1
|
Croshaw J, Huff T, Rashidi M, Wood J, Lloyd E, Pitters J, Wolkow RA. Ionic charge distributions in silicon atomic surface wires. NANOSCALE 2021; 13:3237-3245. [PMID: 33533379 DOI: 10.1039/d0nr08295c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Using a non-contact atomic force microscope (nc-AFM), we examine continuous dangling bond (DB) wire structures patterned on the hydrogen terminated silicon (100)-2 × 1 surface. By probing the DB structures at varying energies, we identify the formation of previously unobserved ionic charge distributions which are correlated to the net charge of DB wires and their predicted degrees of freedom in lattice distortions. Performing spectroscopic analysis, we identify higher energy configurations corresponding to alternative lattice distortions as well as tip-induced charging effects. By varying the length and orientation of these DB structures, we further highlight key features in the formation of these ionic surface phases.
Collapse
Affiliation(s)
- Jeremiah Croshaw
- Department of Physics, University of Alberta, Edmonton, Alberta T6G 2J1, Canada. and Quantum Silicon Inc., Edmonton, Alberta T6G 2M9, Canada
| | - Taleana Huff
- Nanotechnology Research Centre, National Research Council Canada, Edmonton, Alberta T6G 2M9, Canada
| | - Mohammad Rashidi
- Department of Physics, University of Alberta, Edmonton, Alberta T6G 2J1, Canada.
| | - John Wood
- Department of Physics, University of Alberta, Edmonton, Alberta T6G 2J1, Canada.
| | - Erika Lloyd
- Department of Physics, University of Alberta, Edmonton, Alberta T6G 2J1, Canada.
| | - Jason Pitters
- Nanotechnology Research Centre, National Research Council Canada, Edmonton, Alberta T6G 2M9, Canada
| | - Robert A Wolkow
- Department of Physics, University of Alberta, Edmonton, Alberta T6G 2J1, Canada. and Quantum Silicon Inc., Edmonton, Alberta T6G 2M9, Canada and Nanotechnology Research Centre, National Research Council Canada, Edmonton, Alberta T6G 2M9, Canada
| |
Collapse
|
2
|
Chiu SP, Yeh SS, Chiou CJ, Chou YC, Lin JJ, Tsuei CC. Ultralow 1/f Noise in a Heterostructure of Superconducting Epitaxial Cobalt Disilicide Thin Film on Silicon. ACS NANO 2017; 11:516-525. [PMID: 28027434 DOI: 10.1021/acsnano.6b06553] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
High-precision resistance noise measurements indicate that the epitaxial CoSi2/Si heterostructures at 150 and 2 K (slightly above its superconducting transition temperature Tc of 1.54 K) exhibit an unusually low 1/f noise level in the frequency range of 0.008-0.2 Hz. This corresponds to an upper limit of Hooge constant γ ≤ 3 × 10-6, about 100 times lower than that of single-crystalline aluminum films on SiO2 capped Si substrates. Supported by high-resolution cross-sectional transmission electron microscopy studies, our analysis reveals that the 1/f noise is dominated by excess interfacial Si atoms and their dimer reconstruction induced fluctuators. Unbonded orbitals (i.e., dangling bonds) on excess Si atoms are intrinsically rare at the epitaxial CoSi2/Si(100) interface, giving limited trapping-detrapping centers for localized charges. With its excellent normal-state properties, CoSi2 has been used in silicon-based integrated circuits for decades. The intrinsically low noise properties discovered in this work could be utilized for developing quiet qubits and scalable superconducting circuits for future quantum computing.
Collapse
Affiliation(s)
| | | | | | | | | | - Chang-Chyi Tsuei
- IBM Thomas J. Watson Research Center , Yorktown Heights, New York 10598, United States
| |
Collapse
|