1
|
Suzuki T, Kalyan S, Berlinicke C, Yoseph S, Zack DJ, Hur SC. Deciphering viscoelastic cell manipulation in rectangular microchannels. PHYSICS OF FLUIDS (WOODBURY, N.Y. : 1994) 2023; 35:103117. [PMID: 37849975 PMCID: PMC10577600 DOI: 10.1063/5.0167285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/25/2023] [Indexed: 10/19/2023]
Abstract
Viscoelastic focusing has emerged as a promising method for label-free and passive manipulation of micro and nanoscale bioparticles. However, the design of microfluidic devices for viscoelastic particle focusing requires a thorough comprehensive understanding of the flow condition and operational parameters that lead to the desired behavior of microparticles. While recent advancements have been made, viscoelastic focusing is not fully understood, particularly in straight microchannels with rectangular cross sections. In this work, we delve into inertial, elastic, and viscoelastic focusing of biological cells in rectangular cross-section microchannels. By systematically varying degrees of fluid elasticity and inertia, we investigate the underlying mechanisms behind cell focusing. Our approach involves injecting cells into devices with a fixed, non-unity aspect ratio and capturing their images from two orientations, enabling the extrapolation of cross-sectional equilibrium positions from two dimensional (2D) projections. We characterized the changes in hydrodynamic focusing behaviors of cells based on factors, such as cell size, flow rate, and fluid characteristics. These findings provide insights into the flow characteristics driving changes in equilibrium positions. Furthermore, they indicate that viscoelastic focusing can enhance the detection accuracy in flow cytometry and the sorting resolution for size-based particle sorting applications. By contributing to the advancement of understanding viscoelastic focusing in rectangular microchannels, this work provides valuable insight and design guidelines for the development of devices that harness viscoelastic focusing. The knowledge gained from this study can aid in the advancement of viscoelastic particle manipulation technique and their application in various fields.
Collapse
Affiliation(s)
- Takayuki Suzuki
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Srivathsan Kalyan
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Cynthia Berlinicke
- Department of Ophthalmology, Wilmer Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
| | - Samantha Yoseph
- Department of Architecture, University of Maryland, College Park, Maryland 20742, USA
| | | | | |
Collapse
|
2
|
Raj M K, Priyadarshani J, Karan P, Bandyopadhyay S, Bhattacharya S, Chakraborty S. Bio-inspired microfluidics: A review. BIOMICROFLUIDICS 2023; 17:051503. [PMID: 37781135 PMCID: PMC10539033 DOI: 10.1063/5.0161809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/01/2023] [Indexed: 10/03/2023]
Abstract
Biomicrofluidics, a subdomain of microfluidics, has been inspired by several ideas from nature. However, while the basic inspiration for the same may be drawn from the living world, the translation of all relevant essential functionalities to an artificially engineered framework does not remain trivial. Here, we review the recent progress in bio-inspired microfluidic systems via harnessing the integration of experimental and simulation tools delving into the interface of engineering and biology. Development of "on-chip" technologies as well as their multifarious applications is subsequently discussed, accompanying the relevant advancements in materials and fabrication technology. Pointers toward new directions in research, including an amalgamated fusion of data-driven modeling (such as artificial intelligence and machine learning) and physics-based paradigm, to come up with a human physiological replica on a synthetic bio-chip with due accounting of personalized features, are suggested. These are likely to facilitate physiologically replicating disease modeling on an artificially engineered biochip as well as advance drug development and screening in an expedited route with the minimization of animal and human trials.
Collapse
Affiliation(s)
- Kiran Raj M
- Department of Applied Mechanics and Biomedical Engineering, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India
| | - Jyotsana Priyadarshani
- Department of Mechanical Engineering, Biomechanics Section (BMe), KU Leuven, Celestijnenlaan 300, 3001 Louvain, Belgium
| | - Pratyaksh Karan
- Géosciences Rennes Univ Rennes, CNRS, Géosciences Rennes, UMR 6118, 35000 Rennes, France
| | - Saumyadwip Bandyopadhyay
- Advanced Technology Development Centre, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Soumya Bhattacharya
- Achira Labs Private Limited, 66b, 13th Cross Rd., Dollar Layout, 3–Phase, JP Nagar, Bangalore, Karnataka 560078, India
| | - Suman Chakraborty
- Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| |
Collapse
|
3
|
Ghosh A, Kulkarni R. Improving particle detection and size estimation accuracy in digital in-line holography using autoregressive interpolation. APPLIED OPTICS 2021; 60:8728-8736. [PMID: 34613098 DOI: 10.1364/ao.434391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
The accuracy of particle detection and size estimation is limited by the physical size of the digital sensor used to record the hologram in a digital in-line holographic imaging system. In this paper, we propose to utilize the autoregressive (AR) interpolation of the hologram to increase pixel density and, effectively, the quality of hologram reconstruction. Simulation studies are conducted to evaluate the influence of AR interpolation of a hologram on the accuracy of detection and size estimation of single and multiple particles of varying sizes. A comparative study on the performance of different interpolation techniques indicates the advantage of the proposed AR hologram interpolation approach. An experimental result is provided to validate the suitability of the proposed algorithm in practical applications.
Collapse
|
4
|
Abstract
Using light to manipulate fluids has been a long-sought-after goal for lab-on-a-chip applications to address the size mismatch between bulky external fluid controllers and microfluidic devices. Yet, this goal has remained elusive due to the complexity of thermally driven fluid dynamic phenomena, and the lack of approaches that allow comprehensive multiscale and multiparameter studies. Here, we report an innovative optofluidic platform that fulfills this need by combining digital holographic microscopy with state-of-the-art thermoplasmonics, allowing us to identify the different contributions from thermophoresis, thermo-osmosis, convection, and radiation pressure. In our experiments, we demonstrate that a local thermal perturbation at the microscale can lead to mm-scale changes in both the particle and fluid dynamics, thus achieving long-range transport. Furthermore, thanks to a comprehensive parameter study involving sample geometry, temperature increase, light fluence, and size of the heat source, we showcase an integrated and reconfigurable all-optical control strategy for microfluidic devices, thereby opening new frontiers in fluid actuation technology.
Collapse
|
5
|
Senevirathne SWMAI, Hasan J, Mathew A, Woodruff M, Yarlagadda PKDV. Bactericidal efficiency of micro- and nanostructured surfaces: a critical perspective. RSC Adv 2021; 11:1883-1900. [PMID: 35424086 PMCID: PMC8693530 DOI: 10.1039/d0ra08878a] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/12/2020] [Indexed: 12/21/2022] Open
Abstract
Micro/nanostructured surfaces (MNSS) have shown the ability to inactivate bacterial cells by physical means. An enormous amount of research has been conducted in this area over the past decade. Here, we review the various surface factors that affect the bactericidal efficiency. For example, surface hydrophobicity of the substrate has been accepted to be influential on the bactericidal effect of the surface, but a review of the literature suggests that the influence of hydrophobicity differs with the bacterial species. Also, various bacterial viability quantification methods on MNSS are critically reviewed for their suitability for the purpose, and limitations of currently used protocols are discussed. Presently used static bacterial viability assays do not represent the conditions of which those surfaces could be applied. Such application conditions do have overlaying fluid flow, and bacterial behaviours are drastically different under flow conditions compared to under static conditions. Hence, it is proposed that the bactericidal effect should be assessed under relevant fluid flow conditions with factors such as shear stress and flowrate given due significance. This review will provide a range of opportunities for future research in design and engineering of micro/nanostructured surfaces with varying experimental conditions.
Collapse
Affiliation(s)
- S W M A I Senevirathne
- Science and Engineering Faculty, Queensland University of Technology (QUT) Brisbane Qld 4000 Australia
- Institute of Health and Biomedical Innovations 60 Musk Ave. Kelvin Grove Qld 4059 Australia
| | - J Hasan
- Science and Engineering Faculty, Queensland University of Technology (QUT) Brisbane Qld 4000 Australia
- Institute of Health and Biomedical Innovations 60 Musk Ave. Kelvin Grove Qld 4059 Australia
| | - A Mathew
- Science and Engineering Faculty, Queensland University of Technology (QUT) Brisbane Qld 4000 Australia
- Institute of Health and Biomedical Innovations 60 Musk Ave. Kelvin Grove Qld 4059 Australia
| | - M Woodruff
- Science and Engineering Faculty, Queensland University of Technology (QUT) Brisbane Qld 4000 Australia
- Institute of Health and Biomedical Innovations 60 Musk Ave. Kelvin Grove Qld 4059 Australia
| | - P K D V Yarlagadda
- Science and Engineering Faculty, Queensland University of Technology (QUT) Brisbane Qld 4000 Australia
- Institute of Health and Biomedical Innovations 60 Musk Ave. Kelvin Grove Qld 4059 Australia
| |
Collapse
|
6
|
Haleem A, Javaid M, Khan IH. Holography applications toward medical field: An overview. Indian J Radiol Imaging 2020; 30:354-361. [PMID: 33273770 PMCID: PMC7694722 DOI: 10.4103/ijri.ijri_39_20] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 05/03/2020] [Accepted: 05/13/2020] [Indexed: 12/17/2022] Open
Abstract
Purpose: 3D Holography is a commercially available, disruptive innovation, which can be customised as per the requirements and is supporting Industry 4.0. The purpose of this paper is to study the potential applications of 3D holography in the medical field. This paper explores the concept of holography and its significant benefits in the medical field. Methods: The paper is derived through the study of various research papers on Holography and its applications in the medical field. The study tries to identify the direction of research &development and see how this innovative technology can be used effectively for better treatment of patients. Results: Holography uses digital imaging inputs and provides an extensive visualisation of the data for training doctors, surgeons and students. Holography converts information about the body into a digital format and has the potential to inform, promote and entertain the medical students and doctors. However, it needs a large amount of space for data storage and extensive software support for analysis and skills for customising. This technology seems good to solve a variety of medical issues by storing and using patient data in developing 3D holograms, which are useful to assist successful treatment and surgery. It seems useful in providing flexible solutions in the area of medical research. Finally, the paper identifies 13 significant applications of this technology in the medical field and discusses them appropriately. Conclusion: The paper explores holographic applications in medical research due to its extensive capability of image processing. Holographic images are non-contact 3D images having a large field of depth. A physician can now zoom the holographic image for a better view of the medical part. This innovative technology can create advancements in the diagnosis and treatment process, which can improve medical practice. It helps in quick detection of problems in various organs like brain, heart, liver, kidney etc. By using this technology, medical practitioners can see colourful organs at multiple angles with better accuracy. It opens up an innovative way of planning, testing of procedures and diagnosis. With technological developments, compact hardware and software are now available to help medical research and related applications.
Collapse
Affiliation(s)
- Abid Haleem
- Department of Mechanical Engineering, Jamia Millia Islamia, New Delhi, India
| | - Mohd Javaid
- Department of Mechanical Engineering, Jamia Millia Islamia, New Delhi, India
| | - Ibrahim Haleem Khan
- School of Engineering Sciences and Technology, Jamia Hamdard, New Delhi, India
| |
Collapse
|
7
|
White AR, Jalali M, Boufadel MC, Sheng J. Bacteria forming drag-increasing streamers on a drop implicates complementary fates of rising deep-sea oil droplets. Sci Rep 2020; 10:4305. [PMID: 32152410 PMCID: PMC7062730 DOI: 10.1038/s41598-020-61214-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 02/18/2020] [Indexed: 11/19/2022] Open
Abstract
Competing time scales involved in rapid rising micro-droplets in comparison to substantially slower biodegradation processes at oil-water interfaces highlights a perplexing question: how do biotic processes occur and alter the fates of oil micro-droplets (<500 μm) in the 400 m thick Deepwater Horizon deep-sea plume? For instance, a 200 μm droplet traverses the plume in ~48 h, while known biodegradation processes require weeks to complete. Using a microfluidic platform allowing microcosm observations of a droplet passing through a bacterial suspension at ecologically relevant length and time scales, we discover that within minutes bacteria attach onto an oil droplet and extrude polymeric streamers that rapidly bundle into an elongated aggregate, drastically increasing drag that consequently slows droplet rising velocity. Results provide a key mechanism bridging competing scales and establish a potential pathway to biodegradation and sedimentations as well as substantially alter physical transport of droplets during a deep-sea oil spill with dispersant.
Collapse
Affiliation(s)
- Andrew R White
- Department of Engineering, Texas A&M University-Corpus Christi, Corpus Christi, TX, 78412, USA
| | - Maryam Jalali
- Department of Engineering, Texas A&M University-Corpus Christi, Corpus Christi, TX, 78412, USA
| | - Michel C Boufadel
- Center for Natural Resources, Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Jian Sheng
- Department of Engineering, Texas A&M University-Corpus Christi, Corpus Christi, TX, 78412, USA.
| |
Collapse
|
8
|
White AR, Jalali M, Sheng J. A new ecology-on-a-chip microfluidic platform to study interactions of microbes with a rising oil droplet. Sci Rep 2019; 9:13737. [PMID: 31551440 PMCID: PMC6760120 DOI: 10.1038/s41598-019-50153-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 08/29/2019] [Indexed: 11/09/2022] Open
Abstract
Advances in microfluidics technology has enabled many discoveries on microbial mechanisms and phenotypes owing to its exquisite controls over biological and chemical environments. However, emulating accurate ecologically relevant flow environments (e.g. microbes around a rising oil droplet) in microfluidics remains challenging. Here, we present a microfluidic platform, i.e. ecology-on-a-chip (eChip), that simulates environmental conditions around an oil droplet rising through ocean water as commonly occurred during a deep-sea oil spill or a natural seep, and enables detailed observations of microbe-oil interactions at scales relevant to marine ecology (i.e. spatial scales of individual bacterium in a dense suspension and temporal scales from milliseconds to weeks or months). Owing to the unique capabilities, we present unprecedented observations of polymeric microbial aggregates formed on rising oil droplets and their associated hydrodynamic impacts including flow fields and momentum budgets. Using the platform with Pseudomonas, Marinobacter, and Alcarnivorax, we have shown that polymeric aggregates formed by them present significant differences in morphology, growth rates, and hydrodynamic impacts. This platform enables us to investigate unexplored array of microbial interactions with oil drops.
Collapse
Affiliation(s)
- Andrew R White
- Department of Engineering, Texas A&M University-Corpus Christi, Corpus Christi, TX, 78412, USA
| | - Maryam Jalali
- Department of Engineering, Texas A&M University-Corpus Christi, Corpus Christi, TX, 78412, USA
| | - Jian Sheng
- Department of Engineering, Texas A&M University-Corpus Christi, Corpus Christi, TX, 78412, USA.
| |
Collapse
|
9
|
M KR, Bhattacharya S, DasGupta S, Chakraborty S. Collective dynamics of red blood cells on an in vitro microfluidic platform. LAB ON A CHIP 2018; 18:3939-3948. [PMID: 30475361 DOI: 10.1039/c8lc01198b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Understanding the dynamics of blood flow in physiologically relevant confinements turns out to be an outstanding proposition in biomedical research. Despite the large number of studies being reported to theoretically elucidate the dynamics of red blood cells (RBCs) in confined geometries, in vitro experimental studies unveiling the implications of the collective dynamics of red blood cells in physiologically relevant bio-mimetic microfluidic channels remain elusive. Here, we investigate the implications of complex dynamvic interactions between the whole blood and a deformable channel wall fabricated using a hydrogel matrix. For a range of flow rates, we map the trajectories of the RBCs for varying levels of softness of the microchannel wall. We compare these scenarios with the reference cases of rigid polydimethylsiloxane (PDMS) channels. Our results reveal that the smallest channels investigated herein exhibit the most intricate interactions between the collective dynamics of the RBC and the wall flexibility, attributable to confinement-induced hydrodynamic interactions in the presence of spatially varying shear rates. These results may open up new paradigms in conceptual understanding of in vivo dynamics of blood flow through simple in vitro experiments on a simple microfluidic platform.
Collapse
Affiliation(s)
- Kiran Raj M
- Advanced Technology Development Centre, Indian Institute of Technology Kharagpur, Kharagpur 721 302, West Bengal, India
| | | | | | | |
Collapse
|
10
|
Abstract
Flow separation on moving bodies has a negative effect on energy efficiency. Reducing recirculating regions is key in the design of energy-efficient systems. Efficient design decreases fuel consumption and pollutant emissions, including the systems’ carbon footprint. The engineered bio-inspired coating presented here aims to contribute in that direction. The relative ease of manufacturing and installation and its cost effectiveness, as well as its functionality under both wet and dry conditions, make it a versatile solution of potentially high impact in a broad range of applications, including transportation, wind power, and underwater vehicles. Flow separation and vortex shedding are some of the most common phenomena experienced by bluff bodies under relative motion with the surrounding medium. They often result in a recirculation bubble in regions with adverse pressure gradient, which typically reduces efficiency in vehicles and increases loading on structures. Here, the ability of an engineered coating to manipulate the large-scale recirculation region was tested in a separated flow at moderate momentum thickness Reynolds number, Reθ=1,200. We show that the coating, composed of uniformly distributed cylindrical pillars with diverging tips, successfully reduces the size of, and shifts downstream, the separation bubble. Despite the so-called roughness parameter, k+≈1, falling within the hydrodynamic smooth regime, the coating is able to modulate the large-scale recirculating motion. Remarkably, this modulation does not induce noticeable changes in the near-wall turbulence levels. Supported with experimental data and theoretical arguments based on the averaged equations of motion, we suggest that the inherent mechanism responsible for the bubble modulation is essentially unsteady suction and blowing controlled by the increasing cross-section of the tips. The coating can be easily fabricated and installed and works under dry and wet conditions, increasing its potential impact on a diverse range of applications.
Collapse
|
11
|
Singh DK, Ahrens CC, Li W, Vanapalli SA. Label-free fingerprinting of tumor cells in bulk flow using inline digital holographic microscopy. BIOMEDICAL OPTICS EXPRESS 2017; 8:536-554. [PMID: 28270966 PMCID: PMC5330580 DOI: 10.1364/boe.8.000536] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 12/21/2016] [Accepted: 12/22/2016] [Indexed: 05/19/2023]
Abstract
Large-scale and label-free phenotyping of cells holds great promise in medicine, especially in cancer diagnostics and prognosis. Here, we introduce inline digital holography microscopy for volumetric imaging of cells in bulk flow and fingerprinting of flowing tumor cells based on two metrics, in-focus scattered intensity and cell diameter. Using planar distribution of immobilized particles, we identify the optimal recording distance and microscope objective magnification that minimizes the error in measurement of particle position, size and scattered intensity. Using the optimized conditions and the two metrics, we demonstrate the capacity to enumerate and fingerprint more than 100,000 cells. Finally, we highlight the power of our label-free and high throughput technology by characterizing breast tumor cell lines with different metastatic potentials and distinguishing drug resistant ovarian cancer cells from their parental cell line.
Collapse
Affiliation(s)
| | - Caroline C. Ahrens
- Department of Chemical Engineering, Texas Tech University, Lubbock, Texas, USA
| | - Wei Li
- Department of Chemical Engineering, Texas Tech University, Lubbock, Texas, USA
| | - Siva A. Vanapalli
- Department of Chemical Engineering, Texas Tech University, Lubbock, Texas, USA
| |
Collapse
|