1
|
Kayal S, Kola P, Pal J, Mandal M, Dhara D. Self-Indicating Polymer Prodrug Nanoparticles for pH-Responsive Drug Delivery in Cancer Cells and Real-Time Monitoring of Drug Release. ACS APPLIED BIO MATERIALS 2024; 7:5810-5822. [PMID: 39186444 DOI: 10.1021/acsabm.4c00878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Amphiphilic self-indicating and responsive polymer-based prodrugs have generated much interest as potential stimuli-responsive intelligent drug delivery systems (DDS) due to their ability to selectively deliver drugs to the cancer cells and to monitor real-time cellular uptake of the drug by imaging technique(s). In this direction, we have synthesized a new pH-responsive N-vinyl-2-pyrrolidone and coumarin-based fluorescent self-indicating polymeric prodrug (SIPD), poly(NVP)-b-poly(FPA.DOX-r-FPA-r-CA). This block copolymer prodrug self-assembled into stable micellar nanoparticles under physiological conditions that reduced undesirable drug leakage to normal cells but resulted in the release of the anticancer drug doxorubicin (DOX) in cancer cells because of acidic pH-induced cleavage of imine bonds between DOX and the copolymer. While the polymer was found to be highly biocompatible with both normal (HEK-293) cells and cancer (MCF-7) cells even at high concentrations by MTT assay, the polymer prodrug nanoparticles showed toxicity even higher than that of free DOX in cancer cells. Phase contrast microscopy also depicted the cytotoxic effects of the nanoparticles on cancer cells. The coumarin units present in the polymer served as a fluorescence resonance energy transfer (FRET) pair with the covalently attached DOX molecules, which was established by steady-state and time-resolved fluorescence spectroscopy. Furthermore, confocal microscopy results confirmed the FRET phenomenon, as the fluorescence intensity of coumarin in the micellar nanoparticles remained quenched initially in MCF-7 cells but recovered with time as the DOX molecules were released and gradually shifted toward the targeted nucleus. All of these studies implied that the synthesized prodrug nanoparticles may provide another viable option for delivering chemotherapeutic drugs into cancer cells with a capability of real-time monitoring of drug release.
Collapse
|
2
|
Easson M, Wong S, Moody M, Schmidt TA, Deymier A. Physiochemical effects of acid exposure on bone composition and function. J Mech Behav Biomed Mater 2024; 150:106304. [PMID: 38096610 DOI: 10.1016/j.jmbbm.2023.106304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 10/04/2023] [Accepted: 12/02/2023] [Indexed: 01/09/2024]
Abstract
Bone is primarily composed of collagen and apatite, two materials which exhibit a high sensitivity to pH dysregulation. As a result, acid exposure of bone, both clinically and in the laboratory is expected to cause compositional and mechanical changes to the tissue. Clinically, Metabolic acidosis (MA), a condition characterized by a reduced physiological pH, has been shown to have negative implications on bone health, including a decrease in bone mineral density and volume as well as increased fracture risk. The addition of bone-like apatite to ionic solutions such as phosphate buffered saline (PBS) and media has been shown to acidify the solution leading to bone acid exposure. Therefore, is it essential to understand how reduced pH physiochemically affects bone composition and in turn its mechanical properties. This study investigates the specific changes in bone due to physiochemical dissolution in acid. Excised murine bones were placed in PBS solutions at different pHs: a homeostatic pH level (pH 7.4), an acidosis equivalent (pH 7.0), and an extreme acidic solution (pH 5.5). After 5 days, the bones were removed from the solutions and characterized to determine compositional and material changes. We found that bones, without cells, were able to regulate pH via buffering, leading to a decrease in bone mineral content and an increase in collagen denaturation. Both of these compositional changes contributed to an increase in bone toughness by creating a more ductile bone surface and preventing crack propagation. Therefore, we conclude that the skeletal systems' physiochemical response to acid exposure includes multifaceted and spatially variable compositional changes that affect bone mechanics.
Collapse
Affiliation(s)
- Margaret Easson
- Dept. of Biomedical Engineering, School of Dental Medicine, University of Connecticut Health Center, Farmington, CT, USA
| | - Stephanie Wong
- Dept. of Biomedical Engineering, School of Dental Medicine, University of Connecticut Health Center, Farmington, CT, USA
| | - Mikayla Moody
- Dept. of Biomedical Engineering, School of Dental Medicine, University of Connecticut Health Center, Farmington, CT, USA
| | - Tannin A Schmidt
- Dept. of Biomedical Engineering, School of Dental Medicine, University of Connecticut Health Center, Farmington, CT, USA
| | - Alix Deymier
- Dept. of Biomedical Engineering, School of Dental Medicine, University of Connecticut Health Center, Farmington, CT, USA.
| |
Collapse
|
3
|
Sharma V, Kaur J. Acidic environment could modulate the interferon-γ expression: Implication on modulation of cancer and immune cells' interactions. ASIAN BIOMED 2023; 17:72-83. [PMID: 37719323 PMCID: PMC10505064 DOI: 10.2478/abm-2023-0047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Background In rapidly growing solid tumors, insufficient vascularization and poor oxygen supply result in an acidic tumor microenvironment, which can alter immune response. Objective To investigate the role of the acidic microenvironment in immune response modulation along with cancer and immune cells' interactions. Method To mimic the tumor microenvironment conditions, T cells (Jurkat), macrophages (THP-1), and HeLa (cervical) cells were cultured under acidic conditions (pH 6.9, pH 6.5) and physiological pH (7.4). The HeLa cell culture medium was exploited as a tumor cell conditioned medium. Real-time PCR was carried out to quantify the mRNA levels, while flow cytometry and western blot hybridization was carried out to ascertain the levels of different proteins. Results The acidic microenvironment around the T cells (Jurkat) and macrophage cells (THP-1) could lead to the downregulation of the interferon gamma (IFN-γ). An increase in IFN-γ expression was observed when Jurkat and macrophage cells were cultured in HeLa cells conditioned medium (HCM) at low pH (pH 6.9, pH 6.5). The HeLa cells under acidic environment (pH 6.9, pH 6.5) upregulated interleukin 18 levels and secreted it as exosome anchored. Additionally, enhanced nuclear localization of NF-κB was observed in Jurkat and THP-1 cells cultured in HCM (pH 6.9, pH 6.5). Jurkat and THP-1 cultured in HCM revealed enhanced cytotoxicity against the HeLa cells upon reverting the pH of the medium from acidic to physiological pH (pH 7.4). Conclusion Collectively, these results suggest that the acidic microenvironment acted as a key barrier to cancer and immune cells' interactions.
Collapse
Affiliation(s)
- Vishal Sharma
- Department of Biotechnology, Panjab University, Chandigarh160014, India
| | - Jagdeep Kaur
- Department of Biotechnology, Panjab University, Chandigarh160014, India
| |
Collapse
|
4
|
Altinbasak I, Kocak S, Colby AH, Alp Y, Sanyal R, Grinstaff MW, Sanyal A. pH-Responsive nanofiber buttresses as local drug delivery devices. Biomater Sci 2023; 11:813-821. [PMID: 36408890 PMCID: PMC9930888 DOI: 10.1039/d2bm01199a] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Electrospun nanofibers are a 3D scaffold of choice for many drug delivery devices due to their high surface area, significant capacity for drug payload, ease of in situ placement, and scalable manufacture. Herein, we report the synthesis of polymeric, pH-responsive nanofiber buttresses via electrospinning. The homopolymer is comprised of an acrylic backbone with acid-sensitive, hydrolyzable, trimethoxybenzaldehyde-protected side chains that lead to buttress transformation from a hydrophobic to a hydrophilic state under physiologically relevant pH conditions (e.g., extracellular tumor environment with pH = 6.5). Hydrolysis of the side chains leads to an increase in fiber diameter from approximately 350 to 900 nm and the release of the encapsulated drug cargo. In vitro drug release profiles demonstrate that significantly more drug is released at pH 5.5 compared to pH 7.4, thereby limiting the release to the target site, with docetaxel releasing over 20 days and doxorubicin over 7 days. Drug burst release, defined as >50% within 24 hours, does not occur at either pH or with either drug. Drug-loaded buttresses preserve drug activity and are cytotoxic to multiple human cancer lines, including breast and lung. Important to their potential application in surgical applications, the tensile strength of the buttresses is 6.3 kPa and, though weaker than commercially available buttresses, they provide sufficient flexibility and mechanical integrity to serve as buttressing materials via the application with a conventional surgical cutting stapler.
Collapse
Affiliation(s)
- Ismail Altinbasak
- Department of Chemistry, Bogazici University, Bebek, Istanbul 34342, Turkey.
| | - Salli Kocak
- Department of Chemistry, Bogazici University, Bebek, Istanbul 34342, Turkey.
| | - Aaron H Colby
- Boston University, Department of Biomedical Engineering, Boston, MA, USA.
| | - Yasin Alp
- Department of Chemistry, Bogazici University, Bebek, Istanbul 34342, Turkey.
| | - Rana Sanyal
- Department of Chemistry, Bogazici University, Bebek, Istanbul 34342, Turkey.
- Center for Life Sciences and Technologies, Bogazici University, Bebek, Istanbul 34342, Turkey
| | - Mark W Grinstaff
- Boston University, Department of Biomedical Engineering, Boston, MA, USA.
- Boston University, Department of Chemistry, Boston, MA, USA
| | - Amitav Sanyal
- Department of Chemistry, Bogazici University, Bebek, Istanbul 34342, Turkey.
- Center for Life Sciences and Technologies, Bogazici University, Bebek, Istanbul 34342, Turkey
| |
Collapse
|
5
|
Burgstaller S, Wagner TR, Bischof H, Bueckle S, Padamsey A, Frecot D, Kaiser PD, Skrabak D, Malli R, Lukowski R, Rothbauer U. Monitoring extracellular ion and metabolite dynamics with recombinant nanobody-fused biosensors. iScience 2022; 25:104907. [PMID: 36046190 PMCID: PMC9421384 DOI: 10.1016/j.isci.2022.104907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/29/2022] [Accepted: 08/05/2022] [Indexed: 11/29/2022] Open
Abstract
Ion and analyte changes in the tumor microenvironment (TME) alter the metabolic activity of cancer cells, promote tumor cell growth, and impair anti-tumor immunity. Consequently, accurate determination and visualization of extracellular changes of analytes in real time is desired. In this study, we genetically combined FRET-based biosensors with nanobodies (Nbs) to specifically visualize and monitor extracellular changes in K+, pH, and glucose on cell surfaces. We demonstrated that these Nb-fused biosensors quantitatively visualized K+ alterations on cancer and non-cancer cell lines and primary neurons. By implementing a HER2-specific Nb, we generated functional K+ and pH sensors, which specifically stained HER2-positive breast cancer cells. Based on the successful development of several Nb-fused biosensor combinations, we anticipate that this approach can be readily extended to other biosensors and will open new opportunities for the study of extracellular analytes in advanced experimental settings. Generation of recombinant nanobody-fused FRET biosensors Nb-fused biosensors specifically bind targets on the outer surface of various cells Cellular bound Nb-biosensors visualize extracellular analyte changes in real time
Collapse
Affiliation(s)
- Sandra Burgstaller
- Pharmaceutical Biotechnology, Eberhard Karls University Tübingen, Markwiesenstrasse 55, 72770 Reutlingen, Germany.,Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Auf der Morgenstelle 8, 72076 Tuebingen, Germany
| | - Teresa R Wagner
- Pharmaceutical Biotechnology, Eberhard Karls University Tübingen, Markwiesenstrasse 55, 72770 Reutlingen, Germany.,NMI Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstrasse 55, 72770 Reutlingen, Germany
| | - Helmut Bischof
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Auf der Morgenstelle 8, 72076 Tuebingen, Germany
| | - Sarah Bueckle
- Pharmaceutical Biotechnology, Eberhard Karls University Tübingen, Markwiesenstrasse 55, 72770 Reutlingen, Germany
| | - Aman Padamsey
- Pharmaceutical Biotechnology, Eberhard Karls University Tübingen, Markwiesenstrasse 55, 72770 Reutlingen, Germany
| | - Desiree Frecot
- Pharmaceutical Biotechnology, Eberhard Karls University Tübingen, Markwiesenstrasse 55, 72770 Reutlingen, Germany.,NMI Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstrasse 55, 72770 Reutlingen, Germany
| | - Philipp D Kaiser
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstrasse 55, 72770 Reutlingen, Germany
| | - David Skrabak
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Auf der Morgenstelle 8, 72076 Tuebingen, Germany
| | - Roland Malli
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria.,BioTechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria
| | - Robert Lukowski
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Auf der Morgenstelle 8, 72076 Tuebingen, Germany
| | - Ulrich Rothbauer
- Pharmaceutical Biotechnology, Eberhard Karls University Tübingen, Markwiesenstrasse 55, 72770 Reutlingen, Germany.,NMI Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstrasse 55, 72770 Reutlingen, Germany
| |
Collapse
|
6
|
Alves RC, Schulte ZM, Luiz MT, Bento da Silva P, Frem RCG, Rosi NL, Chorilli M. Breast Cancer Targeting of a Drug Delivery System through Postsynthetic Modification of Curcumin@N 3-bio-MOF-100 via Click Chemistry. Inorg Chem 2021; 60:11739-11744. [PMID: 34101467 DOI: 10.1021/acs.inorgchem.1c00538] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Metal-organic frameworks (MOFs) offer many opportunities for applications across biology and medicine. Their wide range of chemical composition makes toxicologically acceptable formulation possible, and their high level of functionality enables possible applications as delivery systems for therapeutics agents. Surface modifications have been used in drug delivery systems to minimize their interaction with the bulk, improving their specificity as targeted carriers. Herein, we discuss a strategy to achieve a tumor-targeting drug-loaded MOF using "click" chemistry to anchor functional folic acid (FA) molecules on the surface of N3-bio-MOF-100. Using curcumin (CCM) as an anticancer drug, we observed drug loading encapsulation efficiencies (DLEs) of 24.02 and 25.64% after soaking N3-bio-MOF-100 in CCM solutions for 1 day and 3 days, respectively. The success of postsynthetic modification of FA was confirmed by 1H NMR spectroscopy, Fourier transform infrared spectroscopy (FTIR), and liquid chromatography-mass spectrometry (LC-MS). The stimuli-responsive drug release studies demonstrated an increase of CCM released under acidic microenvironments. Moreover, the cell viability assay was performed on the 4T1 (breast cancer) cell line in the presence of CCM@N3-bio-MOF-100 and CCM@N3-bio-MOF-100/FA carriers to confirm its biological compatibility. In addition, a cellular uptake study was conducted to evaluate the targeting of tumor cells.
Collapse
Affiliation(s)
- Renata C Alves
- Department of Drugs and Medicines, School of Pharmaceutical Sciences of São Paulo State University (UNESP), Rodovia Araraquara Jaú, Km 01 - s/n - Campos Ville, 14800-903 Araraquara, São Paulo, Brazil
| | - Zachary M Schulte
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 1560, United States
| | - Marcela T Luiz
- Department of Pharmaceutical Sciences, School of Pharmaceutical Science of Ribeirão Preto, University of São Paulo (USP), Avenida do Café, s/n - Campus da USP, 14040-903 Ribeirão Preto, Sao Paulo, Brazil
| | - Patrícia Bento da Silva
- Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasilia (UnB), Campus Universitario Darcy Ribeiro - Asa Norte, 70910-900 Brasilia, Federal District, Brazil
| | - Regina C G Frem
- Institute of Chemistry, São Paulo State University (UNESP), Prof. Francisco Degni 55, PO Box 355, 14800-970 Araraquara, São Paulo, Brazil
| | - Nathaniel L Rosi
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 1560, United States
| | - Marlus Chorilli
- Department of Drugs and Medicines, School of Pharmaceutical Sciences of São Paulo State University (UNESP), Rodovia Araraquara Jaú, Km 01 - s/n - Campos Ville, 14800-903 Araraquara, São Paulo, Brazil
| |
Collapse
|
7
|
Kost B, Gonciarz W, Krupa A, Socka M, Rogala M, Biela T, Brzeziński M. pH-tunable nanoparticles composed of copolymers of lactide and allyl-glycidyl ether with various functionalities for the efficient delivery of anti-cancer drugs. Colloids Surf B Biointerfaces 2021; 204:111801. [PMID: 33957491 DOI: 10.1016/j.colsurfb.2021.111801] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/16/2021] [Accepted: 04/26/2021] [Indexed: 10/21/2022]
Abstract
The designing of biocompatible nanocarriers for the efficient delivery of their cargos to the desired targets remains a challenge. In this regard, the most promising strategy relies on the construction of pH- or thermo-responsive nanoparticles (NPs). However, it is also important to preserve the balance between the responsiveness of the carrier and their stability in physiological conditions. Therefore, we described a new family of copolymers of lactide and allyl-glycidyl ether which were subsequently modified by thiol-ene reaction to functionalize the resulting copolymer with acetylcysteine (ACC) or thioglycolic acid (tGA) moieties. Subsequently, these copolymers were used to obtain blank and doxorubicin (DOX) loaded NPs with an average diameter of about 50-100 nm. Interestingly, the NPs were stable in different pH conditions, however, the presence of ACC or tGA units in the polymeric chain allows for the reduction of the undesired burst release due to the supramolecular interactions between polymeric pedant groups and DOX. The release tests of DOX from NPs showed that DOX release rate decrease depending on the pH values and the copolymer functionalization in order of non-modified NPs > ACC-modified NPs > tGA functionalized NPs. Most importantly, the MTT assay showed that all blank NPs are non-toxic against the normal L929 cell line. Subsequently, the antitumor efficiency of the obtained NPs was tested towards L929 (murine fibroblast cell line), HeLa (cervical cancer), and AGS (human gastric adenocarcinoma cancer) cells. The results demonstrated that DOX-loaded NPs efficiently induce the reduction in the viability of the HeLa and AGS cell, and this reduction in the viability was even below 20 % for the AGS cells. Together with their biocompatibility, the obtained NPs offer a novel route for the preparation of nanocarriers for the controlled and efficient delivery of anticancer drugs.
Collapse
Affiliation(s)
- B Kost
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Łódź, Poland.
| | - W Gonciarz
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237, Lodz, Poland
| | - A Krupa
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237, Lodz, Poland.
| | - M Socka
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Łódź, Poland
| | - M Rogala
- University of Lodz, Faculty of Physics and Applied Informatics, Department of Solid State Physics, Pomorska 149/153, 90-236, Lodz, Poland
| | - T Biela
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Łódź, Poland
| | - M Brzeziński
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Łódź, Poland.
| |
Collapse
|
8
|
Jiang X, Lin M, Huang J, Mo M, Liu H, Jiang Y, Cai X, Leung W, Xu C. Smart Responsive Nanoformulation for Targeted Delivery of Active Compounds From Traditional Chinese Medicine. Front Chem 2020; 8:559159. [PMID: 33363102 PMCID: PMC7758496 DOI: 10.3389/fchem.2020.559159] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 10/30/2020] [Indexed: 12/12/2022] Open
Abstract
Traditional Chinese medicine (TCM) has been used to treat disorders in China for ~1,000 years. Growing evidence has shown that the active ingredients from TCM have antibacterial, antiproliferative, antioxidant, and apoptosis-inducing features. However, poor solubility and low bioavailability limit clinical application of active compounds from TCM. “Nanoformulations” (NFs) are novel and advanced drug-delivery systems. They show promise for improving the solubility and bioavailability of drugs. In particular, “smart responsive NFs” can respond to the special external and internal stimuli in targeted sites to release loaded drugs, which enables them to control the release of drug within target tissues. Recent studies have demonstrated that smart responsive NFs can achieve targeted release of active compounds from TCM at disease sites to increase their concentrations in diseased tissues and reduce the number of adverse effects. Here, we review “internal stimulus–responsive NFs” (based on pH and redox status) and “external stimulus–responsive NFs” (based on light and magnetic fields) and focus on their application for active compounds from TCM against tumors and infectious diseases, to further boost the development of TCM in modern medicine.
Collapse
Affiliation(s)
- Xuejun Jiang
- Key Laboratory of Molecular Target and Clinical Pharmacology, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Mei Lin
- Key Laboratory of Molecular Target and Clinical Pharmacology, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jianwen Huang
- Key Laboratory of Molecular Target and Clinical Pharmacology, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Mulan Mo
- Key Laboratory of Molecular Target and Clinical Pharmacology, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Houhe Liu
- Key Laboratory of Molecular Target and Clinical Pharmacology, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yuan Jiang
- Key Laboratory of Molecular Target and Clinical Pharmacology, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xiaowen Cai
- Key Laboratory of Molecular Target and Clinical Pharmacology, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Wingnang Leung
- Asia-Pacific Institute of Aging Studies, Lingnan University, Hong Kong, China
| | - Chuanshan Xu
- Key Laboratory of Molecular Target and Clinical Pharmacology, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
9
|
The acidic tumor microenvironment drives a stem-like phenotype in melanoma cells. J Mol Med (Berl) 2020; 98:1431-1446. [PMID: 32803272 PMCID: PMC7525286 DOI: 10.1007/s00109-020-01959-y] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 07/14/2020] [Accepted: 08/05/2020] [Indexed: 01/12/2023]
Abstract
Abstract Acidosis characterizes the microenvironment of most solid tumors and is considered a new hallmark of cancer. It is mainly caused by both “aerobic” and “anaerobic” glycolysis of differently adapted cancer cells, with the final product lactic acid being responsible of the extracellular acidification. Many evidences underline the role of extracellular acidosis in tumor progression. Among the different findings, we demonstrated that acidosis-exposed cancer cells are characterized by an epithelial-to-mesenchymal transition phenotype with high invasive ability, high resistance to apoptosis, anchorage-independent growth, and drug therapy. Acidic melanoma cells over-express SOX2, which is crucial for the maintenance of their oxidative metabolism, and carbonic anhydrase IX, that correlates with poor prognosis of cancer patients. Considering these evidences, we realized that the profile outlined for acid cancer cells inevitably remind us the stemness profile. Therefore, we wondered whether extracellular acidosis might induce in cancer cells the acquisition of stem-like properties and contribute to the expansion of the cancer stem cell sub-population. We found that a chronic adaptation to acidosis stimulates in cancer cells the expression of stem-related markers, also providing a high in vitro/in vivo clonogenic and trans-differentiating ability. Moreover, we observed that the acidosis-induced stem-like phenotype of melanoma cells was reversible and related to the EMT induction. These findings help to characterize a further aspect of stem cell niche, contributing to the sustainment and expansion of cancer stem cell subpopulation. Thus, the usage of agents controlling tumor extracellular acidosis might acquire great importance in the clinic for the treatment of aggressive solid tumor. Key messages • Extracellular acidosis up-regulates EMT and stem-related markers in melanoma cells • Acidic medium up-regulates in vitro self-renewal capacity of melanoma cells • Chronic acidosis adaptation induces trans-differentiation ability in melanoma cells • Melanoma cells adapted to acidosis show higher tumor-initiating potential than control cells • Extracellular acidosis promotes a stem-like phenotype in prostate and colorectal carcinoma cells
Collapse
|
10
|
Pisarevsky E, Blau R, Epshtein Y, Ben-Shushan D, Eldar-Boock A, Tiram G, Koshrovski-Michael S, Scomparin A, Pozzi S, Krivitsky A, Shenbach-Koltin G, Yeini E, Fridrich L, White R, Satchi-Fainaro R. Rational Design of Polyglutamic Acid Delivering an Optimized Combination of Drugs Targeting Mutated BRAF and MEK in Melanoma. ADVANCED THERAPEUTICS 2020; 3:2000028. [PMID: 35754977 PMCID: PMC9223483 DOI: 10.1002/adtp.202000028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Indexed: 12/17/2022]
Abstract
Targeted therapies against cancer can relieve symptoms and induce remission, however, they often present limited duration of disease control, cause side effects and often induce acquired resistance. Therefore, there is a great motivation to develop a unique delivery system, targeted to the tumor, in which we can combine several active entities, increase the therapeutic index by reducing systemic exposure, and enhance their synergistic activity. To meet these goals, we chose the biocompatible and biodegradable poly(α,L-glutamic acid) (PGA) as a nanocarrier that facilitates extravasation-dependent tumor targeting delivery. The RAS/RAF/MEK/ERK pathway when aberrantly activated in melanoma, can lead to uncontrolled cell proliferation, induced invasion, and reduced apoptosis. Here, we selected two drugs targeting this pathway; a MEK1/2 inhibitor (selumetinib; SLM) and a modified BRAF inhibitor (modified dabrafenib; mDBF), that exhibited synergism in vitro. We synthesized and characterized our nanomedicine of PGA conjugated to SLM and mDBF (PGA-SLM-mDBF). PGA-SLM-mDBF inhibited the proliferation of melanoma cells and decreased their migratory and sprouting abilities without inducing a hemolytic effect. Moreover, the polymer-2-drugs conjugate exhibited superior anti-tumor activity in comparison with the two separate polymer-drug conjugates in vitro and with free drugs in a mouse model of primary melanoma and prolonged survival at a lower dose.
Collapse
Affiliation(s)
- Evgeni Pisarevsky
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Rachel Blau
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Yana Epshtein
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Dikla Ben-Shushan
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Anat Eldar-Boock
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Galia Tiram
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Shani Koshrovski-Michael
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Anna Scomparin
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Sabina Pozzi
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Adva Krivitsky
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Gal Shenbach-Koltin
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Eilam Yeini
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Lidar Fridrich
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Richard White
- Cancer Biology & Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ronit Satchi-Fainaro
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
11
|
Faal Maleki M, Jafari A, Mirhadi E, Askarizadeh A, Golichenari B, Hadizadeh F, Jalilzadeh Moghimi SM, Aryan R, Mashreghi M, Jaafari MR. Endogenous stimuli-responsive linkers in nanoliposomal systems for cancer drug targeting. Int J Pharm 2019; 572:118716. [DOI: 10.1016/j.ijpharm.2019.118716] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 09/17/2019] [Accepted: 09/18/2019] [Indexed: 12/11/2022]
|
12
|
Locharoenrat K. Efficacy of nanodiamond–doxorubicin complexes on human breast adenocarcinoma cell lines. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:4053-4058. [DOI: 10.1080/21691401.2019.1677681] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Kitsakorn Locharoenrat
- Faculty of Science, Department of Physics, Biomedical Physics Research Unit, King Mongkut’s Institute of Technology Ladkrabang, Bangkok, Thailand
| |
Collapse
|
13
|
Munro MJ, Wickremesekera SK, Peng L, Marsh RW, Itinteang T, Tan ST. Cancer stem cell subpopulations in primary colon adenocarcinoma. PLoS One 2019; 14:e0221963. [PMID: 31491003 PMCID: PMC6730900 DOI: 10.1371/journal.pone.0221963] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 08/19/2019] [Indexed: 12/19/2022] Open
Abstract
Aims The cancer stem cell concept proposes that tumor growth and recurrence is driven by a small population of cancer stem cells (CSCs). In this study we investigated the expression of induced-pluripotent stem cell (iPSC) markers and their localization in primary low-grade adenocarcinoma (LGCA) and high-grade adenocarcinoma (HGCA) and their patient-matched normal colon samples. Materials and methods Transcription and translation of iPSC markers OCT4, SOX2, NANOG, KLF4 and c-MYC were investigated using immunohistochemical (IHC) staining, RT-qPCR and in-situ hybridization (ISH). Results All five iPSC markers were detected at the transcriptional and translational levels. Protein abundance was found to be correlated with tumor grade. Based on their protein expression within the tumors, two sub-populations of cells were identified: a NANOG+/OCT4- epithelial subpopulation and an OCT4+/NANOG- stromal subpopulation. All cases were accurately graded based on four pieces of iPSC marker-related data. Conclusions This study suggests the presence of two putative sub-populations of CSCs: a NANOG+/OCT4- epithelial subpopulation and an OCT4+/NANOG- stromal subpopulation. Normal colon, LGCA and HGCA could be accurately distinguished from one another using iPSC marker expression. Once validated, novel combinations of iPSC markers may provide diagnostic and prognostic value to help guide patient management.
Collapse
Affiliation(s)
- Matthew J. Munro
- Gillies McIndoe Research Institute, Newtown, Newtown, Wellington, New Zealand
- School of Biological Sciences and Centre for Biodiscovery, Victoria University of Wellington, Kelburn, Wellington, New Zealand
| | - Susrutha K. Wickremesekera
- Gillies McIndoe Research Institute, Newtown, Newtown, Wellington, New Zealand
- Upper Gastrointestinal, Hepatobiliary & Pancreatic Section, Department of General Surgery, Wellington Regional Hospital, Private Bag 7902, Wellington, New Zealand
| | - Lifeng Peng
- School of Biological Sciences and Centre for Biodiscovery, Victoria University of Wellington, Kelburn, Wellington, New Zealand
| | - Reginald W. Marsh
- Gillies McIndoe Research Institute, Newtown, Newtown, Wellington, New Zealand
- University of Auckland, Grafton, Auckland, New Zealand
| | - Tinte Itinteang
- Gillies McIndoe Research Institute, Newtown, Newtown, Wellington, New Zealand
| | - Swee T. Tan
- Gillies McIndoe Research Institute, Newtown, Newtown, Wellington, New Zealand
- Wellington Regional Plastic, Maxillofacial & Burns Unit, Hutt Hospital, Lower Hutt, New Zealand
- * E-mail:
| |
Collapse
|
14
|
Choodetwattana P, Proungvitaya S, Jearanaikoon P, Limpaiboon T. The Upregulation of OCT4 in Acidic Extracellular pH is Associated with Gemcitabine Resistance in Cholangiocarcinoma Cell Lines. Asian Pac J Cancer Prev 2019; 20:2745-2748. [PMID: 31554372 PMCID: PMC6976837 DOI: 10.31557/apjcp.2019.20.9.2745] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Indexed: 01/08/2023] Open
Abstract
Background: Cholangiocarcinoma (CCA), although is an uncommon liver cancer originating from bile duct epithelial cells, is one of the top 10 most fatal cancers. Chemoresistance is an unmet need always found in CCA patients. Tumor microenvironment conditions such as hypoxia, nutrient starvation and acidic extracellular pH play critical roles in chemoresistance and cancer progression. However, the effect of acidic extracellular pH on cellular response and chemoresistance in CCA has not been studied. Methods: Human CCA cell lines (KKU-M213, KKU-M055 and KKU-100) were cultured under acidic (pH 6.5) or non-acidic (pH 7.4) condition and were used for gene expression, doubling time and cytotoxicity assay. Results: The acidic extracellular pH (pH 6.5) significantly increased doubling times of CCA cell lines compared with non-acidic condition (pH 7.4). Interestingly, extracellular acid condition induced gemcitabine resistance in CCA cell lines. We showed that Octamer-binding transcription factor 4 (Oct4) was upregulated in these cell lines under extracellular acid condition. Conclusion: Our findings demonstrate that CCA cells can adapt to survive in acidic environment after which chemoresistance has been developed. Oct4 may be a key transcriptional regulator which mediates chemoresistance in response to acidic extracellular pH.
Collapse
Affiliation(s)
- Phatchareeporn Choodetwattana
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Siriporn Proungvitaya
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Patcharee Jearanaikoon
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Temduang Limpaiboon
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand.
| |
Collapse
|
15
|
The Role of Sodium Hydrogen Exchanger 1 in Dysregulation of Proton Dynamics and Reprogramming of Cancer Metabolism as a Sequela. Int J Mol Sci 2019; 20:ijms20153694. [PMID: 31357694 PMCID: PMC6696090 DOI: 10.3390/ijms20153694] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 07/23/2019] [Accepted: 07/25/2019] [Indexed: 12/15/2022] Open
Abstract
Cancer cells have an unusual regulation of hydrogen ion dynamics that are driven by poor vascularity perfusion, regional hypoxia, and increased glycolysis. All these forces synergize/orchestrate together to create extracellular acidity and intracellular alkalinity. Precisely, they lead to extracellular pH (pHe) values as low as 6.2 and intracellular pH values as high as 8. This unique pH gradient (∆pHi to ∆pHe) across the cell membrane increases as the tumor progresses, and is markedly displaced from the electrochemical equilibrium of protons. These unusual pH dynamics influence cancer cell biology, including proliferation, metastasis, and metabolic adaptation. Warburg metabolism with increased glycolysis, even in the presence of Oxygen with the subsequent reduction in Krebs’ cycle, is a common feature of most cancers. This metabolic reprogramming confers evolutionary advantages to cancer cells by enhancing their resistance to hypoxia, to chemotherapy or radiotherapy, allowing rapid production of biological building blocks that support cellular proliferation, and shielding against damaging mitochondrial free radicals. In this article, we highlight the interconnected roles of dysregulated pH dynamics in cancer initiation, progression, adaptation, and in determining the programming and re-programming of tumor cell metabolism.
Collapse
|
16
|
Yusuf A, Casey A. Evaluation of silver nanoparticle encapsulation in DPPC-based liposome by different methods for enhanced cytotoxicity. INT J POLYM MATER PO 2019. [DOI: 10.1080/00914037.2019.1626390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Azeez Yusuf
- School of Physics, Dublin Institute of Technology, Dublin, Ireland
- Nanolab Research Centre, FOCAS Research Institute, Dublin Institute of Technology, Dublin, Ireland
| | - Alan Casey
- School of Physics, Dublin Institute of Technology, Dublin, Ireland
- Nanolab Research Centre, FOCAS Research Institute, Dublin Institute of Technology, Dublin, Ireland
| |
Collapse
|
17
|
Wong J, Choi SYC, Liu R, Xu E, Killam J, Gout PW, Wang Y. Potential Therapies for Infectious Diseases Based on Targeting Immune Evasion Mechanisms That Pathogens Have in Common With Cancer Cells. Front Cell Infect Microbiol 2019; 9:25. [PMID: 30809511 PMCID: PMC6379255 DOI: 10.3389/fcimb.2019.00025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 01/24/2019] [Indexed: 12/18/2022] Open
Abstract
Many global infectious diseases are not well-controlled, underlining a critical need for new, more effective therapies. Pathogens and pathogen-infected host cells, like cancer cells, evade immune surveillance via immune evasion mechanisms. The present study indicates that pathogenic bacteria, endoparasites, and virus-infected host cells can have immune evasion mechanisms in common with cancers. These include entry into dormancy and metabolic reprogramming to aerobic glycolysis leading to excessive secretion of lactic acid and immobilization of local host immunity. The latter evasion tactic provides a therapeutic target for cancer, as shown by our recent finding that patient-derived cancer xenografts can be growth-arrested, without major host toxicity, by inhibiting their lactic acid secretion (as mediated by the MCT4 transporter)-with evidence of host immunity restoration. Accordingly, the multiplication of bacteria, endoparasites, and viruses that primarily depend on metabolic reprogramming to aerobic glycolysis for survival may be arrested using cancer treatment strategies that inhibit their lactic acid secretion. Immune evasion mechanisms shared by pathogens and cancer cells likely represent fundamental, evolutionarily-conserved mechanisms that may be particularly critical to their welfare. As such, their targeting may lead to novel therapies for infectious diseases.
Collapse
Affiliation(s)
- Jodi Wong
- Department of Experimental Therapeutics, BC Cancer Research Centre, Vancouver, BC, Canada
| | - Stephen Yiu Chuen Choi
- Department of Experimental Therapeutics, BC Cancer Research Centre, Vancouver, BC, Canada.,Vancouver Prostate Centre, Vancouver, BC, Canada.,Department of Urologic Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Rongrong Liu
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Eddie Xu
- Department of Experimental Therapeutics, BC Cancer Research Centre, Vancouver, BC, Canada.,Vancouver Prostate Centre, Vancouver, BC, Canada.,Department of Urologic Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - James Killam
- Vancouver Prostate Centre, Vancouver, BC, Canada
| | - Peter W Gout
- Department of Experimental Therapeutics, BC Cancer Research Centre, Vancouver, BC, Canada
| | - Yuzhuo Wang
- Department of Experimental Therapeutics, BC Cancer Research Centre, Vancouver, BC, Canada.,Vancouver Prostate Centre, Vancouver, BC, Canada.,Department of Urologic Sciences, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
18
|
Li Y, Wan J, Wang F, Guo J, Wang C. Effect of increasing liver blood flow on nanodrug clearance by the liver for enhanced antitumor therapy. Biomater Sci 2019; 7:1507-1515. [DOI: 10.1039/c8bm01371c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A norepinephrine-loaded nano-system can serve as an effective auxiliary agent for reducing nanodrug clearance by the liver and enhancing tumor therapy.
Collapse
Affiliation(s)
- Yongjing Li
- State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science
- Laboratory of Advanced Materials
- Fudan University
- Shanghai 200433
- P.R. China
| | - Jiaxun Wan
- State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science
- Laboratory of Advanced Materials
- Fudan University
- Shanghai 200433
- P.R. China
| | - Fang Wang
- State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science
- Laboratory of Advanced Materials
- Fudan University
- Shanghai 200433
- P.R. China
| | - Jia Guo
- State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science
- Laboratory of Advanced Materials
- Fudan University
- Shanghai 200433
- P.R. China
| | - Changchun Wang
- State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science
- Laboratory of Advanced Materials
- Fudan University
- Shanghai 200433
- P.R. China
| |
Collapse
|
19
|
Luo PW, Han HW, Yang CS, Shrestha LK, Ariga K, Hsu SH. Optogenetic Modulation and Reprogramming of Bacteriorhodopsin-Transfected Human Fibroblasts on Self-Assembled Fullerene C60 Nanosheets. ACTA ACUST UNITED AC 2018; 3:e1800254. [PMID: 32627371 DOI: 10.1002/adbi.201800254] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 10/24/2018] [Indexed: 01/10/2023]
Abstract
Fullerenes have unique biocompatibility and photoelectric properties and are candidate materials for biomedical applications. Several cell membrane proteins in nature such as bacteriorhodopsin also have photoelectric properties. Highly expressible bacteriorhodopsin (HEBR) is a novel light-sensitive opsin that has the potential to trigger neural activities through optogenetic modulation. Here, HEBR plasmids are delivered to human fibroblasts and the cells are exposed to C60 fullerene self-assembled 2D nanosheets. Results show that the above approach combined with light stimulation (3 s duration and three times per day) may promote reprogramming and differentiation of human fibroblasts into neural-like cells in 7 d without any neural induction medium. The special photoelectric properties of fullerenes as culture substrates and transfected HEBR on the cell membrane may provide a new optogenetic platform for regulating the location (C60 nanosheet) and time (frequency of light illumination) for human fibroblasts to become neural-like cells, and may be applied to improve neural regeneration in the future.
Collapse
Affiliation(s)
- Pei-Wen Luo
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, 10617, Taiwan, Republic of China
| | - Hao-Wei Han
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, 10617, Taiwan, Republic of China
| | - Chii-Shen Yang
- Department of Biochemical Science and Technology, National Taiwan University, Taipei, 10617, Taiwan, Republic of China
| | - Lok Kumar Shrestha
- Supermolecules Group, WPI Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Katsuhiko Ariga
- Supermolecules Group, WPI Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Shan-Hui Hsu
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, 10617, Taiwan, Republic of China
| |
Collapse
|
20
|
Mu H, Miki K, Takahashi Y, Teshima N, Oe M, Kojima K, Ohe K. pH Responsiveness of Near-infrared Fluorescent Cyanine Dyes Encapsulated in Self-assemblies Composed of Various Amphiphiles. CHEM LETT 2018. [DOI: 10.1246/cl.180402] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Huiying Mu
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Koji Miki
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Yuki Takahashi
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Naoto Teshima
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Masahiro Oe
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kentaro Kojima
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kouichi Ohe
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
21
|
|
22
|
Blau R, Epshtein Y, Pisarevsky E, Tiram G, Dangoor SI, Yeini E, Krivitsky A, Eldar-Boock A, Ben-Shushan D, Gibori H, Scomparin A, Green O, Ben-Nun Y, Merquiol E, Doron H, Blum G, Erez N, Grossman R, Ram Z, Shabat D, Satchi-Fainaro R. Image-guided surgery using near-infrared Turn-ON fluorescent nanoprobes for precise detection of tumor margins. Am J Cancer Res 2018; 8:3437-3460. [PMID: 30026858 PMCID: PMC6037036 DOI: 10.7150/thno.23853] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 04/02/2018] [Indexed: 02/07/2023] Open
Abstract
Complete tumor removal during surgery has a great impact on patient survival. To that end, the surgeon should detect the tumor, remove it and validate that there are no residual cancer cells left behind. Residual cells at the incision margin of the tissue removed during surgery are associated with tumor recurrence and poor prognosis for the patient. In order to remove the tumor tissue completely with minimal collateral damage to healthy tissue, there is a need for diagnostic tools that will differentiate between the tumor and its normal surroundings. Methods: We designed, synthesized and characterized three novel polymeric Turn-ON probes that will be activated at the tumor site by cysteine cathepsins that are highly expressed in multiple tumor types. Utilizing orthotopic breast cancer and melanoma models, which spontaneously metastasize to the brain, we studied the kinetics of our polymeric Turn-ON nano-probes. Results: To date, numerous low molecular weight cathepsin-sensitive substrates have been reported, however, most of them suffer from rapid clearance and reduced signal shortly after administration. Here, we show an improved tumor-to-background ratio upon activation of our Turn-ON probes by cathepsins. The signal obtained from the tumor was stable and delineated the tumor boundaries during the whole surgical procedure, enabling accurate resection. Conclusions: Our findings show that the control groups of tumor-bearing mice, which underwent either standard surgery under white light only or under the fluorescence guidance of the commercially-available imaging agents ProSense® 680 or 5-aminolevulinic acid (5-ALA), survived for less time and suffered from tumor recurrence earlier than the group that underwent image-guided surgery (IGS) using our Turn-ON probes. Our "smart" polymeric probes can potentially assist surgeons' decision in real-time during surgery regarding the tumor margins needed to be removed, leading to improved patient outcome.
Collapse
|
23
|
Thapa RK, Ku SK, Choi HG, Yong CS, Byeon JH, Kim JO. Vibrating droplet generation to assemble zwitterion-coated gold-graphene oxide stealth nanovesicles for effective pancreatic cancer chemo-phototherapy. NANOSCALE 2018; 10:1742-1749. [PMID: 29308494 DOI: 10.1039/c7nr07603g] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A vibrating nozzle approach was used to produce uniform (∼2 μm) hybrid droplets containing gold-graphene oxide (Au-GO), doxorubicin (DOX), and zwitterionic chitosan (ZC) for assembly of Au-GO@ZC-DOX stealth nanovesicles (NVs) via a single-pass diffusion drying process without any hydrothermal reactions, separations, or purifications. NVs were prepared with a lateral dimension of ∼53.0 nm, a pH-triggered high DOX release profile, and strong photothermal effects. Macrophage opsonization was prevented, resulting in anti-cancer and anti-migration effects, with high intracellular uptake in PANC-1 and MIA PaCa-2 cells. PANC-1 tumor uptake was greater for NVs having the ZC configuration than that for NVs without the ZC configuration, resulting in better anti-tumor effects with minimal toxicities. The vibrating nozzle approach offers significant potential to assemble multi-componential NVs for more efficient anti-tumor treatment and easy user-defined manufacturing of multifunctional nanomedicines.
Collapse
Affiliation(s)
- Raj Kumar Thapa
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| | | | | | | | | | | |
Collapse
|
24
|
Pramanik SK, Seneca S, Peters M, D'Olieslaeger L, Reekmans G, Vanderzande D, Adriaensens P, Ethirajan A. Morphology-dependent pH-responsive release of hydrophilic payloads using biodegradable nanocarriers. RSC Adv 2018; 8:36869-36878. [PMID: 35558930 PMCID: PMC9088891 DOI: 10.1039/c8ra07066k] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 10/25/2018] [Indexed: 11/21/2022] Open
Abstract
The development of functional nanocarriers with stimuli-responsive properties has advanced tremendously to serve biomedical applications such as drug delivery and regenerative medicine. However, the development of biodegradable nanocarriers that can be loaded with hydrophilic compounds and ensure its controlled release in response to changes in the surrounding environment still remains very challenging. Herein, we achieved such demands via the preparation of aqueous core nanocapsules using a base-catalyzed interfacial reaction employing a diisocyanate monomer and functional monomers/polymers containing thiol and hydroxyl functionalities at the droplet interface. pH-responsive poly(thiourethane–urethane) nanocarriers with ester linkages were synthesized by incorporating polycaprolactone diol, which is susceptible to hydrolytic degradation via ester linkages, as a functional monomer in the reaction formulation. We could demonstrate that by systematically varying the number of biodegradable segments, the morphology of the nanocarriers can be tuned without imparting the efficient encapsulation of hydrophilic payload (>85% encapsulation efficiency) and its transfer from organic to aqueous phase. The developed nanocarriers allow for a fast release of hydrophilic payload that depends on pH, the number of biodegradable segments and nanocarrier morphology. Succinctly put, this study provides important information to develop pH-responsive nanocarriers with tunable morphology, using interfacial reactions in the inverse miniemulsion process, by controlling the number of degradable segments to adjust the release profile depending on the type of application envisaged. The morphology and release properties of aqueous core nanocapsules for the pH-responsive release of hydrophilic payload was investigated by systematically varying the number of biodegradable segments.![]()
Collapse
Affiliation(s)
- Sumit Kumar Pramanik
- Institute for Materials Research (IMO)
- Hasselt University
- Belgium
- IMEC
- Associated Lab IMOMEC
| | - Senne Seneca
- Institute for Materials Research (IMO)
- Hasselt University
- Belgium
- IMEC
- Associated Lab IMOMEC
| | - Martijn Peters
- Institute for Materials Research (IMO)
- Hasselt University
- Belgium
- IMEC
- Associated Lab IMOMEC
| | - Lien D'Olieslaeger
- Institute for Materials Research (IMO)
- Hasselt University
- Belgium
- IMEC
- Associated Lab IMOMEC
| | - Gunter Reekmans
- Institute for Materials Research (IMO)
- Hasselt University
- Belgium
- IMEC
- Associated Lab IMOMEC
| | - Dirk Vanderzande
- Institute for Materials Research (IMO)
- Hasselt University
- Belgium
- IMEC
- Associated Lab IMOMEC
| | - Peter Adriaensens
- Institute for Materials Research (IMO)
- Hasselt University
- Belgium
- IMEC
- Associated Lab IMOMEC
| | - Anitha Ethirajan
- Institute for Materials Research (IMO)
- Hasselt University
- Belgium
- IMEC
- Associated Lab IMOMEC
| |
Collapse
|
25
|
Tiwari A, Singh A, Garg N, Randhawa JK. Curcumin encapsulated zeolitic imidazolate frameworks as stimuli responsive drug delivery system and their interaction with biomimetic environment. Sci Rep 2017; 7:12598. [PMID: 28974697 PMCID: PMC5626696 DOI: 10.1038/s41598-017-12786-6] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 09/15/2017] [Indexed: 01/22/2023] Open
Abstract
Metal organic frameworks (MOFs) exhibit unique features of finely tunable pore structures, excellent chemical stability and flexible surface structural functionality, making them advantageous for a wide range of applications including energy storage, compound separation, catalysis, and drug delivery. The present work enlightens a novel approach of single step fabrication of CCM-ZIF-8 as a drug carrier and its application as stimuli responsive drug delivery systems via external stimuli involving change in pH and in presence of biomimetic cell membrane like environment using liposomes and SDS micelles. The methodology is devoid of any post synthesis drug loading steps. The synthesized curcumin encapsulated ZIF-8 frameworks demonstrate ultrahigh drug encapsulation efficiency (ca. 83.33%) and good chemical stability. In vitro drug release of curcumin was three times higher in acidic medium than in physiological pH. Cytotoxicity results demonstrated enhanced therapeutic effect of CCM-ZIF-8 than free curcumin. Confocal microscopy results confirmed the easy cellular internalization of CCM-ZIF-8 in HeLa cells. Intracellular distribution studies at various incubation times confirmed the clathrin-mediated endocytosis to lysosomal pathway of CCM-ZIF-8, but without mitochondria being an intracellular fate. The results signify that CCM-ZIF-8 is an efficient drug carrier for passive tumor therapy in future for cancer treatments.
Collapse
Affiliation(s)
- Ashish Tiwari
- School of Engineering, Indian Institute of Technology Mandi, Himachal Pradesh, India
| | - Ashutosh Singh
- School of Basic Sciences, Indian Institute of Technology Mandi, Himachal Pradesh, India
| | - Neha Garg
- School of Basic Sciences, Indian Institute of Technology Mandi, Himachal Pradesh, India.
| | - Jaspreet K Randhawa
- School of Engineering, Indian Institute of Technology Mandi, Himachal Pradesh, India.
| |
Collapse
|
26
|
Kobayashi H. Cancer Chemotherapy Specific to Acidic Nests. Cancers (Basel) 2017; 9:cancers9040036. [PMID: 28425953 PMCID: PMC5406711 DOI: 10.3390/cancers9040036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Revised: 04/17/2017] [Accepted: 04/18/2017] [Indexed: 12/15/2022] Open
Abstract
The realization of cancer therapeutics specific to cancer cells with less of an effect on normal tissues is our goal. Many trials have been carried out for this purpose, but this goal is still far from being realized. It was found more than 80 years ago that solid cancer nests are acidified, but in vitro studies under acidic conditions have not been extensively studied. Recently, in vitro experiments under acidic conditions were started and anti-cancer drugs specific to acidic areas have been identified. Many genes have been reported to be expressed at a high level under acidic conditions, and such genes may be potent targets for anti-cancer drugs specific to acidic nests. In this review article, recent in vitro, in vivo, and clinical achievements in anti-cancer drugs with marked efficacy under acidic conditions are summarized, and the clinical use of anti-cancer drugs specific to acidic nests is discussed.
Collapse
Affiliation(s)
- Hiroshi Kobayashi
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan.
| |
Collapse
|
27
|
ASIC1a mediates the drug resistance of human hepatocellular carcinoma via the Ca 2+/PI3-kinase/AKT signaling pathway. J Transl Med 2017; 97:53-69. [PMID: 27918554 PMCID: PMC5220138 DOI: 10.1038/labinvest.2016.127] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 10/20/2016] [Accepted: 10/28/2016] [Indexed: 01/12/2023] Open
Abstract
Chemotherapy is the main treatment method of patients with advanced liver cancer. However, drug resistance is a serious problem in the treatment of hepatocellular carcinoma (HCC). Acid sensing ion channel 1a (ASIC1a) is a H+-gated cation channel; it mediates tumor cell migration and invasion, which suggests that it is involved in the development of malignant tumors. Therefore, we studied the relationship between ASIC1a and drug resistance in human hepatocellular carcinoma. In our study, we found that ASIC1a is highly expressed in human HCC tissue, and that its levels were significantly increased in resistant HCC cells Bel7402/FU and HepG2/ADM. Inhibiting the activity of ASIC1a enhances the chemosensitivity of Bel7402/FU and HepG2/ADM cells. The overexpression of ASIC1a contributed to drug resistance in Bel7402 and HepG2 cells, whereas knockdown of ASIC1a overcame drug resistance in Bel7402/FU and HepG2/ADM cells. We further demonstrated that ASIC1a mediated calcium influx, which resulted in the activation of PI3K/AKT signaling and increased drug resistance. These data suggest that ASIC1a/Ca2+/PI3K/AKT signaling represents a novel pathway that regulates drug resistance, thus offering a potential target for chemotherapy of HCC.
Collapse
|
28
|
Ravichandran M, Oza G, Velumani S, Ramirez JT, Garcia-Sierra F, Andrade NB, Vera A, Leija L, Garza-Navarro MA. Plasmonic/Magnetic Multifunctional nanoplatform for Cancer Theranostics. Sci Rep 2016; 6:34874. [PMID: 27721391 PMCID: PMC5056510 DOI: 10.1038/srep34874] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 09/09/2016] [Indexed: 12/18/2022] Open
Abstract
A multifunctional magneto-plasmonic CoFe2O4@Au core-shell nanoparticle was developed by iterative-seeding based method. This nanocargo consists of a cobalt ferrite kernel as a core (Nk) and multiple layers of gold as a functionalizable active stratum, (named as Nk@A after fifth iteration). Nk@A helps in augmenting the physiological stability and enhancing surface plasmon resonance (SPR) property. The targeted delivery of Doxorubicin using Nk@A as a nanopayload is demonstrated in this report. The drug release profile followed first order rate kinetics optimally at pH 5.4, which is considered as an endosomal pH of cells. The cellular MR imaging showed that Nk@A is an efficient T2 contrast agent for both L6 (r2-118.08 mM-1s-1) and Hep2 (r2-217.24 mM-1s-1) cells. Microwave based magnetic hyperthermia studies exhibited an augmentation in the temperature due to the transformation of radiation energy into heat at 2.45 GHz. There was an enhancement in cancer cell cytotoxicity when hyperthermia combined with chemotherapy. Hence, this single nanoplatform can deliver 3-pronged theranostic applications viz., targeted drug-delivery, T2 MR imaging and hyperthermia.
Collapse
Affiliation(s)
- M. Ravichandran
- Program on Nanoscience and Nanotechnology, Av. 2508 National Polytechnic Institute, Gustavo A. Madero, San Pedro Zacatenco, 07360 Mexico City, Mexico
| | - Goldie Oza
- Department of Genetics and Molecular Biology, Av. 2508 National Polytechnic Institute, Gustavo A. Madero, San Pedro Zacatenco, 07360 Mexico City, Mexico
| | - S. Velumani
- Department of Electrical Engineering, Av. 2508 National Polytechnic Institute, Gustavo A. Madero, San Pedro Zacatenco, 07360 Mexico City, Mexico
| | - Jose Tapia Ramirez
- Department of Genetics and Molecular Biology, Av. 2508 National Polytechnic Institute, Gustavo A. Madero, San Pedro Zacatenco, 07360 Mexico City, Mexico
| | - Francisco Garcia-Sierra
- Department of Cell Biology, Av. 2508 National Polytechnic Institute, Gustavo A. Madero, San Pedro Zacatenco, 07360 Mexico City, Mexico
| | - Norma Barragan Andrade
- Department of Cell Biology, Av. 2508 National Polytechnic Institute, Gustavo A. Madero, San Pedro Zacatenco, 07360 Mexico City, Mexico
| | - A. Vera
- Department of Electrical Engineering - Bioelectronics Section, CINVESTAV-IPN, Av. 2508 National Polytechnic Institute, Gustavo A. Madero, San Pedro Zacatenco, 07360 Mexico City
| | - L. Leija
- Department of Electrical Engineering - Bioelectronics Section, CINVESTAV-IPN, Av. 2508 National Polytechnic Institute, Gustavo A. Madero, San Pedro Zacatenco, 07360 Mexico City
| | - Marco A. Garza-Navarro
- Department of Mechanical and Electrical Engineering, Universidad Autonoma de Nuevo Leon, San Nicolás de Los Garza, Nuevo León, 66451 Mexico City, Mexico
| |
Collapse
|