1
|
Schmal C. The seasons within: a theoretical perspective on photoperiodic entrainment and encoding. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2024; 210:549-564. [PMID: 37659985 PMCID: PMC11226496 DOI: 10.1007/s00359-023-01669-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 08/11/2023] [Accepted: 08/16/2023] [Indexed: 09/04/2023]
Abstract
Circadian clocks are internal timing devices that have evolved as an adaption to the omnipresent natural 24 h rhythmicity of daylight intensity. Properties of the circadian system are photoperiod dependent. The phase of entrainment varies systematically with season. Plastic photoperiod-dependent re-arrangements in the mammalian circadian core pacemaker yield an internal representation of season. Output pathways of the circadian clock regulate photoperiodic responses such as flowering time in plants or hibernation in mammals. Here, we review the concepts of seasonal entrainment and photoperiodic encoding. We introduce conceptual phase oscillator models as their high level of abstraction, but, yet, intuitive interpretation of underlying parameters allows for a straightforward analysis of principles that determine entrainment characteristics. Results from this class of models are related and discussed in the context of more complex conceptual amplitude-phase oscillators as well as contextual molecular models that take into account organism, tissue, and cell-type-specific details.
Collapse
Affiliation(s)
- Christoph Schmal
- Institute for Theoretical Biology, Humboldt-Universität zu Berlin, Philippstr. 13, 10115, Berlin, Germany.
| |
Collapse
|
2
|
Li Y, Lu L, Androulakis IP. The Physiological and Pharmacological Significance of the Circadian Timing of the HPA Axis: A Mathematical Modeling Approach. J Pharm Sci 2024; 113:33-46. [PMID: 37597751 PMCID: PMC10840710 DOI: 10.1016/j.xphs.2023.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/02/2023] [Accepted: 08/02/2023] [Indexed: 08/21/2023]
Abstract
As a potent endogenous regulator of homeostasis, the circadian time-keeping system synchronizes internal physiology to periodic changes in the external environment to enhance survival. Adapting endogenous rhythms to the external time is accomplished hierarchically with the central pacemaker located in the suprachiasmatic nucleus (SCN) signaling the hypothalamus-pituitary-adrenal (HPA) axis to release hormones, notably cortisol, which help maintain the body's circadian rhythm. Given the essential role of HPA-releasing hormones in regulating physiological functions, including immune response, cell cycle, and energy metabolism, their daily variation is critical for the proper function of the circadian timing system. In this review, we focus on cortisol and key fundamental properties of the HPA axis and highlight their importance in controlling circadian dynamics. We demonstrate how systems-driven, mathematical modeling of the HPA axis complements experimental findings, enhances our understanding of complex physiological systems, helps predict potential mechanisms of action, and elucidates the consequences of circadian disruption. Finally, we outline the implications of circadian regulation in the context of personalized chronotherapy. Focusing on the chrono-pharmacology of synthetic glucocorticoids, we review the challenges and opportunities associated with moving toward personalized therapies that capitalize on circadian rhythms.
Collapse
Affiliation(s)
- Yannuo Li
- Chemical & Biochemical Engineering Department, Piscataway, NJ 08854, USA
| | - Lingjun Lu
- Chemical & Biochemical Engineering Department, Piscataway, NJ 08854, USA
| | - Ioannis P Androulakis
- Chemical & Biochemical Engineering Department, Piscataway, NJ 08854, USA; Biomedical Engineering Department, Rutgers University, Piscataway, NJ 08540, USA.
| |
Collapse
|
3
|
Singhal B, Kiss IZ, Li JS. Optimal phase-selective entrainment of heterogeneous oscillator ensembles. SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS 2023; 22:2180-2205. [PMID: 38835972 PMCID: PMC11149604 DOI: 10.1137/22m1521201] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
We develop a framework to design optimal entrainment signals that entrain an ensemble of heterogeneous nonlinear oscillators, described by phase models, at desired phases. We explicitly take into account heterogeneity in both oscillation frequency and the type of oscillators characterized by different Phase Response Curves. The central idea is to leverage the Fourier series representation of periodic functions to decode a phase-selective entrainment task into a quadratic program. We demonstrate our approach using a variety of phase models, where we entrain the oscillators into distinct phase patterns. Also, we show how the generalizability gained from our formulation enables us to meet a wide range of design objectives and constraints, such as minimum-power, fast entrainment, and charge-balanced controls.
Collapse
Affiliation(s)
- Bharat Singhal
- Electrical and Systems Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, USA
| | - István Z Kiss
- Department of Chemistry, Saint Louis University, St. Louis, Missouri 63103, USA
| | - Jr-Shin Li
- Electrical and Systems Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, USA
- Division of Biology & and Biomedical Sciences, Washington University in St. Louis, St. Louis, Missouri 63130, USA
| |
Collapse
|
4
|
Goltsev AV, Wright EAP, Mendes JFF, Yoon S. Generation and Disruption of Circadian Rhythms in the Suprachiasmatic Nucleus: A Core-Shell Model. J Biol Rhythms 2022; 37:545-561. [PMID: 35848398 PMCID: PMC9452856 DOI: 10.1177/07487304221107834] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We focus our research on how the core-shell organization controls behavior of the
suprachiasmatic nucleus (SCN), how the core and shell are synchronized to the
environment, what impact they have on the behavior of the SCN under different
lighting conditions, and what mechanisms disrupt synchronization. To this end,
we use a reduced Kuramoto model, with parameters inferred from experimental
observations and calibrated for mice, and perform a detailed comparison between
the model and experimental data under light-dark (LD), dark-dark (DD), and
light-light (LL) conditions. The operating limits of free-running and entrained
SCN activity under symmetric LD cycles are analyzed, with particular focus on
the phenomena of anticipation and dissociation. Results reveal that the
core-shell organization of the SCN enables anticipation of future events over
circadian cycles. The model predicts the emergence of a second (dissociated)
rhythm for large and small LD periods. Our results are in good qualitative and
quantitative agreement with experimental observations of circadian dissociation.
We further describe SCN activity under LL conditions and show that our model
satisfies Aschoff’s first rule, according to which the endogenous free-running
circadian period observed under complete darkness will shorten in diurnal
animals and lengthen in nocturnal animals under constant light. Our results
strongly suggest that the Kuramoto model captures essential features of
synchronization and entrainment in the SCN. Moreover, our approach is easily
extendible to an arbitrary number of groups, with dynamics described by explicit
equations for the group phase and synchronization index. Viewed together, the
reduced Kuramoto model presents itself as a useful tool for exploring open
problems in the study of circadian rhythms, one that can account for evolving
views of the circadian system’s organization, including peripheral clocks and
inter-hemispheric interaction, and can be translated to other nocturnal and
diurnal animals, including humans.
Collapse
Affiliation(s)
| | - Edgar A P Wright
- Department of Physics & I3N, University of Aveiro, Aveiro, Portugal
| | - José F F Mendes
- Department of Physics & I3N, University of Aveiro, Aveiro, Portugal
| | - Sooyeon Yoon
- Department of Physics & I3N, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
5
|
Li Y, Androulakis IP. Light-induced synchronization of the SCN coupled oscillators and implications for entraining the HPA axis. Front Endocrinol (Lausanne) 2022; 13:960351. [PMID: 36387856 PMCID: PMC9648564 DOI: 10.3389/fendo.2022.960351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 10/10/2022] [Indexed: 11/13/2022] Open
Abstract
The suprachiasmatic nucleus (SCN) synchronizes the physiological rhythms to the external light-dark cycle and tunes the dynamics of circadian rhythms to photoperiod fluctuations. Changes in the neuronal network topologies are suggested to cause adaptation of the SCN in different photoperiods, resulting in the broader phase distribution of neuron activities in long photoperiods (LP) compared to short photoperiods (SP). Regulated by the SCN output, the level of glucocorticoids is elevated in short photoperiod, which is associated with peak disease incidence. The underlying coupling mechanisms of the SCN and the interplay between the SCN and the HPA axis have yet to be fully elucidated. In this work, we propose a mathematical model including a multiple-cellular SCN compartment and the HPA axis to investigate the properties of the circadian timing system under photoperiod changes. Our model predicts that the probability-dependent network is more energy-efficient than the distance-dependent network. Coupling the SCN network by intra-subpopulation and inter-subpopulation forces, we identified the negative correlation between robustness and plasticity of the oscillatory network. The HPA rhythms were predicted to be strongly entrained to the SCN rhythms with a pro-inflammatory high-amplitude glucocorticoid profile under SP. The fast temporal topology switch of the SCN network was predicted to enhance synchronization when the synchronization is not complete. These synchronization and circadian dynamics alterations might govern the seasonal variation of disease incidence and its symptom severity.
Collapse
Affiliation(s)
- Yannuo Li
- Chemical & Biochemical Engineering Department, Rutgers University, Piscataway, NJ, United States
| | - Ioannis P. Androulakis
- Chemical & Biochemical Engineering Department, Rutgers University, Piscataway, NJ, United States
- Biomedical Engineering Department, Rutgers University, Piscataway, NJ, United States
- *Correspondence: Ioannis P. Androulakis,
| |
Collapse
|
6
|
Gu C, Li J, Zhou J, Yang H, Rohling J. Network Structure of the Master Clock Is Important for Its Primary Function. Front Physiol 2021; 12:678391. [PMID: 34483953 PMCID: PMC8415478 DOI: 10.3389/fphys.2021.678391] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 07/22/2021] [Indexed: 11/13/2022] Open
Abstract
A master clock located in the suprachiasmatic nucleus (SCN) regulates the circadian rhythm of physiological and behavioral activities in mammals. The SCN has two main functions in the regulation: an endogenous clock produces the endogenous rhythmic signal in body rhythms, and a calibrator synchronizes the body rhythms to the external light-dark cycle. These two functions have been determined to depend on either the dynamic behaviors of individual neurons or the whole SCN neuronal network. In this review, we first introduce possible network structures for the SCN, as revealed by time series analysis from real experimental data. It was found that the SCN network is heterogeneous and sparse, that is, the average shortest path length is very short, some nodes are hubs with large node degrees but most nodes have small node degrees, and the average node degree of the network is small. Secondly, the effects of the SCN network structure on the SCN function are reviewed based on mathematical models of the SCN network. It was found that robust rhythms with large amplitudes, a high synchronization between SCN neurons and a large entrainment ability exists mainly in small-world and scale-free type networks, but not other types. We conclude that the SCN most probably is an efficient small-world type or scale-free type network, which drives SCN function.
Collapse
Affiliation(s)
- Changgui Gu
- Business School, University of Shanghai for Science and Technology, Shanghai, China
| | - Jiahui Li
- Business School, University of Shanghai for Science and Technology, Shanghai, China
| | - Jian Zhou
- Business School, University of Shanghai for Science and Technology, Shanghai, China
| | - Huijie Yang
- Business School, University of Shanghai for Science and Technology, Shanghai, China
| | - Jos Rohling
- Laboratory for Neurophysiology, Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
7
|
Sueviriyapan N, Granados-Fuentes D, Simon T, Herzog ED, Henson MA. Modelling the functional roles of synaptic and extra-synaptic γ-aminobutyric acid receptor dynamics in circadian timekeeping. J R Soc Interface 2021; 18:20210454. [PMID: 34520693 PMCID: PMC8440032 DOI: 10.1098/rsif.2021.0454] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/23/2021] [Indexed: 11/12/2022] Open
Abstract
In the suprachiasmatic nucleus (SCN), γ-aminobutyric acid (GABA) is a primary neurotransmitter. GABA can signal through two types of GABAA receptor subunits, often referred to as synaptic GABAA (gamma subunit) and extra-synaptic GABAA (delta subunit). To test the functional roles of these distinct GABAA in regulating circadian rhythms, we developed a multicellular SCN model where we could separately compare the effects of manipulating GABA neurotransmitter or receptor dynamics. Our model predicted that blocking GABA signalling modestly increased synchrony among circadian cells, consistent with published SCN pharmacology. Conversely, the model predicted that lowering GABAA receptor density reduced firing rate, circadian cell fraction, amplitude and synchrony among individual neurons. When we tested these predictions, we found that the knockdown of delta GABAA reduced the amplitude and synchrony of clock gene expression among cells in SCN explants. The model further predicted that increasing gamma GABAA densities could enhance synchrony, as opposed to increasing delta GABAA densities. Overall, our model reveals how blocking GABAA receptors can modestly increase synchrony, while increasing the relative density of gamma over delta subunits can dramatically increase synchrony. We hypothesize that increased gamma GABAA density in the winter could underlie the tighter phase relationships among SCN cells.
Collapse
Affiliation(s)
- Natthapong Sueviriyapan
- Department of Chemical Engineering and the Institute for Applied Life Sciences, University of Massachusetts, Amherst, MA, USA
| | | | - Tatiana Simon
- Department of Biology, Washington University in St Louis, Saint Louis, MO, USA
| | - Erik D. Herzog
- Department of Biology, Washington University in St Louis, Saint Louis, MO, USA
| | - Michael A. Henson
- Department of Chemical Engineering and the Institute for Applied Life Sciences, University of Massachusetts, Amherst, MA, USA
| |
Collapse
|
8
|
Weng T, Zhang J, Small M, Harandizadeh B, Hui P. Universal principles governing multiple random searchers on complex networks: The logarithmic growth pattern and the harmonic law. Phys Rev E 2018; 97:032320. [PMID: 29776160 DOI: 10.1103/physreve.97.032320] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Indexed: 11/07/2022]
Abstract
We propose a unified framework to evaluate and quantify the search time of multiple random searchers traversing independently and concurrently on complex networks. We find that the intriguing behaviors of multiple random searchers are governed by two basic principles-the logarithmic growth pattern and the harmonic law. Specifically, the logarithmic growth pattern characterizes how the search time increases with the number of targets, while the harmonic law explores how the search time of multiple random searchers varies relative to that needed by individual searchers. Numerical and theoretical results demonstrate these two universal principles established across a broad range of random search processes, including generic random walks, maximal entropy random walks, intermittent strategies, and persistent random walks. Our results reveal two fundamental principles governing the search time of multiple random searchers, which are expected to facilitate investigation of diverse dynamical processes like synchronization and spreading.
Collapse
Affiliation(s)
- Tongfeng Weng
- Business School, University of Shanghai for Science and Technology, Shanghai 200093, China.,HKUST-DT System and Media Laboratory, Hong Kong University of Science and Technology, Hong Kong
| | - Jie Zhang
- Centre for Computational Systems Biology, Fudan University, China
| | - Michael Small
- The University of Western Australia, Crawley, Western Australia 6009, Australia.,Mineral Resources, CSIRO, Kensington, Western Australia, Australia
| | - Bahareh Harandizadeh
- HKUST-DT System and Media Laboratory, Hong Kong University of Science and Technology, Hong Kong
| | - Pan Hui
- HKUST-DT System and Media Laboratory, Hong Kong University of Science and Technology, Hong Kong
| |
Collapse
|
9
|
Zheng M, Li L, Peng H, Xiao J, Yang Y, Zhang Y, Zhao H. Globally fixed-time synchronization of coupled neutral-type neural network with mixed time-varying delays. PLoS One 2018; 13:e0191473. [PMID: 29370248 PMCID: PMC5784957 DOI: 10.1371/journal.pone.0191473] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 01/07/2018] [Indexed: 11/18/2022] Open
Abstract
This paper mainly studies the globally fixed-time synchronization of a class of coupled neutral-type neural networks with mixed time-varying delays via discontinuous feedback controllers. Compared with the traditional neutral-type neural network model, the model in this paper is more general. A class of general discontinuous feedback controllers are designed. With the help of the definition of fixed-time synchronization, the upper right-hand derivative and a defined simple Lyapunov function, some easily verifiable and extensible synchronization criteria are derived to guarantee the fixed-time synchronization between the drive and response systems. Finally, two numerical simulations are given to verify the correctness of the results.
Collapse
Affiliation(s)
- Mingwen Zheng
- School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China
- School of Mathematics and Statistics, Shandong University of Technology, Zibo 255000, China
| | - Lixiang Li
- Information Security Center, State Key Laboratory of Networking and Switching Technology, National Engineering Laboratory for Disaster Backup and Recovery, Beijing University of Posts and Telecommunications, Beijing 100876, China
| | - Haipeng Peng
- Information Security Center, State Key Laboratory of Networking and Switching Technology, National Engineering Laboratory for Disaster Backup and Recovery, Beijing University of Posts and Telecommunications, Beijing 100876, China
| | - Jinghua Xiao
- School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China
| | - Yixian Yang
- Information Security Center, State Key Laboratory of Networking and Switching Technology, National Engineering Laboratory for Disaster Backup and Recovery, Beijing University of Posts and Telecommunications, Beijing 100876, China
| | - Yanping Zhang
- School of Mathematics and Statistics, Shandong University of Technology, Zibo 255000, China
| | - Hui Zhao
- Shandong Provincial Key Laboratory of Network Based Intelligent Computing, School of Information Science and Engineering, University of Jinan, Jinan 250022, China
| |
Collapse
|
10
|
Gu C, Yang H. Differences in intrinsic amplitudes of neuronal oscillators improve synchronization in the suprachiasmatic nucleus. CHAOS (WOODBURY, N.Y.) 2017; 27:093108. [PMID: 28964140 DOI: 10.1063/1.5000039] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In mammals, a main clock located in the suprachiasmatic nucleus (SCN) regulates the ∼24 h rhythms of behavioral and physiological activities exposed to a natural 24 light-dark cycle or even under constant darkness. The rhythms originate from self-sustained oscillations of the SCN neurons, which differ in both intrinsic periods and intrinsic amplitudes. The intrinsic periods and the intrinsic amplitudes were found to be bound to specific regions in the previous experiments. In particular, neurons of smaller amplitudes and larger periods are located in a ventrolateral part, and neurons of larger amplitudes and smaller periods are in a dorsomedial part. In the present study, we examined the effects of the differences in the intrinsic frequencies and the differences in the intrinsic amplitudes of neuronal oscillators on the synchronization, respectively. We found that the differences in the intrinsic frequencies weaken the synchronization, whereas the differences in the intrinsic amplitudes strengthen the synchronization. Our finding may shed light on the effects of the heterogenous properties of individual neurons on the collective behaviors of the SCN network and provide a way to enhance the synchronization.
Collapse
Affiliation(s)
- Changgui Gu
- Business School, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| | - Huijie Yang
- Business School, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| |
Collapse
|
11
|
Gu C, Yang H, Ruan Z. Entrainment range of the suprachiasmatic nucleus affected by the difference in the neuronal amplitudes between the light-sensitive and light-insensitive regions. Phys Rev E 2017; 95:042409. [PMID: 28505726 DOI: 10.1103/physreve.95.042409] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Indexed: 06/07/2023]
Abstract
Mammals not only can be synchronized to the natural 24-h light-dark cycle, but also to a cycle with a non-24-h period. The range of the period of the external cycle, for which the animals can be entrained to, is called the entrainment range, which differs among species. The entrainment range as a characteristic of the animal is determined by the main circadian clock, i.e., the suprachiasmatic nucleus (SCN) in the brain. The SCN is composed of ∼10000 heterogeneous neurons, which can be divided into two subgroups, i.e., the ventrolateral subgroup (VL) directly receiving the light information from the retina and relaying the information to the dorsomedial subgroup (DM). Among the SCN neurons, the amplitudes are different; however, it is unclear that the amplitude is related to the location of the neurons in experiments. In the present study, we examined the effect of the difference in the neuronal amplitude between the VL and the DM on the entrainment range of the SCN, based on a mathematical model, i.e., the Poincaré model, which is used to describe the circadian clock. We find that the maximal entrainment range is obtained when the difference is equal to a critical point. If the difference of the amplitudes of the VL neurons to the amplitudes of the DM neurons is smaller than a critical point, with the increase of the difference, the entrainment range of the SCN increases, while if the difference is larger than the critical point, the entrainment range decreases with the increase of the difference. Our finding may give a potential explanation for the diversity of the entrainment range among species.
Collapse
Affiliation(s)
- Changgui Gu
- Business School, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| | - Huijie Yang
- Business School, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| | - Zhongyuan Ruan
- College of Computer Science, Zhejiang University of Technology, Hangzhou 310023, People's Republic of China
| |
Collapse
|