1
|
Cai S, Ma Z, Ge Z, Yang W. Recent advances in optically induced di-electrophoresis and its biomedical applications. Biomed Microdevices 2022; 24:22. [PMID: 35689721 DOI: 10.1007/s10544-022-00620-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2022] [Indexed: 11/02/2022]
Abstract
The development of the micro/nano science and technology has promoted the evolvement of human civilization tremendously. The advancement of the micro/nano science and technology highly depends on the progress of the micro/nano manipulation techniques, and the micro/nano-scaled manipulation level is the critical sign of the micro/nano science and technology. This review, aimed at the demand and the challenge of the micro/nano material and biomedical fields and related to the scientific issues and implementation techniques of the optically induced di-electrophoresis (ODEP). We explained its working principle, manipulating method, and influencing factors of ODEP force to a certain extent. A number of application fields based-ODEP technology and specific applications so far are summarized and reviewed. Finally, some perspectives are provided on current development trends, future research directions, and challenges of ODEP.
Collapse
Affiliation(s)
- Shuxiang Cai
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai, 264005, China
| | - Zheng Ma
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai, 264005, China
| | - Zhixing Ge
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Wenguang Yang
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai, 264005, China.
| |
Collapse
|
2
|
Zhang S, Xu B, Elsayed M, Nan F, Liang W, Valley JK, Liu L, Huang Q, Wu MC, Wheeler AR. Optoelectronic tweezers: a versatile toolbox for nano-/micro-manipulation. Chem Soc Rev 2022; 51:9203-9242. [DOI: 10.1039/d2cs00359g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review covers the fundamentals, recent progress and state-of-the-art applications of optoelectronic tweezers technology, and demonstrates that optoelectronic tweezers technology is a versatile and powerful toolbox for nano-/micro-manipulation.
Collapse
Affiliation(s)
- Shuailong Zhang
- School of Mechatronical Engineering, Beijing Institute of Technology, Room 711, Building No 6, Science and Technology Park, 5 Zhongguancun South St, Haidian District, Beijing, 100081, China
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, Beijing Institute of Technology, Beijing, 100081, China
- Key Laboratory of Biomimetic Robots and Systems (Beijing Institute of Technology), Ministry of Education, Beijing 100081, China
| | - Bingrui Xu
- School of Mechatronical Engineering, Beijing Institute of Technology, Room 711, Building No 6, Science and Technology Park, 5 Zhongguancun South St, Haidian District, Beijing, 100081, China
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, Beijing Institute of Technology, Beijing, 100081, China
| | - Mohamed Elsayed
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3G9, Canada
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Fan Nan
- Institute of Nanophotonics, Jinan University, Guangzhou 511443, China
| | - Wenfeng Liang
- School of Mechanical Engineering, Shenyang Jianzhu University, Shenyang, 110168, China
| | - Justin K. Valley
- Berkeley Lights, Inc, 5858 Horton Street #320, Emeryville, CA 94608, USA
| | - Lianqing Liu
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110016, China
| | - Qiang Huang
- School of Mechatronical Engineering, Beijing Institute of Technology, Room 711, Building No 6, Science and Technology Park, 5 Zhongguancun South St, Haidian District, Beijing, 100081, China
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, Beijing Institute of Technology, Beijing, 100081, China
- Key Laboratory of Biomimetic Robots and Systems (Beijing Institute of Technology), Ministry of Education, Beijing 100081, China
| | - Ming C. Wu
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, California 94720, USA
| | - Aaron R. Wheeler
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3G9, Canada
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada
- Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada
| |
Collapse
|
3
|
Yang P, Liang Y, Zhang D, Zhang J, Li S, Liu W. Synthesis of Silver Nanoplates with the Assistance of Natural Polymer (Sodium Alginate) Under 0 °C. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E3827. [PMID: 32872579 PMCID: PMC7503834 DOI: 10.3390/ma13173827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/21/2020] [Accepted: 08/26/2020] [Indexed: 06/11/2023]
Abstract
Some special conditions are important for chemical syntheses, such as high temperature and the medium used; unfortunately, uncontrollable influences are introduced during the process, resulting in unexpectedly low repeatability. Herein, we report a facile, environmentally friendly, stable, and repeatable methodology for synthesizing silver nanoplates (SNPs) at 0 °C that overcomes these issues and dramatically increases the yield. This method mainly employs sodium dodecyl sulfate (SDS) and sodium alginate (SA) as the surface stabilizer and assistant, respectively. Consequently, we produced hexagonal nanoplates and tailed nanoplates, and the characterization showed that SA dominates the clear and regular profiles of nanoplates at 0 °C. The tailed nanoplates, over time, showed the growth of heads and the dissolving of tails, and inclined to the nanoplates without tails. The synthesis method for SNPs used in this study-0 °C without media-showed high repeatability. We confirmed that these special conditions are not required for the synthesis of silver nanostructures (SNSs). Furthermore, we constructed a new method for preparing noble metal nanostructures and proved the possibility of preparing metal nanostructures at 0 °C.
Collapse
Affiliation(s)
- Pengfei Yang
- Shaanxi Province Key Laboratory of Thin Films Technology and Optical Test, Xi’an Technological University, Xi’an 710032, China; (P.Y.); (Y.L.); (J.Z.); (S.L.)
| | - Yu Liang
- Shaanxi Province Key Laboratory of Thin Films Technology and Optical Test, Xi’an Technological University, Xi’an 710032, China; (P.Y.); (Y.L.); (J.Z.); (S.L.)
| | - Daxiao Zhang
- School of Physics and Technology, Wuhan University, Wuhan 430072, China;
| | - Jin Zhang
- Shaanxi Province Key Laboratory of Thin Films Technology and Optical Test, Xi’an Technological University, Xi’an 710032, China; (P.Y.); (Y.L.); (J.Z.); (S.L.)
| | - Shijie Li
- Shaanxi Province Key Laboratory of Thin Films Technology and Optical Test, Xi’an Technological University, Xi’an 710032, China; (P.Y.); (Y.L.); (J.Z.); (S.L.)
| | - Weiguo Liu
- Shaanxi Province Key Laboratory of Thin Films Technology and Optical Test, Xi’an Technological University, Xi’an 710032, China; (P.Y.); (Y.L.); (J.Z.); (S.L.)
| |
Collapse
|
4
|
Gonçales VR, Lian J, Gautam S, Tilley RD, Gooding JJ. Functionalized Silicon Electrodes in Electrochemistry. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2020; 13:135-158. [PMID: 32289237 DOI: 10.1146/annurev-anchem-091619-092506] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Avoiding the growth of SiOx has been an enduring task for the use of silicon as an electrode material in dynamic electrochemistry. This is because electrochemical assays become unstable when the SiOx levels change during measurements. Moreover, the silicon electrode can be completely passivated for electron transfer if a thick layer of insulating SiOx grows on the surface. As such, the field of silicon electrochemistry was mainly developed by electron-transfer studies in nonaqueous electrolytes and by applications employing SiOx-passivated silicon-electrodes where no DC currents are required to cross the electrode/electrolyte interface. A solution to this challenge began by functionalizing Si-H electrodes with monolayers based on Si-O-Si linkages. These monolayers have proven very efficient to avoid SiOx formation but are not stable for a long-term operation in aqueous electrolytes due to hydrolysis. It was only with the development of self-assembled monolayers based on Si-C linkages that a reliable protection against SiOx formation was achieved, particularly with monolayers based on α,ω-dialkynes. This review discusses in detail how this surface chemistry achieves such protection, the electron-transfer behavior of these monolayer-modified silicon surfaces, and the new opportunities for electrochemical applications in aqueous solution.
Collapse
Affiliation(s)
- Vinicius R Gonçales
- School of Chemistry, Australia Centre for NanoMedicine, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of New South Wales, Sydney, NSW 2052, Australia; ,
| | - Jiaxin Lian
- School of Chemistry, Australia Centre for NanoMedicine, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of New South Wales, Sydney, NSW 2052, Australia; ,
| | - Shreedhar Gautam
- School of Chemistry, Australia Centre for NanoMedicine, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of New South Wales, Sydney, NSW 2052, Australia; ,
| | - Richard D Tilley
- School of Chemistry, Australia Centre for NanoMedicine, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of New South Wales, Sydney, NSW 2052, Australia; ,
| | - J Justin Gooding
- School of Chemistry, Australia Centre for NanoMedicine, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of New South Wales, Sydney, NSW 2052, Australia; ,
| |
Collapse
|
5
|
Liang W, Liu L, Wang J, Yang X, Wang Y, Li WJ, Yang W. A Review on Optoelectrokinetics-Based Manipulation and Fabrication of Micro/Nanomaterials. MICROMACHINES 2020; 11:mi11010078. [PMID: 31936694 PMCID: PMC7019850 DOI: 10.3390/mi11010078] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 12/20/2022]
Abstract
Optoelectrokinetics (OEK), a fusion of optics, electrokinetics, and microfluidics, has been demonstrated to offer a series of extraordinary advantages in the manipulation and fabrication of micro/nanomaterials, such as requiring no mask, programmability, flexibility, and rapidness. In this paper, we summarize a variety of differently structured OEK chips, followed by a discussion on how they are fabricated and the ways in which they work. We also review how three differently sized polystyrene beads can be separated simultaneously, how a variety of nanoparticles can be assembled, and how micro/nanomaterials can be fabricated into functional devices. Another focus of our paper is on mask-free fabrication and assembly of hydrogel-based micro/nanostructures and its possible applications in biological fields. We provide a summary of the current challenges facing the OEK technique and its future prospects at the end of this paper.
Collapse
Affiliation(s)
- Wenfeng Liang
- School of Mechanical Engineering, Shenyang Jianzhu University, Shenyang 110168, China; (W.L.); (J.W.); (X.Y.)
| | - Lianqing Liu
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China;
- CAS-CityU Joint Laboratory on Robotics, City University of Hong Kong, Kowloon Tong, Hong Kong 999077, China
- Correspondence: (L.L.); (W.J.L.); Tel.: +86-24-2397-0181 (L.L.); +852-3442-9266 (W.J.L.)
| | - Junhai Wang
- School of Mechanical Engineering, Shenyang Jianzhu University, Shenyang 110168, China; (W.L.); (J.W.); (X.Y.)
| | - Xieliu Yang
- School of Mechanical Engineering, Shenyang Jianzhu University, Shenyang 110168, China; (W.L.); (J.W.); (X.Y.)
| | - Yuechao Wang
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China;
- CAS-CityU Joint Laboratory on Robotics, City University of Hong Kong, Kowloon Tong, Hong Kong 999077, China
| | - Wen Jung Li
- CAS-CityU Joint Laboratory on Robotics, City University of Hong Kong, Kowloon Tong, Hong Kong 999077, China
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong 999077, China
- Correspondence: (L.L.); (W.J.L.); Tel.: +86-24-2397-0181 (L.L.); +852-3442-9266 (W.J.L.)
| | - Wenguang Yang
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai 264005, China;
| |
Collapse
|
6
|
Vogel YB, Gooding JJ, Ciampi S. Light-addressable electrochemistry at semiconductor electrodes: redox imaging, mask-free lithography and spatially resolved chemical and biological sensing. Chem Soc Rev 2019; 48:3723-3739. [PMID: 31143897 DOI: 10.1039/c8cs00762d] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Spatial confinement of electrochemical reactions at solid/liquid interfaces is a mature area of research, and a central theme from cell biology to analytical chemistry. Monitoring or manipulating the kinetics of a charge transfer reaction in 2D is generally achieved using scanning electrochemical microscopy or multielectrode arrays, techniques that rely on moving physical probes or on a network of electrical connections. This tutorial is introducing concepts and instruments to confine faradaic electrochemical reactions in 2D without resorting to the mechanical movement of a probe, and with the simple design of one semiconducting electrode, one electrical lead and a single-channel potentiostat. We provide a theoretical background of semiconductor electrochemistry, and describe the use of localised visible light stimuli on photoconductor/liquid and semiconductor/liquid interfaces to address electrical conductivity - hence chemical reactivity - only at one specific site defined by the experimentalist. This enables shifting of the tenet of one electrode/one wire towards one wire/many electrodes. We discuss the applications of this emerging platform in the context of surface chemistry patterning, redox imaging, chemical and biological sensing, generating chemical gradients, electrocatalysis, nanotechnology and cell biology.
Collapse
Affiliation(s)
- Yan B Vogel
- Department of Chemistry, Curtin Institute of Functional Molecules and Interfaces, Curtin University, Bentley, Western Australia 6102, Australia.
| | - J Justin Gooding
- School of Chemistry, The Australian Centre for NanoMedicine and the Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of New South Wales, Sydney, New South Wales 2052, Australia.
| | - Simone Ciampi
- Department of Chemistry, Curtin Institute of Functional Molecules and Interfaces, Curtin University, Bentley, Western Australia 6102, Australia.
| |
Collapse
|
7
|
Lah NAC, Trigueros S. Synthesis and modelling of the mechanical properties of Ag, Au and Cu nanowires. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2019; 20:225-261. [PMID: 30956731 PMCID: PMC6442207 DOI: 10.1080/14686996.2019.1585145] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 02/16/2019] [Accepted: 02/16/2019] [Indexed: 05/04/2023]
Abstract
The recent interest to nanotechnology aims not only at device miniaturisation, but also at understanding the effects of quantised structure in materials of reduced dimensions, which exhibit different properties from their bulk counterparts. In particular, quantised metal nanowires made of silver, gold or copper have attracted much attention owing to their unique intrinsic and extrinsic length-dependent mechanical properties. Here we review the current state of art and developments in these nanowires from synthesis to mechanical properties, which make them leading contenders for next-generation nanoelectromechanical systems. We also present theories of interatomic interaction in metallic nanowires, as well as challenges in their synthesis and simulation.
Collapse
Affiliation(s)
- Nurul Akmal Che Lah
- Innovative Manufacturing, Mechatronics and Sports Lab (iMAMS), Faculty of Manufacturing Engineering, Universiti Malaysia Pahang, Pekan, Malaysia
- CONTACT Nurul Akmal Che Lah
| | | |
Collapse
|
8
|
Wang F, Liu L, Li G, Li P, Wen Y, Zhang G, Wang Y, Lee GB, Li WJ. Thermometry of photosensitive and optically induced electrokinetics chips. MICROSYSTEMS & NANOENGINEERING 2018; 4:26. [PMID: 31057914 PMCID: PMC6220187 DOI: 10.1038/s41378-018-0029-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 05/15/2018] [Accepted: 05/24/2018] [Indexed: 06/09/2023]
Abstract
Optically induced electrokinetics (OEK)-based technologies, which integrate the high-resolution dynamic addressability of optical tweezers and the high-throughput capability of electrokinetic forces, have been widely used to manipulate, assemble, and separate biological and non-biological entities in parallel on scales ranging from micrometers to nanometers. However, simultaneously introducing optical and electrical energy into an OEK chip may induce a problematic temperature increase, which poses the potential risk of exceeding physiological conditions and thus inducing variations in cell behavior or activity or even irreversible cell damage during bio-manipulation. Here, we systematically measure the temperature distribution and changes in an OEK chip arising from the projected images and applied alternating current (AC) voltage using an infrared camera. We have found that the average temperature of a projected area is influenced by the light color, total illumination area, ratio of lighted regions to the total controlled areas, and amplitude of the AC voltage. As an example, optically induced thermocapillary flow is triggered by the light image-induced temperature gradient on a photosensitive substrate to realize fluidic hydrogel patterning. Our studies show that the projected light pattern needs to be properly designed to satisfy specific application requirements, especially for applications related to cell manipulation and assembly.
Collapse
Affiliation(s)
- Feifei Wang
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, 110016 Shenyang, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
- Shenzhen Academy of Robotics, 518057 Shenzhen, China
| | - Lianqing Liu
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, 110016 Shenyang, China
| | - Gongxin Li
- Key Laboratory of Advanced Process Control for Light Industry of the Ministry of Education, Institute of Automation, Jiangnan University, 214122 Wuxi, China
| | - Pan Li
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, 110016 Shenyang, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Yangdong Wen
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, 110016 Shenyang, China
| | | | - Yuechao Wang
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, 110016 Shenyang, China
| | - Gwo-Bin Lee
- Department of Power Mechanical Engineering, National Tsing Hua University, 30013 Hsinchu, Taiwan
| | - Wen Jung Li
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, 110016 Shenyang, China
- Shenzhen Academy of Robotics, 518057 Shenzhen, China
- Department of Mechanical and Biomedical Engineering, , City University of Hong Kong, Kowloon Tong, Hong Kong China
| |
Collapse
|
9
|
Xie S, Wang X, Jiao N, Tung S, Liu L. Programmable micrometer-sized motor array based on live cells. LAB ON A CHIP 2017; 17:2046-2053. [PMID: 28513721 DOI: 10.1039/c7lc00017k] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Trapping and transporting microorganisms with intrinsic motility are important tasks for biological, physical, and biomedical applications. However, fast swimming speed makes the manipulation of these organisms an inherently challenging task. In this study, we demonstrated that an optoelectrical technique, namely, optically induced dielectrophoresis (ODEP), could effectively trap and manipulate Chlamydomonas reinhardtii (C. reinhardtii) cells swimming at velocities faster than 100 μm s-1. Furthermore, live C. reinhardtii cells trapped by ODEP can form a micrometer-sized motor array. The rotating frequency of the cells ranges from 50 to 120 rpm, which can be reversibly adjusted with a fast response speed by varying the optical intensity. Functional flagella have been demonstrated to play a decisive role in the rotation. The programmable cell array with a rotating motion can be used as a bio-micropump to drive the liquid flow in microfludic chips and may shed new light on bio-actuation.
Collapse
Affiliation(s)
- Shuangxi Xie
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Science, Shenyang, 10016, China.
| | | | | | | | | |
Collapse
|
10
|
Bai Z, Hao L, Zhang Z, Huang Z, Qin S. Enhanced photoluminescence of corrugated Al 2O 3 film assisted by colloidal CdSe quantum dots. NANOTECHNOLOGY 2017; 28:205206. [PMID: 28445168 DOI: 10.1088/1361-6528/aa6a47] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We present the enhanced photoluminescence (PL) of a corrugated Al2O3 film enabled by colloidal CdSe quantum dots. The colloidal CdSe quantum dots are fabricated directly on a corrugated Al2O3 substrate using an electrochemical deposition (ECD) method in a microfluidic system. The photoluminescence is excited by using a 150 nm diameter ultraviolet laser spot of a scanning near-field optical microscope. Owing to the electron transfer from the conduction band of the CdSe quantum dots to that of Al2O3, the enhanced photoluminescence effect is observed, which results from the increase in the recombination rate of electrons and holes on the Al2O3 surface and the reduction in the fluorescence of the CdSe quantum dots. A periodically-fluctuating fluorescent spectrum was exhibited because of the periodical wire-like corrugated Al2O3 surface serving as an optical grating. The spectral topographic map around the fluorescence peak from the Al2O3 areas covered with CdSe quantum dots was unique and attributed to the uniform deposition of CdSe QDs on the corrugated Al2O3 surface. We believe that the microfluidic ECD system and the surface enhanced fluorescence method described in this paper have potential applications in forming uniform optoelectronic films of colloidal quantum dots with controllable QD spacing and in boosting the fluorescent efficiency of weak PL devices.
Collapse
Affiliation(s)
- Zhongchen Bai
- College of Medicine, Guizhou University, Guiyang City, 550025, People's Republic of China. Guizhou Province Key Lab. for Photoelectric Technology and Application, Guizhou University, Guiyang City, 550025, People's Republic of China
| | | | | | | | | |
Collapse
|