology, Jagiellonian University, 30-387 Krakow, Poland;
| | - Sylwia Noga
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland; (A.L.-M.); (N.B.); (A.K.); (S.N.); (Z.M.)
- Laboratory of Stem Cell Biotechnology, Malopolska Centre of Biotechnology, Jagiellonian University, 30-387 Krakow, Poland;
| | | | - Zbigniew Madeja
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland; (A.L.-M.); (N.B.); (A.K.); (S.N.); (Z.M.)
| | - Ewa Zuba-Surma
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland; (A.L.-M.); (N.B.); (A.K.); (S.N.); (Z.M.)
- Correspondence: ; Tel.: +48-12-664-61-80
| |
Collapse
|
14
|
Karadas O, Mese G, Ozcivici E. Low magnitude high frequency vibrations expedite the osteogenesis of bone marrow stem cells on paper based 3D scaffolds. Biomed Eng Lett 2020; 10:431-441. [PMID: 32850178 PMCID: PMC7438393 DOI: 10.1007/s13534-020-00161-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 06/12/2020] [Accepted: 06/27/2020] [Indexed: 01/08/2023] Open
Abstract
Anabolic effects of low magnitude high frequency (LMHF) vibrations on bone tissue were consistently shown in the literature in vivo, however in vitro efforts to elucidate underlying mechanisms are generally limited to 2D cell culture studies. Three dimensional cell culture platforms better mimic the natural microenvironment and biological processes usually differ in 3D compared to 2D culture. In this study, we used laboratory grade filter paper as a scaffold material for studying the effects of LHMF vibrations on osteogenesis of bone marrow mesenchymal stem cells in a 3D system. LMHF vibrations were applied 15 min/day at 0.1 g acceleration and 90 Hz frequency for 21 days to residing cells under quiescent and osteogenic conditions. mRNA expression analysis was performed for alkaline phosphatase (ALP) and osteocalcin (OCN) genes, Alizarin red S staining was performed for mineral nodule formation and infrared spectroscopy was performed for determination of extracellular matrix composition. The highest osteocalcin expression, mineral nodule formation and the phosphate bands arising from the inorganic phase was observed for the cells incubated in osteogenic induction medium with vibration. Our results showed that filter paper can be used as a model scaffold system for studying the effects of mechanical loads on cells, and LMHF vibrations induced the osteogenic differentiation of stem cells.
Collapse
Affiliation(s)
- Ozge Karadas
- Department of Bioengineering, Rm A210, Izmir Institute of Technology, Urla, Izmir, 35430 Turkey
| | - Gulistan Mese
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, Urla, Izmir, Turkey
| | - Engin Ozcivici
- Department of Bioengineering, Rm A210, Izmir Institute of Technology, Urla, Izmir, 35430 Turkey
| |
Collapse
|
15
|
Agarwal T, Borrelli MR, Makvandi P, Ashrafizadeh M, Maiti TK. Paper-Based Cell Culture: Paving the Pathway for Liver Tissue Model Development on a Cellulose Paper Chip. ACS APPLIED BIO MATERIALS 2020; 3:3956-3974. [DOI: 10.1021/acsabm.0c00558] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Tarun Agarwal
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Mimi R. Borrelli
- Department of Surgery, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Pooyan Makvandi
- Institute for Polymers, Composites and Biomaterials (IPCB), National Research Council (CNR), Naples 80078, Italy
| | - Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz 51666-16471, Iran
| | - Tapas Kumar Maiti
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| |
Collapse
|
16
|
Li H, Cheng F, Robledo-Lara JA, Liao J, Wang Z, Zhang YS. Fabrication of paper-based devices for in vitro tissue modeling. Biodes Manuf 2020. [DOI: 10.1007/s42242-020-00077-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
17
|
Sruthi R, Balagangadharan K, Selvamurugan N. Polycaprolactone/polyvinylpyrrolidone coaxial electrospun fibers containing veratric acid-loaded chitosan nanoparticles for bone regeneration. Colloids Surf B Biointerfaces 2020; 193:111110. [PMID: 32416516 DOI: 10.1016/j.colsurfb.2020.111110] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/30/2020] [Accepted: 05/04/2020] [Indexed: 01/09/2023]
Abstract
Veratric acid (3,4-dimethoxy benzoic acid) (VA) is a hydrophobic phenolic phytocompound possessing therapeutic potential, but it has not been reported as actuating bone regeneration to date. Furthermore, delivery of hydrophobic compounds is often impeded in the body, thus depreciating their bioavailability. In this study, VA was found to have osteogenic potential and its sustained delivery was facilitated through a nanoparticle-embedded coaxial electrospinning technique. Polycaprolactone/polyvinylpyrrolidone (PCL/PVP) coaxial fibers were electrospun, encasing VA-loaded chitosan nanoparticles (CHS-NP). The fibers showed commendable physiochemical and material properties and were biocompatible with mouse mesenchymal stem cells (mMSCs). When mMSCs were grown on coaxial fibers, VA promoted these cells towards osteoblast differentiation as was reflected by calcium deposits. The mRNA expression of Runx2, an important bone transcriptional regulator, and other differentiation markers such as alkaline phosphatase, collagen type I, and osteocalcin were found to be upregulated in mMSCs grown on the PCL/PVP/CHS-NP-VA fibers. Overall, the study portrays the delivery of the phytocompound, VA, in a sustained manner to promote bone regeneration.
Collapse
Affiliation(s)
- R Sruthi
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603 203 Tamil Nadu, India
| | - K Balagangadharan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603 203 Tamil Nadu, India
| | - N Selvamurugan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603 203 Tamil Nadu, India.
| |
Collapse
|
18
|
Deka B, Kalita R, Bhatia D, Mishra A. Applications of paper as a support material in biomedical sciences: A decadal review. SENSORS INTERNATIONAL 2020; 1:100004. [PMID: 38620201 PMCID: PMC7144666 DOI: 10.1016/j.sintl.2020.100004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/15/2020] [Accepted: 03/16/2020] [Indexed: 01/12/2023] Open
Abstract
In human history, the paper has long been used as a platform to record and preserve information. However, over the decades, paper has found its application in Biomedical Sciences, too. Both paper-based microfluidic devices (μPADs) and paper-based cultures and scaffolds have shown immense potential to be used as a sensor as well as a supporting material for in vitro tissue engineering. μPADs can be used to perform low-cost and fast biomolecular assays at Point-Of-Care (POC). They are being used to detect various biomarkers like viral proteins, metabolites, oncogenes, and antigens; and conditions like Venous Thromboembolism (VTE). On the other hand, the paper has also been used to develop paper-based 3D cultures and scaffolds to test drugs, and monitor cytotoxic effects in vitro cell microenvironments and also as implantable tissues. In this review, we intend to enumerate the development in the field of μPADs, paper-based cell cultures, and paper-based scaffolds and their plethora of applications over the last decade.
Collapse
Affiliation(s)
- Bimalendu Deka
- Department of Biomedical Engineering, North Eastern Hill University, Shillong, 793022, Meghalaya, India
| | - Rima Kalita
- Department of Biomedical Engineering, North Eastern Hill University, Shillong, 793022, Meghalaya, India
| | - Dinesh Bhatia
- Department of Biomedical Engineering, North Eastern Hill University, Shillong, 793022, Meghalaya, India
| | - Animesh Mishra
- Department of Cardiology, North Eastern Indira Gandhi Regional Institute of Health and Medical Sciences, Shillong, 793018, Meghalaya, India
| |
Collapse
|
19
|
Naik P, Jaitpal S, Paul D. The Resurgence of Paperfluidics: A new technology for cell, DNA, and blood analysis. IEEE NANOTECHNOLOGY MAGAZINE 2020. [DOI: 10.1109/mnano.2020.2966063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
20
|
Unconventional Tissue Engineering Materials in Disguise. Trends Biotechnol 2020; 38:178-190. [DOI: 10.1016/j.tibtech.2019.07.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 07/30/2019] [Accepted: 07/31/2019] [Indexed: 01/07/2023]
|
21
|
Cramer SM, Larson TS, Lockett MR. Tissue Papers: Leveraging Paper-Based Microfluidics for the Next Generation of 3D Tissue Models. Anal Chem 2019; 91:10916-10926. [PMID: 31356054 PMCID: PMC7071790 DOI: 10.1021/acs.analchem.9b02102] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Paper-based scaffolds support the three-dimensional culture of mammalian cells in tissue-like environments. These Tissue Papers, a name that highlights the use of materials obtained from (plant) tissue to generate newly functioning (human) tissue structures, are a promising analytical tool to quantify cellular responses in physiologically relevant extracellular gradients and coculture architectures. Here, we highlight current examples of Tissue Papers, commonly used methods of analysis, and current measurement challenges.
Collapse
Affiliation(s)
- Sabrina M. Cramer
- Department of Chemistry, University of North Carolina at Chapel Hill, Kenan and Caudill Laboratories, Chapel Hill, North Carolina 27599-3290, United States
| | - Tyler S. Larson
- Department of Chemistry, University of North Carolina at Chapel Hill, Kenan and Caudill Laboratories, Chapel Hill, North Carolina 27599-3290, United States
| | - Matthew R. Lockett
- Department of Chemistry, University of North Carolina at Chapel Hill, Kenan and Caudill Laboratories, Chapel Hill, North Carolina 27599-3290, United States
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7295, United States
| |
Collapse
|
22
|
Yang Y, Zhou J, Chen Q, Detsch R, Cui X, Jin G, Virtanen S, Boccaccini AR. In Vitro Osteocompatibility and Enhanced Biocorrosion Resistance of Diammonium Hydrogen Phosphate-Pretreated/Poly(ether imide) Coatings on Magnesium for Orthopedic Application. ACS APPLIED MATERIALS & INTERFACES 2019; 11:29667-29680. [PMID: 31335111 DOI: 10.1021/acsami.9b11073] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Magnesium, as a biodegradable metal, is a promising candidate for biomedical applications. To modify the degradation behavior of magnesium and improve its osteocompatibility, chemical conversion and spin coating methods were combined to develop a diammonium hydrogen phosphate-pretreated/poly(ether imide) (DAHP/PEI) co-coating system. The diammonium hydrogen phosphate pretreatment was employed to enhance the attachment between PEI coatings and the magnesium substrate; meanwhile, it could serve as another bioactive and anticorrosion layer when PEI coatings break down. Surface characterization, electrochemical tests, and short-term immersion tests in DMEM were performed to evaluate DAHP/PEI coatings. Electrochemical measurements showed that DAHP/PEI coatings significantly improved the corrosion resistance of pure magnesium. No obvious changes of the chemical compositions of DAHP/PEI coatings occurred after 72 h of immersion in DMEM. An in vitro cytocompatibility study confirmed that viability and LDH activity of human osteoblast-like cells on DAHP/PEI coatings showed higher values than those on the DAHP-pretreated layer and pure magnesium. The DAHP-pretreated layer could still enhance the ALP activity of MG-63 cells after the degradation of PEI in DAHP/PEI coatings. Besides that, the in vitro cellular response to the treated magnesium was investigated to gain knowledge on the differentiation and proliferation of human adipose-derived stem cells (hADSCs). Cell distribution and morphology were observed by fluorescence and SEM images, which demonstrated that DAHP/PEI coatings facilitated cell differentiation and proliferation. The high level of C-terminals of collagen type I production of hADSCs on DAHP/PEI coatings indicated the potential of the coating for promoting osteogenic differentiation. Positive results from long-term cytocompatibility and proliferation tests indicate that DAHP/PEI coatings can offer an excellent surface for hADSCs.
Collapse
Affiliation(s)
- Yuyun Yang
- Institute of Surface/Interface Science and Technology, Department of Material Science and Chemical Engineering , Harbin Engineering University , 150001 Harbin , China
| | | | - Qiang Chen
- State Key Laboratory of Solidification Processing , Northwestern Polytechnical University , Xi'an , 710072 Shaanxi , China
| | | | - Xiufang Cui
- Institute of Surface/Interface Science and Technology, Department of Material Science and Chemical Engineering , Harbin Engineering University , 150001 Harbin , China
| | - Guo Jin
- Institute of Surface/Interface Science and Technology, Department of Material Science and Chemical Engineering , Harbin Engineering University , 150001 Harbin , China
| | | | | |
Collapse
|
23
|
Bhavsar MB, Cato G, Hauschild A, Leppik L, Costa Oliveira KM, Eischen-Loges MJ, Barker JH. Membrane potential (V mem) measurements during mesenchymal stem cell (MSC) proliferation and osteogenic differentiation. PeerJ 2019; 7:e6341. [PMID: 30775170 PMCID: PMC6369823 DOI: 10.7717/peerj.6341] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 12/22/2018] [Indexed: 01/30/2023] Open
Abstract
Background Electrochemical signals play an important role in cell communication and behavior. Electrically charged ions transported across cell membranes maintain an electrochemical imbalance that gives rise to bioelectric signaling, called membrane potential or Vmem. Vmem plays a key role in numerous inter- and intracellular functions that regulate cell behaviors like proliferation, differentiation and migration, all playing a critical role in embryonic development, healing, and regeneration. Methods With the goal of analyzing the changes in Vmem during cell proliferation and differentiation, here we used direct current electrical stimulation (EStim) to promote cell proliferation and differentiation and simultaneously tracked the corresponding changes in Vmem in adipose derived mesenchymal stem cells (AT-MSC). Results We found that EStim caused increased AT-MSC proliferation that corresponded to Vmem depolarization and increased osteogenic differentiation that corresponded to Vmem hyperpolarization. Taken together, this shows that Vmem changes associated with EStim induced cell proliferation and differentiation can be accurately tracked during these important cell functions. Using this tool to monitor Vmem changes associated with these important cell behaviors we hope to learn more about how these electrochemical cues regulate cell function with the ultimate goal of developing new EStim based treatments capable of controlling healing and regeneration.
Collapse
Affiliation(s)
- Mit Balvantray Bhavsar
- Frankfurt Initiative for Regenerative Medicine, Johann Wolfgang Goethe Universität Frankfurt am Main, Frankfurt am Main, Hessen, Germany
| | - Gloria Cato
- Frankfurt Initiative for Regenerative Medicine, Johann Wolfgang Goethe Universität Frankfurt am Main, Frankfurt am Main, Hessen, Germany
| | - Alexander Hauschild
- Frankfurt Initiative for Regenerative Medicine, Johann Wolfgang Goethe Universität Frankfurt am Main, Frankfurt am Main, Hessen, Germany
| | - Liudmila Leppik
- Frankfurt Initiative for Regenerative Medicine, Johann Wolfgang Goethe Universität Frankfurt am Main, Frankfurt am Main, Hessen, Germany
| | - Karla Mychellyne Costa Oliveira
- Frankfurt Initiative for Regenerative Medicine, Johann Wolfgang Goethe Universität Frankfurt am Main, Frankfurt am Main, Hessen, Germany
| | - Maria José Eischen-Loges
- Frankfurt Initiative for Regenerative Medicine, Johann Wolfgang Goethe Universität Frankfurt am Main, Frankfurt am Main, Hessen, Germany
| | - John Howard Barker
- Frankfurt Initiative for Regenerative Medicine, Johann Wolfgang Goethe Universität Frankfurt am Main, Frankfurt am Main, Hessen, Germany
| |
Collapse
|
24
|
Suvarnapathaki S, Nguyen MA, Wu X, Nukavarapu SP, Camci-Unal G. Synthesis and characterization of photocrosslinkable hydrogels from bovine skin gelatin. RSC Adv 2019; 9:13016-13025. [PMID: 35520789 PMCID: PMC9063771 DOI: 10.1039/c9ra00655a] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 04/21/2019] [Indexed: 12/11/2022] Open
Abstract
Hydrogels that mimic native tissues chemically and structurally have been increasingly sought for a wide variety of tissue engineering applications. Gelatin can be naturally derived from different sources and functionalized to fabricate hydrogels that exhibit high cytocompatibility and favorable biodegradable properties. The amino groups on the gelatin backbone can be substituted by adding varying proportions of methacrylic anhydride (MAA) to create biomimetic hydrogels which can be used as tissue engineering scaffolds. Gelatin from different sources yields hydrogels with distinctive physical, chemical, and biological properties. In this work, gelatin from bovine skin was used to fabricate hydrogels with varying degrees of crosslinking content using 1, 4, 7, and 10 mL MAA. The material properties of these hydrogels were characterized. The cytocompatibility of the gelatin-based hydrogels was studied using L6 rat myoblasts. The hydrogels from bovine skin gelatin exhibit mechanical properties that are conducive for applications which require substrates to propagate cell growth, migration, and proliferation rapidly. These hydrogels exhibit exceptional tunability behavior which makes them useful and applicable to culture different cell types. Gelatin from bovine skin was chemically modified to synthesize biocompatible photolabile hydrogels for tissue engineering applications.![]()
Collapse
Affiliation(s)
- Sanika Suvarnapathaki
- Biomedical Engineering and Biotechnology Program
- University of Massachusetts Lowell
- Lowell
- USA
- Department of Chemical Engineering
| | - Michelle A. Nguyen
- Department of Chemical Engineering
- University of Massachusetts Lowell
- Lowell
- USA
- Department of Biomedical Engineering
| | - Xinchen Wu
- Biomedical Engineering and Biotechnology Program
- University of Massachusetts Lowell
- Lowell
- USA
- Department of Chemical Engineering
| | | | - Gulden Camci-Unal
- Department of Chemical Engineering
- University of Massachusetts Lowell
- Lowell
- USA
| |
Collapse
|
25
|
Wu X, Stroll SI, Lantigua D, Suvarnapathaki S, Camci-Unal G. Eggshell particle-reinforced hydrogels for bone tissue engineering: an orthogonal approach. Biomater Sci 2019; 7:2675-2685. [DOI: 10.1039/c9bm00230h] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Eggshell microparticle-reinforced hydrogels have been fabricated and characterized to obtain mechanically stable and biologically active scaffolds that can direct the differentiation of cells.
Collapse
Affiliation(s)
- Xinchen Wu
- Biomedical Engineering and Biotechnology Program
- University of Massachusetts Lowell
- Lowell
- USA
- Department of Chemical Engineering
| | - Stephanie I. Stroll
- Department of Chemical Engineering
- University of Massachusetts Lowell
- Lowell
- USA
- Department of Biological Sciences
| | - Darlin Lantigua
- Biomedical Engineering and Biotechnology Program
- University of Massachusetts Lowell
- Lowell
- USA
- Department of Chemical Engineering
| | - Sanika Suvarnapathaki
- Biomedical Engineering and Biotechnology Program
- University of Massachusetts Lowell
- Lowell
- USA
- Department of Chemical Engineering
| | - Gulden Camci-Unal
- Department of Chemical Engineering
- University of Massachusetts Lowell
- Lowell
- USA
| |
Collapse
|
26
|
Cytotoxic Tolerance of Healthy and Cancerous Bone Cells to Anti-microbial Phenolic Compounds Depend on Culture Conditions. Appl Biochem Biotechnol 2018; 188:514-526. [PMID: 30536030 DOI: 10.1007/s12010-018-02934-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 11/30/2018] [Indexed: 12/15/2022]
Abstract
Carnosol and carnosic acid are polyphenolic compounds found in rosemary and sage with known anti-oxidant, anti-inflammatory, and anti-microbial properties. Here, we addressed the potential use of carnosol and carnosic acid for in vitro bone tissue engineering applications, specifically depending on their cytotoxic effects on bone marrow stromal and stem cells, and osteosarcoma cells in monolayer and 3D cultures. Carnosol and carnosic acid displayed a bacteriostatic effect on Gram-positive bacteria, especially on S. aureus. The viability results indicated that bone marrow stromal cells and bone marrow stem cells were more tolerant to the presence of carnosol compared to osteosarcoma cells. 3D culture conditions increased this tolerance further for healthy cells, while not affecting the cytotoxic potential of carnosol for osteosarcoma cells. Carnosic acid was found to be more cytotoxic for all cell types used in the study. Results suggest that phenolic compounds might have potential use as anti-microbial and anti-carcinogenic agents for bone tissue engineering with further optimization for controlled release.
Collapse
|
27
|
Cincotto FH, Fava EL, Moraes FC, Fatibello-Filho O, Faria RC. A new disposable microfluidic electrochemical paper-based device for the simultaneous determination of clinical biomarkers. Talanta 2018; 195:62-68. [PMID: 30625593 DOI: 10.1016/j.talanta.2018.11.022] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 10/31/2018] [Accepted: 11/05/2018] [Indexed: 12/13/2022]
Abstract
A new disposable microfluidic electrochemical paper-based device (ePAD) consisting of two spot sensors in the same working electrode for the simultaneous determination of uric acid and creatinine was developed. The spot 1 surface was modified with graphene quantum dots for direct uric acid oxidation and spot 2 surface modified with graphene quantum dots, creatininase and a ruthenium electrochemical mediator for creatinine oxidation. The ePAD was employed to construct an electrochemical sensor (based on square wave voltammetry analysis) for the simultaneous determination of uric acid and creatinine in the 0.010-3.0 µmol L-1 range. The device showed excellent analytical performance with a very low simultaneous detection limit of 8.4 nmol L-1 to uric acid and 3.7 nmol L-1 to creatinine and high selectivity. The ePAD was applied to the rapid and successful determination of those clinical biomarkers in human urine samples.
Collapse
Affiliation(s)
- Fernando H Cincotto
- Chemistry Department, Federal University of São Carlos, 13565-905 São Carlos, SP, Brazil; Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Elson L Fava
- Chemistry Department, Federal University of São Carlos, 13565-905 São Carlos, SP, Brazil
| | - Fernando C Moraes
- Chemistry Department, Federal University of São Carlos, 13565-905 São Carlos, SP, Brazil
| | | | - Ronaldo C Faria
- Chemistry Department, Federal University of São Carlos, 13565-905 São Carlos, SP, Brazil
| |
Collapse
|
28
|
Singh AT, Lantigua D, Meka A, Taing S, Pandher M, Camci-Unal G. Paper-Based Sensors: Emerging Themes and Applications. SENSORS (BASEL, SWITZERLAND) 2018; 18:E2838. [PMID: 30154323 PMCID: PMC6164297 DOI: 10.3390/s18092838] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 08/21/2018] [Accepted: 08/23/2018] [Indexed: 02/06/2023]
Abstract
Paper is a versatile, flexible, porous, and eco-friendly substrate that is utilized in the fabrication of low-cost devices and biosensors for rapid detection of analytes of interest. Paper-based sensors provide affordable platforms for simple, accurate, and rapid detection of diseases, in addition to monitoring food quality, environmental and sun exposure, and detection of pathogens. Paper-based devices provide an inexpensive technology for fabrication of simple and portable diagnostic systems that can be immensely useful in resource-limited settings, such as in developing countries or austere environments, where fully-equipped facilities and highly trained medical staff are absent. In this work, we present the different types of paper that are currently utilized in fabrication of paper-based sensors, and common fabrication techniques ranging from wax printing to origami- and kirigami-based approaches. In addition, we present different detection techniques that are employed in paper-based sensors such as colorimetric, electrochemical, and fluorescence detection, chemiluminescence, and electrochemiluminescence, as well as their applications including disease diagnostics, cell cultures, monitoring sun exposure, and analysis of environmental reagents including pollutants. Furthermore, main advantages and disadvantages of different types of paper and future trends for paper-based sensors are discussed.
Collapse
Affiliation(s)
- Amrita Tribhuwan Singh
- Department of Biological Sciences, University of Massachusetts Lowell, One University Avenue, Lowell, MA 01854, USA.
- Department of Chemical Engineering, University of Massachusetts Lowell, One University Avenue, Lowell, MA 01854, USA.
| | - Darlin Lantigua
- Department of Chemical Engineering, University of Massachusetts Lowell, One University Avenue, Lowell, MA 01854, USA.
- Biomedical Engineering and Biotechnology Program, University of Massachusetts Lowell, One University Avenue, Lowell, MA 01854, USA.
| | - Akhil Meka
- Department of Biological Sciences, University of Massachusetts Lowell, One University Avenue, Lowell, MA 01854, USA.
- Department of Chemical Engineering, University of Massachusetts Lowell, One University Avenue, Lowell, MA 01854, USA.
| | - Shainlee Taing
- Department of Biological Sciences, University of Massachusetts Lowell, One University Avenue, Lowell, MA 01854, USA.
- Department of Chemical Engineering, University of Massachusetts Lowell, One University Avenue, Lowell, MA 01854, USA.
| | - Manjot Pandher
- Department of Chemical Engineering, University of Massachusetts Lowell, One University Avenue, Lowell, MA 01854, USA.
- Biomedical Engineering and Biotechnology Program, University of Massachusetts Lowell, One University Avenue, Lowell, MA 01854, USA.
| | - Gulden Camci-Unal
- Department of Chemical Engineering, University of Massachusetts Lowell, One University Avenue, Lowell, MA 01854, USA.
| |
Collapse
|
29
|
Jiang P, Ran J, Yan P, Zheng L, Shen X, Tong H. Rational design of a high-strength bone scaffold platform based on in situ hybridization of bacterial cellulose/nano-hydroxyapatite framework and silk fibroin reinforcing phase. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2017; 29:107-124. [DOI: 10.1080/09205063.2017.1403149] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Pei Jiang
- Key Laboratory of Analytical Chemistry for Biology and Medicine, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, China
| | - Jiabing Ran
- Key Laboratory of Analytical Chemistry for Biology and Medicine, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, China
| | - Pan Yan
- Key Laboratory of Analytical Chemistry for Biology and Medicine, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, China
| | - Lingyue Zheng
- Key Laboratory of Analytical Chemistry for Biology and Medicine, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, China
| | - Xinyu Shen
- Key Laboratory of Analytical Chemistry for Biology and Medicine, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, China
| | - Hua Tong
- Key Laboratory of Analytical Chemistry for Biology and Medicine, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
30
|
Lantigua D, Kelly YN, Unal B, Camci-Unal G. Engineered Paper-Based Cell Culture Platforms. Adv Healthc Mater 2017; 6. [PMID: 29076283 DOI: 10.1002/adhm.201700619] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 07/28/2017] [Indexed: 12/16/2022]
Abstract
Paper is used in various applications in biomedical research including diagnostics, separations, and cell cultures. Paper can be conveniently engineered due to its tunable and flexible nature, and is amenable to high-throughput sample preparation and analysis. Paper-based platforms are used to culture primary cells, tumor cells, patient biopsies, stem cells, fibroblasts, osteoblasts, immune cells, bacteria, fungi, and plant cells. These platforms are compatible with standard analytical assays that are typically used to monitor cell behavior. Due to its thickness and porous nature, there are no mass transport limitations to/from the cells in paper scaffolds. It is possible to pattern paper in different scales (micrometer to centimeter), generate modular configurations in 3D, fabricate multicellular and compartmentalized tissue mimetics for clinical applications, and recover cells from the scaffolds for further analysis. 3D paper constructs can provide physiologically relevant tissue models for personalized medicine. Layer-by layer strategies to assemble tissue-like structures from low-cost and biocompatible paper-based materials offer unique opportunities that include understanding fundamental biology, developing disease models, and assembling different tissues for organ-on-paper applications. Paper-based platforms can also be used for origami-inspired tissue engineering. This work provides an overview of recent progress in engineered paper-based biomaterials and platforms to culture and analyze cells.
Collapse
Affiliation(s)
- Darlin Lantigua
- Department of Biological Sciences; University of Massachusetts Lowell; One University Avenue Lowell MA 01854 USA
| | - Yan Ni Kelly
- Department of Biomedical Engineering; University of Massachusetts Lowell; One University Avenue Lowell MA 01854 USA
| | - Baris Unal
- Triton Systems, Inc.; 200 Turnpike Road Chelmsford MA 01824 USA
| | - Gulden Camci-Unal
- Department of Chemical Engineering; University of Massachusetts Lowell; One University Avenue Lowell MA 01854 USA
| |
Collapse
|
31
|
Ran J, Zeng H, Pathak JL, Jiang P, Bai Y, Yan P, Sun G, Shen X, Tong H, Shi B. Constructing an Anisotropic Triple-Pass Tubular Framework within a Lyophilized Porous Gelatin Scaffold Using Dexamethasone-Loaded Functionalized Whatman Paper To Reinforce Its Mechanical Strength and Promote Osteogenesis. Biomacromolecules 2017; 18:3788-3801. [DOI: 10.1021/acs.biomac.7b00673] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Jiabing Ran
- Key
Laboratory of Analytical Chemistry for Biology and Medicine, Ministry
of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Hao Zeng
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan 430079, P. R. China
| | - Janak Lal Pathak
- School
of Pharmaceutical Science and Technology, Health Sciences Platform, Tianjin University, A-304/Building 24, 92 Weijin Road, Nankai District, 300072 Tianjin, P. R. China
| | - Pei Jiang
- Key
Laboratory of Analytical Chemistry for Biology and Medicine, Ministry
of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Yi Bai
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan 430079, P. R. China
| | - Pan Yan
- Key
Laboratory of Analytical Chemistry for Biology and Medicine, Ministry
of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Guanglin Sun
- Key
Laboratory of Analytical Chemistry for Biology and Medicine, Ministry
of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Xinyu Shen
- Key
Laboratory of Analytical Chemistry for Biology and Medicine, Ministry
of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Hua Tong
- Key
Laboratory of Analytical Chemistry for Biology and Medicine, Ministry
of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Bin Shi
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan 430079, P. R. China
| |
Collapse
|
32
|
Abstract
The arts of origami and kirigami inspired numerous examples of macroscale hierarchical structures with high degree of reconfigurability and multiple functionalities. Extension of kirigami and origami patterning to micro-, meso-, and nanoscales enabled production of nanocomposites with unusual combination of properties, transitioning these art forms to the toolbox of materials design. Various subtractive and additive fabrication techniques applicable to nanocomposites and out-of-plane deformation of patterns enable a technological framework to negotiate often contradictory structural requirements for materials properties. Additionally, the long-searched possibility of patterned composites/parts with highly predictable set of properties/functions emerged. In this review, we discuss foldable/stretchable composites with designed mechanical properties, as exemplified by the negative Poisson's ratio, as well as optical and electrical properties, as exemplified by the sheet conductance, photovoltage generation, and light diffraction. Reconfiguration achieved by extrinsic forces and/or intrinsic stresses enables a wide spectrum of technological applications including miniaturized biomedical tools, soft robotics, adaptive optics, and energy systems, extending the limits of both materials engineering concepts and technological innovation.
Collapse
Affiliation(s)
- Lizhi Xu
- Department of Chemical Engineering and ‡Department of Materials Science and Engineering, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Terry C Shyu
- Department of Chemical Engineering and ‡Department of Materials Science and Engineering, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Nicholas A Kotov
- Department of Chemical Engineering and ‡Department of Materials Science and Engineering, University of Michigan , Ann Arbor, Michigan 48109, United States
| |
Collapse
|
33
|
Sustained delivery of calcium and orthophosphate ions from amorphous calcium phosphate and poly(L-lactic acid)-based electrospinning nanofibrous scaffold. Sci Rep 2017; 7:45655. [PMID: 28361908 PMCID: PMC5374505 DOI: 10.1038/srep45655] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 03/02/2017] [Indexed: 11/08/2022] Open
Abstract
The purpose of this study is to investigate electrospinning poly(L-lactic acid) (PLLA) nanofibrous scaffold with different contents of amorphous calcium phosphate (ACP), which is suitable for using in bone regeneration through sustained release of calcium and orthophosphate ions. Three groups of nanofibrous scaffolds, ACP-free PLLA, ACP-5 wt%/PLLA and ACP-10 wt%/PLLA, are developed and characterized by scanning electron microscopy and gel permeation chromatography. Calcium and phosphate colorimetric assay kits are used to test ions released from scaffold during hydrolytic degradation. The results show ACP-5 wt%/PLLA and ACP-10 wt%/PLLA scaffolds have relatively high degradation rates than ACP-free PLLA group. The bioactivity evaluation further reveals that ACP-5 wt%/PLLA scaffold presents more biocompatible feature with pre-osteoblast cells and significant osteogenesis ability of calvarial bone defect. Due to the facile preparation method, sustained calcium and orthophosphate release behavior, and excellent osteogenesis capacity, the presented ACP/PLLA nanofibrous scaffold has potential applications in bone tissue engineering.
Collapse
|
34
|
Zhou Y, Fu JJ, Liu YS, Kang YJ, Li CM, Yu L. Redefining Chinese calligraphy rice paper: an economical and cytocompatible substrate for cell biological assays. RSC Adv 2017. [DOI: 10.1039/c7ra07756d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Chinese calligraphy paper, also known as rice paper, demonstrates its potential in building paper-based analytical platforms for cell-based assays.
Collapse
Affiliation(s)
- Ying Zhou
- Institute for Clean Energy & Advanced Materials
- Faculty of Materials & Energy
- Southwest University
- Chongqing 400715
- China
| | - Jing Jing Fu
- Institute for Clean Energy & Advanced Materials
- Faculty of Materials & Energy
- Southwest University
- Chongqing 400715
- China
| | - Ying Shuai Liu
- Institute for Clean Energy & Advanced Materials
- Faculty of Materials & Energy
- Southwest University
- Chongqing 400715
- China
| | - Yue Jun Kang
- Institute for Clean Energy & Advanced Materials
- Faculty of Materials & Energy
- Southwest University
- Chongqing 400715
- China
| | - Chang Ming Li
- Institute for Clean Energy & Advanced Materials
- Faculty of Materials & Energy
- Southwest University
- Chongqing 400715
- China
| | - Ling Yu
- Institute for Clean Energy & Advanced Materials
- Faculty of Materials & Energy
- Southwest University
- Chongqing 400715
- China
| |
Collapse
|