1
|
Yi J, Yeou S, Lee NK. DNA Bending Force Facilitates Z-DNA Formation under Physiological Salt Conditions. J Am Chem Soc 2022; 144:13137-13145. [PMID: 35839423 PMCID: PMC9335521 DOI: 10.1021/jacs.2c02466] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Z-DNA, a noncanonical helical structure of double-stranded DNA (dsDNA), plays pivotal roles in various biological processes, including transcription regulation. Mechanical stresses on dsDNA, such as twisting and stretching, help to form Z-DNA. However, the effect of DNA bending, one of the most common dsDNA deformations, on Z-DNA formation is utterly unknown. Here, we show that DNA bending induces the formation of Z-DNA, that is, more Z-DNA is formed as the bending force becomes stronger. We regulated the bending force on dsDNA by using D-shaped DNA nanostructures. The B-Z transition was observed by single-molecule fluorescence resonance energy transfer. We found that as the bending force became stronger, Z-DNA was formed at lower Mg2+ concentrations. When dsDNA contained cytosine methylations, the B-Z transition occurred at 78 mM Mg2+ (midpoint) in the absence of the bending force. However, the B-Z transition occurred at a 28-fold lower Mg2+ concentration (2.8 mM) in the presence of the bending force. Monte Carlo simulation suggested that the B-Z transition stabilizes the bent form via the formation of the B-Z junction with base extrusion, which effectively releases the bending stress on DNA. Our results clearly show that the bending force facilitates the B-Z transition under physiological salt conditions.
Collapse
Affiliation(s)
- Jaehun Yi
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Sanghun Yeou
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Nam Ki Lee
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
2
|
Yeou S, Hwang J, Yi J, Kim C, Kim SK, Lee NK. Cytosine methylation regulates DNA bendability depending on the curvature. Chem Sci 2022; 13:7516-7525. [PMID: 35872822 PMCID: PMC9242020 DOI: 10.1039/d1sc07115g] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 06/01/2022] [Indexed: 11/21/2022] Open
Abstract
Cytosine methylation plays an essential role in many biological processes, such as nucleosome inactivation and regulation of gene expression. The modulation of DNA mechanics may be one of the regulatory mechanisms influenced by cytosine methylation. However, it remains unclear how methylation influences DNA mechanics. Here, we show that methylation has contrasting effects on the bending property of dsDNA depending on DNA curvature. We directly applied bending force on 30 base pairs of dsDNA using a D-shaped DNA nanostructure and measured the degree of bending using single-molecule fluorescence resonance energy transfer without surface immobilization. When dsDNA is weakly bent, methylation increases the stiffness of dsDNA. The stiffness of dsDNA increased by approximately 8% with a single methylation site for 30 bp dsDNA. When dsDNA is highly bent by a strong force, it forms a kink, i.e., a sharp bending of dsDNA. Under strong bending, methylation destabilizes the non-kink form compared with the kink form, which makes dsDNA near the kink region apparently more bendable. However, if the kink region is methylated, the kink form is destabilized, and dsDNA becomes stiffer. As a result, methylation increases the stiffness of weakly bent dsDNA and concurrently can promote kink formation, which may stabilize the nucleosome structure. Our results provide new insight into the effect of methylation, showing that cytosine methylation has opposite effects on DNA mechanics depending on its curvature and methylation location.
Collapse
Affiliation(s)
- Sanghun Yeou
- Department of Chemistry, Seoul National University 08832 Seoul Republic of Korea
| | - Jihee Hwang
- Department of Chemistry, Seoul National University 08832 Seoul Republic of Korea
| | - Jaehun Yi
- Department of Chemistry, Seoul National University 08832 Seoul Republic of Korea
| | - Cheolhee Kim
- National Science Museum Daejeon 34143 Republic of Korea
| | - Seong Keun Kim
- Department of Chemistry, Seoul National University 08832 Seoul Republic of Korea
| | - Nam Ki Lee
- Department of Chemistry, Seoul National University 08832 Seoul Republic of Korea
| |
Collapse
|
3
|
Yeou S, Lee NK. Single-Molecule Methods for Investigating the Double-Stranded DNA Bendability. Mol Cells 2022; 45:33-40. [PMID: 34470919 PMCID: PMC8819492 DOI: 10.14348/molcells.2021.0182] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 11/27/2022] Open
Abstract
The various DNA-protein interactions associated with the expression of genetic information involve double-stranded DNA (dsDNA) bending. Due to the importance of the formation of the dsDNA bending structure, dsDNA bending properties have long been investigated in the biophysics field. Conventionally, DNA bendability is characterized by innate averaging data from bulk experiments. The advent of single-molecule methods, such as atomic force microscopy, optical and magnetic tweezers, tethered particle motion, and single-molecule fluorescence resonance energy transfer measurement, has provided valuable tools to investigate not only the static structures but also the dynamic properties of bent dsDNA. Here, we reviewed the single-molecule methods that have been used for investigating dsDNA bendability and new findings related to dsDNA bending. Single-molecule approaches are promising tools for revealing the unknown properties of dsDNA related to its bending, particularly in cells.
Collapse
Affiliation(s)
- Sanghun Yeou
- Department of Physics, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Nam Ki Lee
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
4
|
Yeou S, Lee NK. Contribution of a
DNA
Nick to
DNA
Bendability Depending on the Bending Force. B KOREAN CHEM SOC 2021. [DOI: 10.1002/bkcs.12351] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Sanghun Yeou
- Department of Physics Pohang University of Science and Technology 77 Cheongam‐Ro, Nam‐Gu, Pohang Gyeongbuk 37673 Korea
| | - Nam Ki Lee
- Department of Chemistry Seoul National University Gwanak‐ro 1, Gwanak‐gu, Seoul 08826 Korea
| |
Collapse
|
5
|
Park G, Cho MK, Jung Y. Sequence-Dependent Kink Formation in Short DNA Loops: Theory and Molecular Dynamics Simulations. J Chem Theory Comput 2021; 17:1308-1317. [PMID: 33570937 DOI: 10.1021/acs.jctc.0c01116] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Kink formation is essential in highly bent DNA complexed with gene regulatory proteins such as histones to release the bending stress stored within the DNA duplex. Local opening of the double-stranded DNA creates a sharp turn along the specific sequence, which leads to the global bending of the DNA strand. Despite the critical role of kink formation, it is still challenging to predict the position of kink formation for a given DNA sequence. In this study, we propose a theoretical model and perform molecular dynamics simulations to quantify the sequence-dependent kink probability of a strongly bent DNA. By incorporating the elastic bending energy and the sequence-specific thermodynamic parameters, we investigate the importance of the DNA sequence on kink formation. We find that the sequence with TA dinucleotide repeats flanked by GC steps increases the kink propensity by more than an order of magnitude under the same bending stress. The number of base pairs involved in the local opening is found to be coupled with the sequence-specific bubble formation free energy. Our study elucidates the molecular origin of the sequence heterogeneity on kink formation, which is fundamental to understanding protein-DNA recognition.
Collapse
Affiliation(s)
- Gyehyun Park
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Myung Keun Cho
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - YounJoon Jung
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
6
|
Drozdetski AV, Mukhopadhyay A, Onufriev AV. Strongly Bent Double-Stranded DNA: Reconciling Theory and Experiment. FRONTIERS IN PHYSICS 2019; 7:195. [PMID: 32601596 PMCID: PMC7323118 DOI: 10.3389/fphy.2019.00195] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The strong bending of polymers is poorly understood. We propose a general quantitative framework of polymer bending that includes both the weak and strong bending regimes on the same footing, based on a single general physical principle. As the bending deformation increases beyond a certain (polymer-specific) point, the change in the convexity properties of the effective bending energy of the polymer makes the harmonic deformation energetically unfavorable: in this strong bending regime the energy of the polymer varies linearly with the average bending angle as the system follows the convex hull of the deformation energy function. For double-stranded DNA, the effective bending deformation energy becomes non-convex for bends greater than ~ 2° per base-pair, equivalent to the curvature of a closed circular loop of ~ 160 base pairs. A simple equation is derived for the polymer loop energy that covers both the weak and strong bending regimes. The theory shows quantitative agreement with recent DNA cyclization experiments on short DNA fragments, while maintaining the expected agreement with experiment in the weak bending regime. Counter-intuitively, cyclization probability (j-factor) of very short DNA loops is predicted to increase with decreasing loop length; the j-factor reaches its minimum for loops of ≃ 45 base pairs. Atomistic simulations reveal that the attractive component of the short-range Lennard-Jones interaction between the backbone atoms can explain the underlying non-convexity of the DNA effective bending energy, leading to the linear bending regime. Applicability of the theory to protein-DNA complexes, including the nucleosome, is discussed.
Collapse
Affiliation(s)
| | | | - Alexey V. Onufriev
- Department of Physics, Virginia Tech, Blacksburg, VA, United States
- Department of Computer Science, Virginia Tech, Blacksburg, VA, United States
- Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
7
|
Harrison RM, Romano F, Ouldridge TE, Louis AA, Doye JPK. Identifying Physical Causes of Apparent Enhanced Cyclization of Short DNA Molecules with a Coarse-Grained Model. J Chem Theory Comput 2019; 15:4660-4672. [PMID: 31282669 PMCID: PMC6694408 DOI: 10.1021/acs.jctc.9b00112] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
![]()
DNA
cyclization is a powerful technique to gain insight into the nature
of DNA bending. While the wormlike chain model provides a good description
of small to moderate bending fluctuations, it is expected to break
down for large bending. Recent cyclization experiments on strongly
bent shorter molecules indeed suggest enhanced flexibility over and
above that expected from the wormlike chain. Here, we use a coarse-grained
model of DNA to investigate the subtle thermodynamics of DNA cyclization
for molecules ranging from 30 to 210 base pairs. As the molecules
get shorter, we find increasing deviations between our computed equilibrium j-factor and the classic wormlike chain predictions of Shimada
and Yamakawa for a torsionally aligned looped molecule. These deviations
are due to sharp kinking, first at nicks, and only subsequently in
the body of the duplex. At the shortest lengths, substantial fraying
at the ends of duplex domains is the dominant method of relaxation.
We also estimate the dynamic j-factor measured in
recent FRET experiments. We find that the dynamic j-factor is systematically larger than its equilibrium counterpart—with
the deviation larger for shorter molecules—because not all
the stress present in the fully cyclized state is present in the transition
state. These observations are important for the interpretation of
recent cyclization experiments, suggesting that measured anomalously
high j-factors may not necessarily indicate non-WLC
behavior in the body of duplexes.
Collapse
Affiliation(s)
- Ryan M Harrison
- Physical & Theoretical Chemistry Laboratory, Department of Chemistry , University of Oxford , South Parks Road , Oxford OX1 3QZ , United Kingdom
| | - Flavio Romano
- Dipartimento di Scienze Molecolari e Nanosistemi , Universitá Ca' Foscari Venezia , I-30123 Venezia , Italy
| | - Thomas E Ouldridge
- Imperial College Centre for Synthetic Biology and Department of Bioengineering , Imperial College London , 180 Queen's Road , London SW7 2AZ , United Kingdom
| | - Ard A Louis
- Rudolf Peierls Centre for Theoretical Physics, Department of Physics , University of Oxford , 1 Keble Road , Oxford OX1 3NP , United Kingdom
| | - Jonathan P K Doye
- Physical & Theoretical Chemistry Laboratory, Department of Chemistry , University of Oxford , South Parks Road , Oxford OX1 3QZ , United Kingdom
| |
Collapse
|