Zhang S, Ma Y, Peng R, Huang B, Dai Y. Ideal inert substrates for planar antimonene: h-BN and hydrogenated SiC(0001).
Phys Chem Chem Phys 2018;
20:23397-23402. [PMID:
30178794 DOI:
10.1039/c8cp04200d]
[Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Planar antimonene, as one of the most promising two-dimensional materials, was recently obtained on a Ag(111) substrate [Y. Shao, Z. L. Liu, et al., Nano Lett., 2018, 18, 2133]. However, its particular electronic properties are severely degraded due to the substrate, making its further study and practical applications challenging. Here, using first-principles calculations, we propose that h-BN and hydrogenated SiC(0001) are extraordinary substrates of planar antimonene. Their interactions with planar antimonene exhibit low binding energies and large interlayer distances, and are typical van der Waals interactions. Most importantly, the bands of planar antimonene near the Fermi level are perfectly preserved, with the bands of h-BN and hydrogenated SiC(0001) lying away from the Fermi level. Moreover, such features are inert to the stacking patterns for both systems, making them suitable for practical applications. Our results will greatly broaden the scientific and technological impact of planar antimonene.
Collapse