1
|
Al-kuraishy HM, Jabir MS, Al-Gareeb AI, Klionsky DJ, Albuhadily AK. Dysregulation of pancreatic β-cell autophagy and the risk of type 2 diabetes. Autophagy 2024; 20:2361-2372. [PMID: 38873924 PMCID: PMC11572262 DOI: 10.1080/15548627.2024.2367356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 06/08/2024] [Indexed: 06/15/2024] Open
Abstract
Macroautophagy/autophagy is an essential degradation process that removes abnormal cellular components, maintains homeostasis within cells, and provides nutrition during starvation. Activated autophagy enhances cell survival during stressful conditions, although overactivation of autophagy triggers induction of autophagic cell death. Therefore, early-onset autophagy promotes cell survival whereas late-onset autophagy provokes programmed cell death, which can prevent disease progression. Moreover, autophagy regulates pancreatic β-cell functions by different mechanisms, although the precise role of autophagy in type 2 diabetes (T2D) is not completely understood. Consequently, this mini-review discusses the protective and harmful roles of autophagy in the pancreatic β cell and in the pathophysiology of T2D.
Collapse
Affiliation(s)
- Hayder M. Al-kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| | - Majid S. Jabir
- Department of Applied Science, University of Technology- Iraq, Baghdad, Iraq
| | - Ali I. Al-Gareeb
- Department of Clinical Pharmacology and Medicine, Jabir ibn Hayyan Medical University, Al-Ameer Qu./Najaf, Kufa, Iraq
| | | | - Ali K. Albuhadily
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| |
Collapse
|
2
|
Dobson JR, Jacobson DA. Disrupted Endoplasmic Reticulum Ca 2+ Handling: A Harβinger of β-Cell Failure. BIOLOGY 2024; 13:379. [PMID: 38927260 PMCID: PMC11200644 DOI: 10.3390/biology13060379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/17/2024] [Accepted: 05/17/2024] [Indexed: 06/28/2024]
Abstract
The β-cell workload increases in the setting of insulin resistance and reduced β-cell mass, which occurs in type 2 and type 1 diabetes, respectively. The prolonged elevation of insulin production and secretion during the pathogenesis of diabetes results in β-cell ER stress. The depletion of β-cell Ca2+ER during ER stress activates the unfolded protein response, leading to β-cell dysfunction. Ca2+ER is involved in many pathways that are critical to β-cell function, such as protein processing, tuning organelle and cytosolic Ca2+ handling, and modulating lipid homeostasis. Mutations that promote β-cell ER stress and deplete Ca2+ER stores are associated with or cause diabetes (e.g., mutations in ryanodine receptors and insulin). Thus, improving β-cell Ca2+ER handling and reducing ER stress under diabetogenic conditions could preserve β-cell function and delay or prevent the onset of diabetes. This review focuses on how mechanisms that control β-cell Ca2+ER are perturbed during the pathogenesis of diabetes and contribute to β-cell failure.
Collapse
Affiliation(s)
| | - David A. Jacobson
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA;
| |
Collapse
|
3
|
Al Otaibi A, Al Shaikh Mubarak S, Al Hejji F, Almasaud A, Al Jami H, Iqbal J, Al Qarni A, Harbi NKA, Bakillah A. Thapsigargin and Tunicamycin Block SARS-CoV-2 Entry into Host Cells via Differential Modulation of Unfolded Protein Response (UPR), AKT Signaling, and Apoptosis. Cells 2024; 13:769. [PMID: 38727305 PMCID: PMC11083125 DOI: 10.3390/cells13090769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/05/2024] [Accepted: 04/27/2024] [Indexed: 05/13/2024] Open
Abstract
BACKGROUND SARS-Co-V2 infection can induce ER stress-associated activation of unfolded protein response (UPR) in host cells, which may contribute to the pathogenesis of COVID-19. To understand the complex interplay between SARS-Co-V2 infection and UPR signaling, we examined the effects of acute pre-existing ER stress on SARS-Co-V2 infectivity. METHODS Huh-7 cells were treated with Tunicamycin (TUN) and Thapsigargin (THA) prior to SARS-CoV-2pp transduction (48 h p.i.) to induce ER stress. Pseudo-typed particles (SARS-CoV-2pp) entry into host cells was measured by Bright GloTM luciferase assay. Cell viability was assessed by cell titer Glo® luminescent assay. The mRNA and protein expression was evaluated by RT-qPCR and Western Blot. RESULTS TUN (5 µg/mL) and THA (1 µM) efficiently inhibited the entry of SARS-CoV-2pp into host cells without any cytotoxic effect. TUN and THA's attenuation of virus entry was associated with differential modulation of ACE2 expression. Both TUN and THA significantly reduced the expression of stress-inducible ER chaperone GRP78/BiP in transduced cells. In contrast, the IRE1-XBP1s and PERK-eIF2α-ATF4-CHOP signaling pathways were downregulated with THA treatment, but not TUN in transduced cells. Insulin-mediated glucose uptake and phosphorylation of Ser307 IRS-1 and downstream p-AKT were enhanced with THA in transduced cells. Furthermore, TUN and THA differentially affected lipid metabolism and apoptotic signaling pathways. CONCLUSIONS These findings suggest that short-term pre-existing ER stress prior to virus infection induces a specific UPR response in host cells capable of counteracting stress-inducible elements signaling, thereby depriving SARS-Co-V2 of essential components for entry and replication. Pharmacological manipulation of ER stress in host cells might provide new therapeutic strategies to alleviate SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Abeer Al Otaibi
- King Abdullah International Medical Research Center (KAIMRC), Eastern Region, Al Ahsa 31982, Saudi Arabia; (A.A.O.); (S.A.S.M.); (F.A.H.); (J.I.); (A.A.Q.)
- Biomedical Research Department, King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Al Ahsa 36428, Saudi Arabia
- King Abdulaziz Hospital, Ministry of National Guard-Health Affairs (MNG-HA), Al Ahsa 36428, Saudi Arabia
| | - Sindiyan Al Shaikh Mubarak
- King Abdullah International Medical Research Center (KAIMRC), Eastern Region, Al Ahsa 31982, Saudi Arabia; (A.A.O.); (S.A.S.M.); (F.A.H.); (J.I.); (A.A.Q.)
- Biomedical Research Department, King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Al Ahsa 36428, Saudi Arabia
- King Abdulaziz Hospital, Ministry of National Guard-Health Affairs (MNG-HA), Al Ahsa 36428, Saudi Arabia
| | - Fatimah Al Hejji
- King Abdullah International Medical Research Center (KAIMRC), Eastern Region, Al Ahsa 31982, Saudi Arabia; (A.A.O.); (S.A.S.M.); (F.A.H.); (J.I.); (A.A.Q.)
| | - Abdulrahman Almasaud
- Vaccine Development Unit, Department of Infectious Disease Research, King Abdullah International Medical Research Center, Riyadh 11481, Saudi Arabia; (A.A.); (H.A.J.); (N.K.A.H.)
| | - Haya Al Jami
- Vaccine Development Unit, Department of Infectious Disease Research, King Abdullah International Medical Research Center, Riyadh 11481, Saudi Arabia; (A.A.); (H.A.J.); (N.K.A.H.)
| | - Jahangir Iqbal
- King Abdullah International Medical Research Center (KAIMRC), Eastern Region, Al Ahsa 31982, Saudi Arabia; (A.A.O.); (S.A.S.M.); (F.A.H.); (J.I.); (A.A.Q.)
- Biomedical Research Department, King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Al Ahsa 36428, Saudi Arabia
- King Abdulaziz Hospital, Ministry of National Guard-Health Affairs (MNG-HA), Al Ahsa 36428, Saudi Arabia
| | - Ali Al Qarni
- King Abdullah International Medical Research Center (KAIMRC), Eastern Region, Al Ahsa 31982, Saudi Arabia; (A.A.O.); (S.A.S.M.); (F.A.H.); (J.I.); (A.A.Q.)
- Biomedical Research Department, King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Al Ahsa 36428, Saudi Arabia
- King Abdulaziz Hospital, Ministry of National Guard-Health Affairs (MNG-HA), Al Ahsa 36428, Saudi Arabia
| | - Naif Khalaf Al Harbi
- Vaccine Development Unit, Department of Infectious Disease Research, King Abdullah International Medical Research Center, Riyadh 11481, Saudi Arabia; (A.A.); (H.A.J.); (N.K.A.H.)
| | - Ahmed Bakillah
- King Abdullah International Medical Research Center (KAIMRC), Eastern Region, Al Ahsa 31982, Saudi Arabia; (A.A.O.); (S.A.S.M.); (F.A.H.); (J.I.); (A.A.Q.)
- Biomedical Research Department, King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Al Ahsa 36428, Saudi Arabia
- King Abdulaziz Hospital, Ministry of National Guard-Health Affairs (MNG-HA), Al Ahsa 36428, Saudi Arabia
| |
Collapse
|
4
|
Zeng T, Tang X, Bai X, Xiong H. FGF19 Promotes the Proliferation and Insulin Secretion from Human Pancreatic β Cells Via the IRS1/GLUT4 Pathway. Exp Clin Endocrinol Diabetes 2024; 132:152-161. [PMID: 38513652 DOI: 10.1055/a-2250-7830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) is a commonly observed complication associated with obesity. The effect of fibroblast growth factor 19 (FGF19), a promising therapeutic agent for metabolic disorders, on pancreatic β cells in obesity-associated T2DM remains poorly understood. METHODS Human pancreatic β cells were cultured with high glucose (HG) and palmitic acid (PA), followed by treatment with FGF19. The cell proliferation, apoptosis, and insulin secretion were evaluated by CCK-8, qRT-PCR, ELISA, flow cytometry, and western blotting. The expression of the insulin receptor substrate (IRS)/glucose transporter (GLUT) pathway was evaluated. The interaction between FGF19 and IRS1 was predicted using the STRING database and verified by co-immunoprecipitation and immunofluorescence. The regulatory effects of the IRS1/GLUT4 pathway on human pancreatic β cells were assessed by overexpressing IRS1 and silencing IRS1 and GLUT4. RESULTS HG+PA treatment reduced the human pancreatic β cell proliferation and insulin secretion and promoted cell apoptosis. However, FGF19 treatment restored these alterations and significantly increased the expressions of IRS1, GLUT1, and GLUT4 in the IRS/GLUT pathway. Furthermore, FGF19 and IRS1 were found to interact. IRS1 overexpression partially promoted the proliferation of pancreatic β cells and insulin secretion through GLUT4. Additionally, the silencing of IRS1 or GLUT4 attenuated the therapeutic effects of FGF19. CONCLUSION In conclusion, FGF19 partly promoted the proliferation and insulin secretion of human pancreatic β cells and inhibited apoptosis by upregulating the IRS1/GLUT4 pathway. These findings establish a theoretical framework for the clinical utilization of FGF19 in the treatment of obesity-associated T2DM.
Collapse
Affiliation(s)
- Ting Zeng
- Department of Endocrinology, Longhua District People's Hospital of Shenzhen, Shenzhen, China
| | - Xi Tang
- Department of Cardiology, Longhua District People's Hospital of Shenzhen, Shenzhen, China
| | - Xiaosu Bai
- Department of Endocrinology, Longhua District People's Hospital of Shenzhen, Shenzhen, China
| | - Haiyan Xiong
- Department of Nursing, Longhua District People's Hospital of Shenzhen, Shenzhen, China
| |
Collapse
|
5
|
Wang J, Wang X, Zhang M, Lang Y, Chen B, Ye Y, Bai Y, Ding S. The activation of spliced X-box binding protein 1 by isorhynchophylline therapy improves diabetic encephalopathy. Cell Biol Toxicol 2023; 39:2587-2613. [PMID: 36695953 DOI: 10.1007/s10565-022-09789-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 12/20/2022] [Indexed: 01/26/2023]
Abstract
The primary symptom of diabetic encephalopathy (DE), a kind of central diabetic neuropathy caused by diabetes mellitus (DM), is cognitive impairment. In addition, the tetracyclic oxindole alkaloid isorhynchophylline (IRN) helps lessen cognitive impairment. However, it is still unclear how IRN affects DM and DE and what mechanisms are involved. The effectiveness of IRN on brain insulin resistance was carefully examined in this work, both in vitro and in vivo. We found that IRN accelerates spliced form of X-box binding protein 1 (sXBP1) translocation into the nucleus under high glucose conditions in vitro. IRN also facilitates the nuclear association of pCREB with sXBP1 and the binding of regulatory subunits of phosphatidylinositol 3-kinase (PI3K) p85α or p85β with XBP1 to restore high glucose impairment. Also, IRN treatment improves high glucose-mediated impairment of insulin signaling, endoplasmic reticulum stress, and pyroptosis/apoptosis by depending on sXBP1 in vitro. In vivo studies suggested that IRN attenuates cognitive impairment, ameliorating peripheral insulin resistance, activating insulin signaling, inactivating activating transcription factor 6 (ATF6) and C/EBP homology protein (CHOP), and mitigating pyroptosis/apoptosis by stimulation of sXBP1 nuclear translocation in the brain. In summary, these data indicate that IRN contributes to maintaining insulin homeostasis by activating sXBP1 in the brain. Thus, IRN is a potent antidiabetic agent as well as an sXBP1 activator that has promising potential for the prevention or treatment of DE.
Collapse
Affiliation(s)
- Jian Wang
- Department of Laboratory Animal Science, Fudan University, Shanghai, 200032, China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
- Huangshi Love & Health Hospital, Hubei Polytechnic University, Huangshi, 435000, China
| | - Xuebao Wang
- Department of Laboratory Animal Science, Fudan University, Shanghai, 200032, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Minxue Zhang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Yan Lang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Baihui Chen
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Yiru Ye
- School of Information and Engineering, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Yongheng Bai
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Saidan Ding
- Department of Laboratory Animal Science, Fudan University, Shanghai, 200032, China.
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| |
Collapse
|
6
|
Doğanyiğit Z, Okan A, Taheri S, Yılmaz Z, Akyüz E, Demir N. Evaluation of linagliptin and insulin combined therapy on unfolded protein response in type 1 diabetic mouse heart. Chem Biol Drug Des 2023; 102:1085-1096. [PMID: 37532256 DOI: 10.1111/cbdd.14308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/07/2023] [Accepted: 07/17/2023] [Indexed: 08/04/2023]
Abstract
The aim of this study is to reveal the effects of the use of linagliptin, a DPP-4 inhibitor due to its beneficial cardiovascular effects, on endoplasmic reticulum stress (ERS) signaling, which is involved in the pathogenesis of cardiovascular complications related to type 1 diabetes. BALB/c female mice (n = 72) were divided into six groups: control, diabetes+insulin, diabetes+linagliptin, diabetes+linagliptin+insulin, diabetes+TUDCA, and diabetes+TUDCA+insulin. Immunohistochemistry and western blot method, qRT-PCR, ELISA method, and malondialdehyde (MDA) measurements were performed. Linagliptin administered to the type 1 diabetic mouse heart significantly reduced the expression levels of the total and cleaved forms of ATF6, ATF4, and p-JNK, caspase 3. Immunohistochemical and western blot analyses revealed that cleaved caspase 3 protein expression was significantly increased in the diabetes+insulin group compared to the other groups. According to ELISA findings, TUDCA was more effective in reducing NOX 1 and MDA levels than linagliptin. While linagliptin decreased the Chop mRNA level, no change was observed in the Grp78 mRNA level. Our findings showed that there was not much difference between the administration of linagliptin alone or in combination with insulin. Our study reveals that linagliptin is an effective therapeutic agent on ERS and apoptotic UPR in type 1 diabetic hearts.
Collapse
Affiliation(s)
- Züleyha Doğanyiğit
- Faculty of Medicine, Department of Histology and Embryology, Yozgat Bozok University, Yozgat, Turkey
| | - Aslı Okan
- Faculty of Medicine, Department of Histology and Embryology, Yozgat Bozok University, Yozgat, Turkey
| | - Serpil Taheri
- Faculty of Medicine, Department of Medical Biology, Erciyes University, Kayseri, Turkey
| | - Zeynep Yılmaz
- Faculty of Medicine, Department of Medical Biology, Erciyes University, Kayseri, Turkey
| | - Enes Akyüz
- Faculty of International Medicine, Department of Biophysics, University of Health Sciences, Istanbul, Turkey
| | - Necdet Demir
- Faculty of Medicine, Department of Histology and Embryology, Akdeniz University, Antalya, Turkey
| |
Collapse
|
7
|
Lee K, Chan JY, Liang C, Ip CK, Shi YC, Herzog H, Hughes WE, Bensellam M, Delghingaro-Augusto V, Koina ME, Nolan CJ, Laybutt DR. XBP1 maintains beta cell identity, represses beta-to-alpha cell transdifferentiation and protects against diabetic beta cell failure during metabolic stress in mice. Diabetologia 2022; 65:984-996. [PMID: 35316840 PMCID: PMC9076738 DOI: 10.1007/s00125-022-05669-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 12/13/2021] [Indexed: 01/01/2023]
Abstract
AIMS/HYPOTHESIS Pancreatic beta cell dedifferentiation, transdifferentiation into other islet cells and apoptosis have been implicated in beta cell failure in type 2 diabetes, although the mechanisms are poorly defined. The endoplasmic reticulum stress response factor X-box binding protein 1 (XBP1) is a major regulator of the unfolded protein response. XBP1 expression is reduced in islets of people with type 2 diabetes, but its role in adult differentiated beta cells is unclear. Here, we assessed the effects of Xbp1 deletion in adult beta cells and tested whether XBP1-mediated unfolded protein response makes a necessary contribution to beta cell compensation in insulin resistance states. METHODS Mice with inducible beta cell-specific Xbp1 deletion were studied under normal (chow diet) or metabolic stress (high-fat diet or obesity) conditions. Glucose tolerance, insulin secretion, islet gene expression, alpha cell mass, beta cell mass and apoptosis were assessed. Lineage tracing was used to determine beta cell fate. RESULTS Deletion of Xbp1 in adult mouse beta cells led to beta cell dedifferentiation, beta-to-alpha cell transdifferentiation and increased alpha cell mass. Cell lineage-specific analyses revealed that Xbp1 deletion deactivated beta cell identity genes (insulin, Pdx1, Nkx6.1, Beta2, Foxo1) and derepressed beta cell dedifferentiation (Aldh1a3) and alpha cell (glucagon, Arx, Irx2) genes. Xbp1 deletion in beta cells of obese ob/ob or high-fat diet-fed mice triggered diabetes and worsened glucose intolerance by disrupting insulin secretory capacity. Furthermore, Xbp1 deletion increased beta cell apoptosis under metabolic stress conditions by attenuating the antioxidant response. CONCLUSIONS/INTERPRETATION These findings indicate that XBP1 maintains beta cell identity, represses beta-to-alpha cell transdifferentiation and is required for beta cell compensation and prevention of diabetes in insulin resistance states.
Collapse
Affiliation(s)
- Kailun Lee
- Garvan Institute of Medical Research, St Vincent's Clinical School, UNSW Sydney, Darlinghurst, NSW, Australia
| | - Jeng Yie Chan
- Garvan Institute of Medical Research, St Vincent's Clinical School, UNSW Sydney, Darlinghurst, NSW, Australia
| | - Cassandra Liang
- Garvan Institute of Medical Research, St Vincent's Clinical School, UNSW Sydney, Darlinghurst, NSW, Australia
| | - Chi Kin Ip
- Garvan Institute of Medical Research, St Vincent's Clinical School, UNSW Sydney, Darlinghurst, NSW, Australia
| | - Yan-Chuan Shi
- Garvan Institute of Medical Research, St Vincent's Clinical School, UNSW Sydney, Darlinghurst, NSW, Australia
| | - Herbert Herzog
- Garvan Institute of Medical Research, St Vincent's Clinical School, UNSW Sydney, Darlinghurst, NSW, Australia
| | - William E Hughes
- Garvan Institute of Medical Research, St Vincent's Clinical School, UNSW Sydney, Darlinghurst, NSW, Australia
| | - Mohammed Bensellam
- Garvan Institute of Medical Research, St Vincent's Clinical School, UNSW Sydney, Darlinghurst, NSW, Australia
- Secteur des sciences de la santé, Institut de recherche expérimentale et clinique, Pôle d'endocrinologie, diabète et nutrition, Université catholique de Louvain, Brussels, Belgium
| | - Viviane Delghingaro-Augusto
- Medical School and John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Mark E Koina
- ACT Pathology, Canberra Health Services, Garran, ACT, Australia
| | - Christopher J Nolan
- Medical School and John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
- Department of Endocrinology, The Canberra Hospital, Garran, ACT, Australia
| | - D Ross Laybutt
- Garvan Institute of Medical Research, St Vincent's Clinical School, UNSW Sydney, Darlinghurst, NSW, Australia.
| |
Collapse
|
8
|
Takatani T, Shirakawa J, Shibue K, Gupta MK, Kim H, Lu S, Hu J, White MF, Kennedy RT, Kulkarni RN. Insulin receptor substrate 1, but not IRS2, plays a dominant role in regulating pancreatic alpha cell function in mice. J Biol Chem 2021; 296:100646. [PMID: 33839150 PMCID: PMC8131928 DOI: 10.1016/j.jbc.2021.100646] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/24/2021] [Accepted: 04/07/2021] [Indexed: 11/29/2022] Open
Abstract
Dysregulated glucagon secretion deteriorates glycemic control in type 1 and type 2 diabetes. Although insulin is known to regulate glucagon secretion via its cognate receptor (insulin receptor, INSR) in pancreatic alpha cells, the role of downstream proteins and signaling pathways underlying insulin's activities are not fully defined. Using in vivo (knockout) and in vitro (knockdown) studies targeting insulin receptor substrate (IRS) proteins, we compared the relative roles of IRS1 and IRS2 in regulating alpha cell function. Alpha cell-specific IRS1-knockout mice exhibited glucose intolerance and inappropriate glucagon suppression during glucose tolerance tests. In contrast, alpha cell-specific IRS2-knockout animals manifested normal glucose tolerance and suppression of glucagon secretion after glucose administration. Alpha cell lines with stable IRS1 knockdown could not repress glucagon mRNA expression and exhibited a reduction in phosphorylation of AKT Ser/Thr kinase (AKT, at Ser-473 and Thr-308). AlphaIRS1KD cells also displayed suppressed global protein translation, including reduced glucagon expression, impaired cytoplasmic Ca2+ response, and mitochondrial dysfunction. This was supported by the identification of novel IRS1-specific downstream target genes, Trpc3 and Cartpt, that are associated with glucagon regulation in alpha cells. These results provide evidence that IRS1, rather than IRS2, is a dominant regulator of pancreatic alpha cell function.
Collapse
Affiliation(s)
- Tomozumi Takatani
- Islet Cell and Regenerative Biology, Joslin Diabetes Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA; Department of Pediatrics, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Jun Shirakawa
- Laboratory of Diabetes and Metabolic Disorders, Institute for Molecular and Cellular Regulation (IMCR), Gunma University, Gunma, Japan
| | - Kimitaka Shibue
- Islet Cell and Regenerative Biology, Joslin Diabetes Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Manoj K Gupta
- Islet Cell and Regenerative Biology, Joslin Diabetes Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA; Cell Therapy Translational Engine (CTTE), Takeda Pharmaceuticals, Cambridge, Massachusetts, USA
| | - Hyunki Kim
- Islet Cell and Regenerative Biology, Joslin Diabetes Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Shusheng Lu
- Departments of Chemistry and Pharmacology, University of Michigan, Ann Arbor, Michigan, USA
| | - Jiang Hu
- Islet Cell and Regenerative Biology, Joslin Diabetes Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Morris F White
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Robert T Kennedy
- Departments of Chemistry and Pharmacology, University of Michigan, Ann Arbor, Michigan, USA
| | - Rohit N Kulkarni
- Islet Cell and Regenerative Biology, Joslin Diabetes Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA; Harvard Stem Cell Institute, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
9
|
Zhang R, Shi J, Wang T, Qiu X, Liu R, Li Y, Gao Q, Wang N. Apigetrin ameliorates streptozotocin-induced pancreatic β-cell damages via attenuating endoplasmic reticulum stress. In Vitro Cell Dev Biol Anim 2020; 56:622-634. [PMID: 32901429 DOI: 10.1007/s11626-020-00478-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 06/29/2020] [Indexed: 02/06/2023]
Abstract
The pathogenesis of diabetes is associated with dysfunction of pancreatic β-cells. To ameliorate the β-cell dysfunction, it has propelled great interest to search pharmacological agents from natural plants. This study explored the protective effect of apigetrin, a flavonoid present in natural plants, against streptozotocin (STZ)-induced cell damages in RINm5F cells and the potential mechanisms. Apigetrin was found to inhibit the elevation of intracellular reactive oxygen species levels, restore the impairment of antioxidant enzymes, and recover the disruption of redox homeostasis in the STZ-treated pancreatic β-cells. Moreover, treatment of apigetrin significantly suppressed the STZ-induced apoptosis in the analysis of apoptotic sub-G1 population and the protein expressions of cleaved poly(ADP-ribose) polymerase and caspase-3. Furthermore, apigetrin attenuated STZ-induced endoplasmic reticulum (ER) stress, indicated by the reduction of ER stress biomarkers, including overloading of mitochondrial calcium, increase in glucose-regulated protein 78, phosphorylation of protein kinase RNA-like ER kinase and its downstream eukaryotic initiation factor 2α, cleavage of activating transcription factor 6 and caspase-12, up-regulation of CCAAT/enhancer binding protein homologous protein, and induction of spliced X-box binding protein 1. Additionally, pretreatment with 4-phenylbutyric acid, a classic ER stress inhibitor, augmented these beneficial effects of apigetrin. In conclusion, these results demonstrated that apigetrin could improve the STZ-induced pancreatic β-cell damages via mitigation of oxidative stress and ER stress and supported the application of apigetrin to developing the novel therapeutics of diabetes.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Biochemistry, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China.
| | - Jie Shi
- Department of Biochemistry, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Tingting Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Xiaonan Qiu
- Department of Biochemistry, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Ruixia Liu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Yitian Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Qing Gao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Ning Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| |
Collapse
|
10
|
Abstract
Insulin secretion by the pancreatic β-cells is elicited in response to elevated extracellular glucose concentration. In addition to triggering insulin secretion, glucose-induced signal regulates β-cell proliferation and survival. However, the molecular mechanism underlying the effects of glucose on the β-cell functionality still remains unclear. Glucokinase, a hexokinase isozyme that catalyzes the phosphorylation of glucose, acts as the glucose sensor in the β-cells. To investigate the mechanisms of glucose signaling in the regulation of β-cell functions, we analyzed the role of glucokinase in insulin secretion, β-cell proliferation and β-cell apoptosis, using β-cell-specific glucokinase-haploinsufficient (Gck+/-) mice and allosteric glucokinase activators (GKAs). Glucokinase-mediated glucose metabolism (1) suppresses endoplasmic reticulum (ER) stress-induced β-cell apoptosis via inducing insulin receptor substrate-2 (IRS-2) expression and expression of ER stress-related molecules, (2) promotes adaptive β-cell proliferation through activation of the Forkhead Box M1 (FoxM1)/polo-like kinase-1 (PLK1)/centromere protein-A (CENP-A) pathway, (3) induces islet inflammation by promoting interaction of islet-derived S100 calcium-binding protein A8 (S100A8) with macrophages, (4) induces the expression of Fibulin-5 (Fbln5), an extracellular matrix protein to regulate β-cell functions, and (5) activates other unknown pathways. Glucagon-like peptide-1 (GLP-1) receptor agonists and dipeptidyl peptidase 4 (DPP-4) inhibitors have been found to possibly compensate for dysregulation of glucose metabolism in the β-cells. This review provides an update and overview of the recent advances in the study of β-cell pathophysiology and some therapeutic possibilities focusing on glucose-/glucokinase-mediated signaling.
Collapse
Affiliation(s)
- Jun Shirakawa
- Department of Endocrinology and Metabolism, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yasuo Terauchi
- Department of Endocrinology and Metabolism, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| |
Collapse
|
11
|
Liu DC, Eagleman DE, Tsai NP. Novel roles of ER stress in repressing neural activity and seizures through Mdm2- and p53-dependent protein translation. PLoS Genet 2019; 15:e1008364. [PMID: 31557161 PMCID: PMC6762060 DOI: 10.1371/journal.pgen.1008364] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 08/08/2019] [Indexed: 12/30/2022] Open
Abstract
Seizures can induce endoplasmic reticulum (ER) stress, and sustained ER stress contributes to neuronal death after epileptic seizures. Despite the recent debate on whether inhibiting ER stress can reduce neuronal death after seizures, whether and how ER stress impacts neural activity and seizures remain unclear. In this study, we discovered that the acute ER stress response functions to repress neural activity through a protein translation-dependent mechanism. We found that inducing ER stress promotes the expression and distribution of murine double minute-2 (Mdm2) in the nucleus, leading to ubiquitination and down-regulation of the tumor suppressor p53. Reduction of p53 subsequently maintains protein translation, before the onset of translational repression seen during the latter phase of the ER stress response. Disruption of Mdm2 in an Mdm2 conditional knockdown (cKD) mouse model impairs ER stress-induced p53 down-regulation, protein translation, and reduction of neural activity and seizure severity. Importantly, these defects in Mdm2 cKD mice were restored by both pharmacological and genetic inhibition of p53 to mimic the inactivation of p53 seen during ER stress. Altogether, our study uncovered a novel mechanism by which neurons respond to acute ER stress. Further, this mechanism plays a beneficial role in reducing neural activity and seizure severity. These findings caution against inhibition of ER stress as a neuroprotective strategy for seizures, epilepsies, and other pathological conditions associated with excessive neural activity. One-third of epilepsy patients respond poorly to current anti-epileptic drugs. Thus, there is an urgent need to characterize cellular behavior during seizures, and the corresponding molecular mechanisms in order to develop better therapies. Seizures are known to induce ER stress but how the ER stress response functions to modulate seizure activity is unknown. Our study provides evidence to demonstrate a novel and beneficial role for the ER stress response in reducing neural activity and seizure severity. Mechanistically, we found that these beneficial effects are mediated by elevated protein translation, which is triggered by the activation of Mdm2-p53 signaling, during the early ER stress response. Our findings suggest that therapeutic attempts to reduce ER stress in epilepsies may result in worsening seizure activity and therefore caution against inhibition of ER stress as a neuroprotective strategy for epilepsies.
Collapse
Affiliation(s)
- Dai-Chi Liu
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Daphne E. Eagleman
- Department of Molecular and Integrative Physiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Nien-Pei Tsai
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Department of Molecular and Integrative Physiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- * E-mail:
| |
Collapse
|
12
|
Ye R, Onodera T, Scherer PE. Lipotoxicity and β Cell Maintenance in Obesity and Type 2 Diabetes. J Endocr Soc 2019; 3:617-631. [PMID: 30834357 PMCID: PMC6391718 DOI: 10.1210/js.2018-00372] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 01/30/2019] [Indexed: 12/11/2022] Open
Abstract
Obesity and diabetes are often associated with lipotoxic conditions in multiple tissues. The insulin-producing β cells are susceptible to elevated lipid levels and the ensuing lipotoxicity. The preservation of β cell mass and function is one of the main goals of diabetes management under these metabolically stressful conditions. However, the adverse effects from the adaptive signaling pathways that β cells use to counteract lipotoxic stress have secondary negative effects in their own right. Antilipotoxic signaling cascades in β cells can contribute to their eventual failure. Such dual roles are seen for many other biological adaptive processes as well.
Collapse
Affiliation(s)
- Risheng Ye
- Department of Medical Education, Texas Tech University Health Sciences Center Paul L. Foster School of Medicine, El Paso, Texas
- Touchstone Diabetes Center, Department of Internal Medicine, the University of Texas Southwestern Medical Center, Dallas, Texas
| | - Toshiharu Onodera
- Touchstone Diabetes Center, Department of Internal Medicine, the University of Texas Southwestern Medical Center, Dallas, Texas
| | - Philipp E Scherer
- Touchstone Diabetes Center, Department of Internal Medicine, the University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
13
|
Mascolo MG, Perdichizzi S, Vaccari M, Rotondo F, Zanzi C, Grilli S, Paparella M, Jacobs MN, Colacci A. The transformics assay: first steps for the development of an integrated approach to investigate the malignant cell transformation in vitro. Carcinogenesis 2019; 39:955-967. [PMID: 29554273 PMCID: PMC6031005 DOI: 10.1093/carcin/bgy037] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 03/14/2018] [Indexed: 12/20/2022] Open
Abstract
The development of alternative methods to animal testing is a priority in the context of regulatory toxicology. Carcinogenesis is a field where the demand for alternative methods is particularly high. The standard rodent carcinogenicity bioassay requires a large use of animals, high costs, prolonged duration and shows several limitations, which can affect the comprehension of the human relevance of animal carcinogenesis. The cell transformation assay (CTA) has long been debated as a possible in vitro test to study carcinogenesis. This assay provides an easily detectable endpoint of oncotransformation, which can be used to anchor the exposure to the acquisition of the malignant phenotype. However, the current protocols do not provide information on either molecular key events supporting the carcinogenesis process, nor the mechanism of action of the test chemicals. In order to improve the use of this assay in the integrated testing strategy for carcinogenesis, we developed the transformics method, which combines the CTA and transcriptomics, to highlight the molecular steps leading to in vitro malignant transformation. We studied 3-methylcholanthrene (3-MCA), a genotoxic chemical able to induce in vitro cell transformation, at both transforming and subtransforming concentrations in BALB/c 3T3 cells and evaluated the gene modulation at critical steps of the experimental protocol. The results gave evidence for the potential key role of the immune system and the possible involvement of the aryl hydrocarbon receptor (AhR) pathway as the initial steps of the in vitro transformation process induced by 3-MCA, suggesting that the initiating events are related to non-genotoxic mechanisms.
Collapse
Affiliation(s)
- Maria Grazia Mascolo
- Center for Environmental Toxicology, Agency for Prevention, Environment and Energy, Emilia-Romagna, Viale Filopanti, Bologna, Italy
| | - Stefania Perdichizzi
- Center for Environmental Toxicology, Agency for Prevention, Environment and Energy, Emilia-Romagna, Viale Filopanti, Bologna, Italy
| | - Monica Vaccari
- Center for Environmental Toxicology, Agency for Prevention, Environment and Energy, Emilia-Romagna, Viale Filopanti, Bologna, Italy
| | - Francesca Rotondo
- Center for Environmental Toxicology, Agency for Prevention, Environment and Energy, Emilia-Romagna, Viale Filopanti, Bologna, Italy
| | - Cristina Zanzi
- Center for Environmental Toxicology, Agency for Prevention, Environment and Energy, Emilia-Romagna, Viale Filopanti, Bologna, Italy
| | - Sandro Grilli
- Department of Experimental, Diagnostic and Specialty Medicine, Section of Cancerology, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Martin Paparella
- Chemicals and Biocides, Environment Agency Austria, Vienna, Austria
| | - Miriam N Jacobs
- Department of Toxicology, Centre for Radiation, Chemical and Environmental Hazards Public Health England, Chilton, Oxfordshire, UK
| | - Annamaria Colacci
- Center for Environmental Toxicology, Agency for Prevention, Environment and Energy, Emilia-Romagna, Viale Filopanti, Bologna, Italy
| |
Collapse
|
14
|
The IRE1α-XBP1s pathway promotes insulin-stimulated glucose uptake in adipocytes by increasing PPARγ activity. Exp Mol Med 2018; 50:1-15. [PMID: 30111834 PMCID: PMC6093883 DOI: 10.1038/s12276-018-0131-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 04/09/2018] [Accepted: 04/20/2018] [Indexed: 01/06/2023] Open
Abstract
The peroxisome proliferator-activated receptor-γ (PPARγ) improves whole-body insulin sensitivity by regulating the adipogenic and metabolic functions of mature adipocytes. We have previously demonstrated that an active splice variant of X-box binding protein 1 (XBP1s) enhances PPARγ expression during adipogenesis. In this study, we investigated the role of XBP1s, particularly with respect to PPARγ, in the mechanisms underlying insulin sensitivity in mature adipocytes. Insulin was able to stimulate XBP1s generation by activating inositol-requiring enzyme 1 (IRE1) α and was also able to increase its transcriptional activity by inducing nuclear translocation. XBP1s also upregulated the levels of phosphorylated IRS1 and AKT, demonstrating a positive feedback regulatory mechanism linking insulin and XBP1s. XBP1s enhanced the expression of fibroblast growth factor 21 and, in turn, increased PPARγ activity, translocation of GLUT4 to the cell surface, and glucose uptake rate in adipocytes. In addition, XBP1s abolished palmitate-induced insulin resistance in adipocytes by increasing adiponectin secretion, repressing the secretion of pro-inflammatory adipokines such as leptin, monocyte chemoattractant protein 1, and tumor necrosis factor α, and decreasing fatty acid release. These findings provide a novel mechanism by which XBP1s stimulate insulin sensitivity in adipocytes through fibroblast growth factor 21 induction and PPARγ activation.
Collapse
|
15
|
Endoplasmic Reticulum Stress in Metabolic Disorders. Cells 2018; 7:cells7060063. [PMID: 29921793 PMCID: PMC6025008 DOI: 10.3390/cells7060063] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 06/12/2018] [Accepted: 06/14/2018] [Indexed: 02/06/2023] Open
Abstract
Metabolic disorders have become among the most serious threats to human health, leading to severe chronic diseases such as obesity, type 2 diabetes, and non-alcoholic fatty liver disease, as well as cardiovascular diseases. Interestingly, despite the fact that each of these diseases has different physiological and clinical symptoms, they appear to share certain pathological traits such as intracellular stress and inflammation induced by metabolic disturbance stemmed from over nutrition frequently aggravated by a modern, sedentary life style. These modern ways of living inundate cells and organs with saturating levels of sugar and fat, leading to glycotoxicity and lipotoxicity that induce intracellular stress signaling ranging from oxidative to ER stress response to cope with the metabolic insults (Mukherjee, et al., 2015). In this review, we discuss the roles played by cellular stress and its responses in shaping metabolic disorders. We have summarized here current mechanistic insights explaining the pathogenesis of these disorders. These are followed by a discussion of the latest therapies targeting the stress response pathways.
Collapse
|
16
|
Marasco MR, Linnemann AK. β-Cell Autophagy in Diabetes Pathogenesis. Endocrinology 2018; 159:2127-2141. [PMID: 29617763 PMCID: PMC5913620 DOI: 10.1210/en.2017-03273] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 03/27/2018] [Indexed: 12/25/2022]
Abstract
Nearly 100 years have passed since Frederick Banting and Charles Best first discovered and purified insulin. Their discovery and subsequent improvements revolutionized the treatment of diabetes, and the field continues to move at an ever-faster pace with respect to unique treatments for both type 1 and type 2 diabetes. Despite these advances, we still do not fully understand how apoptosis of the insulin-producing β-cells is triggered, presenting a challenge in the development of preventative measures. In recent years, the process of autophagy has generated substantial interest in this realm due to discoveries highlighting its clear role in the maintenance of cellular homeostasis. As a result, the number of studies focused on islet and β-cell autophagy has increased substantially in recent years. In this review, we will discuss what is currently known regarding the role of β-cell autophagy in type 1 and type 2 diabetes pathogenesis, with an emphasis on new and exciting developments over the past 5 years. Further, we will discuss how these discoveries might be translated into unique treatments in the coming years.
Collapse
Affiliation(s)
- Michelle R Marasco
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Amelia K Linnemann
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
17
|
Moslehi A, Farahabadi M, Chavoshzadeh SA, Barati A, Ababzadeh S, Mohammadbeigi A. The Effect of Amygdalin on Endoplasmic Reticulum (ER) Stress Induced Hepatic Steatosis in Mice. Malays J Med Sci 2018; 25:16-23. [PMID: 29599631 DOI: 10.21315/mjms2018.25.1.3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 11/18/2017] [Indexed: 12/22/2022] Open
Abstract
Background Endoplasmic reticulum (ER) stress creates abnormalities in the insulin action, inflammatory responses, lipoprotein B100 degradation, and hepatic lipogenesis. Hepatic steatosis leads to a broad spectrum of hepatic disorders such as nonalcoholic fatty liver disease (NAFLD) and NASH. Amygdalin has beneficial effects on asthma, bronchitis, diabetes, and atherosclerosis. We designed this study to evaluate the effect of amygdalin on the ER stress induced hepatic steatosis. Methods Inbred mice received saline, DMSO and amygdalin, as control groups. ER stress was induced by tunicamycin (TM) injection. Amygdalin was administered 1 h before the TM challenge (Amy + TM group). Mice body and liver weights were measured. Hematoxylin and eosin (H&E) and oil red O staining from liver tissue, were performed. Alanin aminotransferase (ALT), aspartate aminotransferase (AST), triglyceride and cholesterol levels were measured. Results Histological evaluation revealed that amygdalin was unable to decrease the TM induced liver steatosis; however, ALT and AST levels decreased [ALT: 35.33(2.15) U/L versus 92.33(6.66) U/L; (57.000, (50.63, 63.36), P < 0.001) and AST: 93(5.09) U/L versus 345(97.3) U/L, (252, (163.37, 340.62), P < 0.001)]. Amygdalin also decreased triglyceride and cholesterol plasma levels in the Amy + TM group [TG: 42.66(2.15) versus 53.33(7.24) mg/dL; (10.67, (3.80, 17.54), P = 0.006) and TC: 9.33(3.55) versus 112.66(4.31) mg/dL, (103.33, (98.25, 108.40) P < 0.001)]. Conclusion Amygdalin improved the ALT, AST, and lipid serum levels after the TM challenge; however, it could not attenuate hepatic steatosis.
Collapse
Affiliation(s)
- Azam Moslehi
- Cellular& Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
| | - Mohsen Farahabadi
- BSC of Operating Room, Qom University of Medical Sciences, Qom, Iran
| | | | - Akram Barati
- BSC of Nursing, Qom University of Medical Sciences, Qom, Iran
| | - Shima Ababzadeh
- Cellular& Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
| | - Abolfazl Mohammadbeigi
- Research Center for Environmental Pollutants, Qom University of Medical Sciences, Qom, Iran
| |
Collapse
|
18
|
Gupta D, Jetton TL, LaRock K, Monga N, Satish B, Lausier J, Peshavaria M, Leahy JL. Temporal characterization of β cell-adaptive and -maladaptive mechanisms during chronic high-fat feeding in C57BL/6NTac mice. J Biol Chem 2017; 292:12449-12459. [PMID: 28487366 DOI: 10.1074/jbc.m117.781047] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 04/29/2017] [Indexed: 12/18/2022] Open
Abstract
The onset of type 2 diabetes is characterized by transition from successful to failed insulin secretory compensation to obesity-related insulin resistance and dysmetabolism. Energy-rich diets in rodents are commonly studied models of compensatory increases in both insulin secretion and β cell mass. However, the mechanisms of these adaptive responses are incompletely understood, and it is also unclear why these responses eventually fail. We measured the temporal trends of glucose homeostasis, insulin secretion, β cell morphometry, and islet gene expression in C57BL/6NTac mice fed a 60% high-fat diet (HFD) or control diet for up to 16 weeks. A 2-fold increased hyperinsulinemia was maintained for the first 4 weeks of HFD feeding and then further increased through 16 weeks. β cell mass increased progressively starting at 4 weeks, principally through nonproliferative growth. Insulin sensitivity was not significantly perturbed until 11 weeks of HFD feeding. Over the first 8 weeks, we observed two distinct waves of increased expression of β cell functional and prodifferentiation genes. This was followed by activation of the unfolded protein response at 8 weeks and overt β cell endoplasmic reticulum stress at 12-16 weeks. In summary, β cell adaptation to an HFD in C57BL/6NTac mice entails early insulin hypersecretion and a robust growth phase along with hyperexpression of related genes that begin well before the onset of observed insulin resistance. However, continued HFD exposure results in cessation of gene hyperexpression, β cell functional failure, and endoplasmic reticulum stress. These data point to a complex but not sustainable integration of β cell-adaptive responses to nutrient overabundance, obesity development, and insulin resistance.
Collapse
Affiliation(s)
- Dhananjay Gupta
- Division of Endocrinology, Diabetes, and Metabolism, University of Vermont, Burlington, Vermont 05446
| | - Thomas L Jetton
- Division of Endocrinology, Diabetes, and Metabolism, University of Vermont, Burlington, Vermont 05446
| | - Kyla LaRock
- Division of Endocrinology, Diabetes, and Metabolism, University of Vermont, Burlington, Vermont 05446
| | - Navjot Monga
- Division of Endocrinology, Diabetes, and Metabolism, University of Vermont, Burlington, Vermont 05446
| | - Basanthi Satish
- Division of Endocrinology, Diabetes, and Metabolism, University of Vermont, Burlington, Vermont 05446
| | - James Lausier
- Division of Endocrinology, Diabetes, and Metabolism, University of Vermont, Burlington, Vermont 05446
| | - Mina Peshavaria
- Division of Endocrinology, Diabetes, and Metabolism, University of Vermont, Burlington, Vermont 05446
| | - Jack L Leahy
- Division of Endocrinology, Diabetes, and Metabolism, University of Vermont, Burlington, Vermont 05446.
| |
Collapse
|
19
|
Fan Y, Xiao W, Lee K, Salem F, Wen J, He L, Zhang J, Fei Y, Cheng D, Bao H, Liu Y, Lin F, Jiang G, Guo Z, Wang N, He JC. Inhibition of Reticulon-1A-Mediated Endoplasmic Reticulum Stress in Early AKI Attenuates Renal Fibrosis Development. J Am Soc Nephrol 2017; 28:2007-2021. [PMID: 28137829 DOI: 10.1681/asn.2016091001] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Accepted: 12/14/2016] [Indexed: 12/12/2022] Open
Abstract
Several animal studies have shown an important role for endoplasmic reticulum (ER) stress in AKI, whereas human studies are lacking. We recently reported that Reticulon-1A (RTN1A) is a key mediator of ER stress and kidney cell injury. Here, we investigated whether modulation of RTN1A expression during AKI contributes to the progression to CKD. In a retrospective study of 51 patients with AKI, increased expression of RTN1A and other ER stress markers were associated with the severity of kidney injury and with progression to CKD. In an inducible tubular cell-specific RTN1A-knockdown mouse model subjected to folic acid nephropathy (FAN) or aristolochic acid nephropathy, reduction of RTN1A expression during the initial stage of AKI attenuated ER stress and kidney cell injury in early stages and renal fibrosis development in later stages. Treatment of wild-type mice with tauroursodeoxycholic acid, an inhibitor of ER stress, after the induction of kidney injury with FA facilitated renoprotection similar to that observed in RTN1A-knockdown mice. Conversely, in transgenic mice with inducible tubular cell-specific overexpression of RTN1A subjected to FAN, induction of RTN1A overexpression aggravated ER stress and renal injury at the early stage and renal fibrosis at the late stage of FAN. Together, our human and mouse data suggest that the RTN1A-mediated ER stress response may be an important determinant in the severity of AKI and maladaptive repair that may promote progression to CKD.
Collapse
Affiliation(s)
- Ying Fan
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Department of Medicine, Division of Nephrology, and
| | - Wenzhen Xiao
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Department of Medicine, Division of Nephrology, and
| | - Kyung Lee
- Department of Medicine, Division of Nephrology, and
| | - Fadi Salem
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Jiejun Wen
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Li He
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jing Zhang
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yang Fei
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Dongsheng Cheng
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Hongda Bao
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yumei Liu
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Fujun Lin
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Xinhua Hospital, Shanghai, China
| | - Gengru Jiang
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Xinhua Hospital, Shanghai, China
| | - Zhiyong Guo
- Department of Nephrology, Second Military Medical University Affiliated Changhai Hospital, Shanghai, China; and
| | - Niansong Wang
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China;
| | - John Cijiang He
- Department of Medicine, Division of Nephrology, and .,Renal Section, James J Peters VA Medical Center, Bronx, New York
| |
Collapse
|