1
|
Leatham TA, Paganin DM, Morgan KS. X-ray phase and dark-field computed tomography without optical elements. OPTICS EXPRESS 2024; 32:4588-4602. [PMID: 38297656 DOI: 10.1364/oe.509604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/07/2023] [Indexed: 02/02/2024]
Abstract
X-ray diffusive dark-field imaging, which allows spatially unresolved microstructure to be mapped across a sample, is an increasingly popular tool in an array of settings. Here, we present a new algorithm for phase and dark-field computed tomography based on the x-ray Fokker-Planck equation. Needing only a coherent x-ray source, sample, and detector, our propagation-based algorithm can map the sample density and dark-field/diffusion properties of the sample in 3D. Importantly, incorporating dark-field information in the density reconstruction process enables a higher spatial resolution reconstruction than possible with previous propagation-based approaches. Two sample exposures at each projection angle are sufficient for the successful reconstruction of both the sample density and dark-field Fokker-Planck diffusion coefficients. We anticipate that the proposed algorithm may be of benefit in biomedical imaging and industrial settings.
Collapse
|
2
|
Esposito M, Buchanan I, Massimi L, Ferrara JD, Shearing PR, Olivo A, Endrizzi M. Laboratory-based x-ray dark-field microscopy. PHYSICAL REVIEW APPLIED 2023; 20:064039. [PMID: 39323906 PMCID: PMC11423780 DOI: 10.1103/physrevapplied.20.064039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
We demonstrate the capability of laboratory-based x-ray microscopes, using intensity-modulation masks, to access the sub-micron length scale in the dark field contrast channel while maintaining micron resolution in the resolved (refraction and attenuation) channels. The dark field contrast channel reveals the presence of ensembles of samples' features below the system resolution. Resolved refraction and attenuation channels provide multi-modal high-resolution imaging down to the micron scale. We investigate the regimes of modulated and un-modulated dark field as well as refraction, quantifying their dependence on the relationship between feature size in the imaged object and aperture size in the intensity-modulation mask. We propose an analytical model to link the measured signal with the sample's microscopic properties. Finally, we demonstrate the relevance of the microscopic dark field contrast channel in applications from both the life and physical sciences, providing proof of concept results for imaging collagen bundles in cartilage and dendritic growth in lithium batteries.
Collapse
Affiliation(s)
- Michela Esposito
- Department of Medical Physics and Biomedical Engineering, University College London, Malet Place, Gower Street, London WC1E 6BT, United Kingdom
| | - Ian Buchanan
- Department of Medical Physics and Biomedical Engineering, University College London, Malet Place, Gower Street, London WC1E 6BT, United Kingdom
| | - Lorenzo Massimi
- Department of Medical Physics and Biomedical Engineering, University College London, Malet Place, Gower Street, London WC1E 6BT, United Kingdom
| | - Joseph D Ferrara
- Rigaku Americas Corporation, 9009 New Trails Drive, The Woodlands, Texas 77381, US
| | - Paul R Shearing
- Department of Chemical Engineering, Electrochemical Innovation Lab, University College London, London WC1E 7JE, UK
- The Faraday Institution, Quad One, Harwell Science and Innovation Campus, Didcot OX11 0RA, UK
| | - Alessandro Olivo
- Department of Medical Physics and Biomedical Engineering, University College London, Malet Place, Gower Street, London WC1E 6BT, United Kingdom
| | - Marco Endrizzi
- Department of Medical Physics and Biomedical Engineering, University College London, Malet Place, Gower Street, London WC1E 6BT, United Kingdom
| |
Collapse
|
3
|
Shirani S, Cuesta A, Morales-Cantero A, Santacruz I, Diaz A, Trtik P, Holler M, Rack A, Lukic B, Brun E, Salcedo IR, Aranda MAG. 4D nanoimaging of early age cement hydration. Nat Commun 2023; 14:2652. [PMID: 37156776 PMCID: PMC10167225 DOI: 10.1038/s41467-023-38380-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 04/26/2023] [Indexed: 05/10/2023] Open
Abstract
Despite a century of research, our understanding of cement dissolution and precipitation processes at early ages is very limited. This is due to the lack of methods that can image these processes with enough spatial resolution, contrast and field of view. Here, we adapt near-field ptychographic nanotomography to in situ visualise the hydration of commercial Portland cement in a record-thick capillary. At 19 h, porous C-S-H gel shell, thickness of 500 nm, covers every alite grain enclosing a water gap. The spatial dissolution rate of small alite grains in the acceleration period, ∼100 nm/h, is approximately four times faster than that of large alite grains in the deceleration stage, ∼25 nm/h. Etch-pit development has also been mapped out. This work is complemented by laboratory and synchrotron microtomographies, allowing to measure the particle size distributions with time. 4D nanoimaging will allow mechanistically study dissolution-precipitation processes including the roles of accelerators and superplasticizers.
Collapse
Affiliation(s)
- Shiva Shirani
- Departamento de Química Inorgánica, Cristalografía y Mineralogía, Universidad de Málaga, 29071, Málaga, Spain
| | - Ana Cuesta
- Departamento de Química Inorgánica, Cristalografía y Mineralogía, Universidad de Málaga, 29071, Málaga, Spain
| | - Alejandro Morales-Cantero
- Departamento de Química Inorgánica, Cristalografía y Mineralogía, Universidad de Málaga, 29071, Málaga, Spain
| | - Isabel Santacruz
- Departamento de Química Inorgánica, Cristalografía y Mineralogía, Universidad de Málaga, 29071, Málaga, Spain
| | - Ana Diaz
- Laboratory for Macromolecules and Bioimaging, Paul Scherrer Institut, 5232, Villigen PSI, Switzerland
| | - Pavel Trtik
- Laboratory for Neutron Scattering and Imaging, Paul Scherrer Institut, 5232, Villigen PSI, Switzerland
| | - Mirko Holler
- Laboratory for Macromolecules and Bioimaging, Paul Scherrer Institut, 5232, Villigen PSI, Switzerland
| | - Alexander Rack
- ESRF-The European Synchrotron, 71 Rue des Martyrs, 38000, Grenoble, France
| | - Bratislav Lukic
- ESRF-The European Synchrotron, 71 Rue des Martyrs, 38000, Grenoble, France
| | - Emmanuel Brun
- Université Grenoble Alpes, Inserm UA7 STROBE, 38000, Grenoble, France
| | - Inés R Salcedo
- Servicios Centrales de Apoyo a la Investigación, Universidad de Málaga, 29071, Málaga, Spain
| | - Miguel A G Aranda
- Departamento de Química Inorgánica, Cristalografía y Mineralogía, Universidad de Málaga, 29071, Málaga, Spain.
| |
Collapse
|
4
|
Blykers BK, Organista C, Kagias M, Marone F, Stampanoni M, Boone MN, Cnudde V, Aelterman J. Exploration of the X-ray Dark-Field Signal in Mineral Building Materials. J Imaging 2022; 8:jimaging8100282. [PMID: 36286376 PMCID: PMC9604867 DOI: 10.3390/jimaging8100282] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/06/2022] [Accepted: 10/11/2022] [Indexed: 11/30/2022] Open
Abstract
Mineral building materials suffer from weathering processes such as salt efflorescence, freeze-thaw cycling, and microbial colonization. All of these processes are linked to water (liquid and vapor) in the pore space. The degree of damage following these processes is heavily influenced by pore space properties such as porosity, pore size distribution, and pore connectivity. X-ray computed micro-tomography (µCT) has proven to be a valuable tool to non-destructively investigate the pore space of stone samples in 3D. However, a trade-off between the resolution and field-of-view often impedes reliable conclusions on the material's properties. X-ray dark-field imaging (DFI) is based on the scattering of X-rays by sub-voxel-sized features, and as such, provides information on the sample complementary to that obtained using conventional µCT. In this manuscript, we apply X-ray dark-field tomography for the first time on four mineral building materials (quartzite, fired clay brick, fired clay roof tile, and carbonated mineral building material), and investigate which information the dark-field signal entails on the sub-resolution space of the sample. Dark-field tomography at multiple length scale sensitivities was performed at the TOMCAT beamline of the Swiss Light Source (Villigen, Switzerland) using a Talbot grating interferometer. The complementary information of the dark-field modality is most clear in the fired clay brick and roof tile; quartz grains that are almost indistinguishable in the conventional µCT scan are clearly visible in the dark-field owing to their low dark-field signal (homogenous sub-voxel structure), whereas the microporous bulk mass has a high dark-field signal. Large (resolved) pores on the other hand, which are clearly visible in the absorption dataset, are almost invisible in the dark-field modality because they are overprinted with dark-field signal originating from the bulk mass. The experiments also showed how the dark-field signal from a feature depends on the length scale sensitivity, which is set by moving the sample with respect to the grating interferometer.
Collapse
Affiliation(s)
- Benjamin K. Blykers
- Pore-Scale Processes in Geomaterials Research Group (PProGRess), Department of Geology, Ghent University, 9000 Ghent, Belgium
- Ghent University Centre for X-ray Tomography (UGCT), 9000 Ghent, Belgium
- Correspondence:
| | - Caori Organista
- Ghent University Centre for X-ray Tomography (UGCT), 9000 Ghent, Belgium
- Swiss Light Source, Paul Scherrer Institute, 5232 Villigen, Switzerland
- Institute for Biomedical Engineering, University and ETH Zürich, 8092 Zürich, Switzerland
- Department of Physics and Astronomy, Ghent University, 9000 Ghent, Belgium
| | - Matias Kagias
- Swiss Light Source, Paul Scherrer Institute, 5232 Villigen, Switzerland
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125, USA
| | - Federica Marone
- Swiss Light Source, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Marco Stampanoni
- Swiss Light Source, Paul Scherrer Institute, 5232 Villigen, Switzerland
- Institute for Biomedical Engineering, University and ETH Zürich, 8092 Zürich, Switzerland
| | - Matthieu N. Boone
- Ghent University Centre for X-ray Tomography (UGCT), 9000 Ghent, Belgium
- Department of Physics and Astronomy, Ghent University, 9000 Ghent, Belgium
| | - Veerle Cnudde
- Pore-Scale Processes in Geomaterials Research Group (PProGRess), Department of Geology, Ghent University, 9000 Ghent, Belgium
- Ghent University Centre for X-ray Tomography (UGCT), 9000 Ghent, Belgium
- Environmental Hydrogeology, Department of Earth Sciences, Utrecht University, 3584 Utrecht, The Netherlands
| | - Jan Aelterman
- Ghent University Centre for X-ray Tomography (UGCT), 9000 Ghent, Belgium
- Department of Physics and Astronomy, Ghent University, 9000 Ghent, Belgium
- Image Processing and Interpretation, TELIN Department, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
5
|
Retrieval of 3D information in X-ray dark-field imaging with a large field of view. Sci Rep 2021; 11:23504. [PMID: 34873265 PMCID: PMC8648862 DOI: 10.1038/s41598-021-02960-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/18/2021] [Indexed: 11/08/2022] Open
Abstract
X-ray dark-field imaging is a widely researched imaging technique, with many studies on samples of very different dimensions and at very different resolutions. However, retrieval of three-dimensional (3D) information for human thorax sized objects has not yet been demonstrated. We present a method, similar to classic tomography and tomosynthesis, to obtain 3D information in X-ray dark-field imaging. Here, the sample is moved through the divergent beam of a Talbot-Lau interferometer. Projections of features at different distances from the source seemingly move with different velocities over the detector, due to the cone beam geometry. The reconstruction of different focal planes exploits this effect. We imaged a chest phantom and were able to locate different features in the sample (e.g. the ribs, and two sample vials filled with water and air and placed in the phantom) to corresponding focal planes. Furthermore, we found that image quality and detectability of features is sufficient for image reconstruction with a dose of 68 μSv at an effective pixel size of [Formula: see text]. Therefore, we successfully demonstrated that the presented method is able to retrieve 3D information in X-ray dark-field imaging.
Collapse
|
6
|
Andrejewski J, De Marco F, Willer K, Noichl W, Gustschin A, Koehler T, Meyer P, Kriner F, Fischer F, Braun C, Fingerle AA, Herzen J, Pfeiffer F, Pfeiffer D. Whole-body x-ray dark-field radiography of a human cadaver. Eur Radiol Exp 2021; 5:6. [PMID: 33495889 PMCID: PMC7835263 DOI: 10.1186/s41747-020-00201-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 12/03/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Grating-based x-ray dark-field and phase-contrast imaging allow extracting information about refraction and small-angle scatter, beyond conventional attenuation. A step towards clinical translation has recently been achieved, allowing further investigation on humans. METHODS After the ethics committee approval, we scanned the full body of a human cadaver in anterior-posterior orientation. Six measurements were stitched together to form the whole-body image. All radiographs were taken at a three-grating large-object x-ray dark-field scanner, each lasting about 40 s. Signal intensities of different anatomical regions were assessed. The magnitude of visibility reduction caused by beam hardening instead of small-angle scatter was analysed using different phantom materials. Maximal effective dose was 0.3 mSv for the abdomen. RESULTS Combined attenuation and dark-field radiography are technically possible throughout a whole human body. High signal levels were found in several bony structures, foreign materials, and the lung. Signal levels were 0.25 ± 0.13 (mean ± standard deviation) for the lungs, 0.08 ± 0.06 for the bones, 0.023 ± 0.019 for soft tissue, and 0.30 ± 0.02 for an antibiotic bead chain. We found that phantom materials, which do not produce small-angle scatter, can generate a strong visibility reduction signal. CONCLUSION We acquired a whole-body x-ray dark-field radiograph of a human body in few minutes with an effective dose in a clinical acceptable range. Our findings suggest that the observed visibility reduction in the bone and metal is dominated by beam hardening and that the true dark-field signal in the lung is therefore much higher than that of the bone.
Collapse
Affiliation(s)
- Jana Andrejewski
- Chair of Biomedical Physics, Department of Physics and Munich School of BioEngineering, Technical University of Munich, 85748, Garching, Germany.
| | - Fabio De Marco
- Chair of Biomedical Physics, Department of Physics and Munich School of BioEngineering, Technical University of Munich, 85748, Garching, Germany
| | - Konstantin Willer
- Chair of Biomedical Physics, Department of Physics and Munich School of BioEngineering, Technical University of Munich, 85748, Garching, Germany
| | - Wolfgang Noichl
- Chair of Biomedical Physics, Department of Physics and Munich School of BioEngineering, Technical University of Munich, 85748, Garching, Germany
| | - Alex Gustschin
- Chair of Biomedical Physics, Department of Physics and Munich School of BioEngineering, Technical University of Munich, 85748, Garching, Germany
| | | | - Pascal Meyer
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, 76344, Eggenstein-Leopoldshafen, Germany
| | - Fabian Kriner
- Institut für Rechtsmedizin, Ludwig-Maximilians-Universität München, 80336, Munich, Germany
| | - Florian Fischer
- Institut für Rechtsmedizin, Ludwig-Maximilians-Universität München, 80336, Munich, Germany
| | - Christian Braun
- Institut für Rechtsmedizin, Ludwig-Maximilians-Universität München, 80336, Munich, Germany
| | - Alexander A Fingerle
- Department of Diagnostic and Interventional Radiology, Technical University of Munich, 81675, Munich, Germany
| | - Julia Herzen
- Chair of Biomedical Physics, Department of Physics and Munich School of BioEngineering, Technical University of Munich, 85748, Garching, Germany
| | - Franz Pfeiffer
- Chair of Biomedical Physics, Department of Physics and Munich School of BioEngineering, Technical University of Munich, 85748, Garching, Germany.,Department of Diagnostic and Interventional Radiology, Technical University of Munich, 81675, Munich, Germany
| | - Daniela Pfeiffer
- Department of Diagnostic and Interventional Radiology, Technical University of Munich, 81675, Munich, Germany
| |
Collapse
|
7
|
Graetz J, Balles A, Hanke R, Zabler S. Review and experimental verification of x-ray dark-field signal interpretations with respect to quantitative isotropic and anisotropic dark-field computed tomography. Phys Med Biol 2020; 65:235017. [PMID: 32916662 DOI: 10.1088/1361-6560/abb7c6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Talbot(-Lau) interferometric x-ray and neutron dark-field imaging has, over the past decade, gained substantial interest for its ability to provide insights into a sample's microstructure below the imaging resolution by means of ultra small angle scattering effects. Quantitative interpretations of such images depend on models of the signal origination process that relate the observable image contrast to underlying physical processes. A review of such models is given here and their relation to the wave optical derivations by Yashiro et al and Lynch et al as well as to small angle scattering is discussed. Fresnel scaling is introduced to explain the characteristic distance dependence observed in cone beam geometries. Moreover, a model describing the anisotropic signals of fibrous objects is derived. The Yashiro-Lynch model is experimentally verified both in radiographic and tomographic imaging in a monochromatic synchrotron setting, considering both the effects of material and positional dependence of the resulting dark-field contrast. The effect of varying sample-detector distance on the dark-field signal is shown to be non-negligible for tomographic imaging, yet can be largely compensated for by symmetric acquisition trajectories. The derived orientation dependence of the dark-field contrast of fibrous materials both with respect to variations in autocorrelation width and scattering cross section is experimentally validated using carbon fiber reinforced rods.
Collapse
Affiliation(s)
- J Graetz
- Lehrstuhl für Röntgenmikroskopie, Universität Würzburg, Josef-Martin-Weg 63, 97074 Würzburg, Germany. Fraunhofer IIS, division EZRT, Flugplatzstraße 75, 90768 Fürth / Josef-Martin-Weg 63, 97074 Würzburg, Germany
| | | | | | | |
Collapse
|
8
|
Takeya S, Muraoka M, Muromachi S, Hyodo K, Yoneyama A. X-ray CT observation and characterization of water transformation in heavy objects. Phys Chem Chem Phys 2020; 22:3446-3454. [PMID: 31984989 DOI: 10.1039/c9cp05983k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nondestructive observations and characterization of low-density materials composed of low-Z elements, such as water or its related substances, are essential for materials and life sciences. However, visualizing these compounds and their phase changes is still challenging. In this study, an approach to X-ray imaging of water-related substances in heavy objects without the use of contrast agents is proposed. The implementation of the approach is based upon X-ray phase shift, in which the optimal photon energy is simulated for high-contrast X-ray imaging. Proof of concept is provided by observations of resins, water, and clathrate hydrates such as CO2 hydrate and tetrahydrofuran (THF) hydrate in an aluminum container by diffraction-enhanced X-ray imaging with synchrotron X-rays of 35 keV. These results suggest that the proposed approach is a unique method for visualizing the transformation of these clathrate hydrates and is also applicable to in situ observations of other objects composed of multiphase materials with small density differences.
Collapse
Affiliation(s)
- Satoshi Takeya
- National Metrology Institute of Japan (NMIJ), National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba 305-8565, Japan.
| | - Michihiro Muraoka
- Research Institute of Energy Frontier (RIEF), National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba 305-8569, Japan
| | - Sanehiro Muromachi
- Research Institute of Energy Frontier (RIEF), National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba 305-8569, Japan
| | - Kazuyuki Hyodo
- High Energy Accelerator Research Organization, Oho, Tsukuba 305-0801, Japan
| | - Akio Yoneyama
- SAGA Light Source, 8-7 Yayoigaoka Tosu, Saga 841-0005, Japan
| |
Collapse
|
9
|
High resolution laboratory grating-based X-ray phase-contrast CT. Sci Rep 2018; 8:15884. [PMID: 30367132 PMCID: PMC6203738 DOI: 10.1038/s41598-018-33997-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 10/03/2018] [Indexed: 12/20/2022] Open
Abstract
The conventional form of computed tomography using X-ray attenuation without any contrast agents is of limited use for the characterization of soft tissue in many fields of medical and biological studies. Grating-based phase-contrast computed tomography (gbPC-CT) is a promising alternative imaging method solving the low soft tissue contrast without the need of any contrast agent. While highly sensitive measurements are possible using conventional X-ray sources the spatial resolution does often not fulfill the requirements for specific imaging tasks, such as visualization of pathologies. The focus of this study is the increase in spatial resolution without loss of sensitivity. To overcome this limitation a super-resolution reconstruction based on sub-pixel shifts involving a deconvolution of the image data during each iteration is applied. In our study we achieve an effective pixel size of 28 μm with a conventional rotating anode tube and a photon-counting detector. We also demonstrate that the method can upgrade existing setups to measure tomographies with higher resolution. The results show the increase in resolution at high sensitivity and with the ability to make quantitative measurements. The combination of sparse sampling and statistical iterative reconstruction may be used to reduce the total measurement time. In conclusion, we present high-quality and high-resolution tomographic images of biological samples to demonstrate the experimental feasibility of super-resolution reconstruction.
Collapse
|
10
|
Hauke C, Anton G, Hellbach K, Leghissa M, Meinel FG, Mertelmeier T, Michel T, Radicke M, Sutter SM, Weber T, Ritschl L. Enhanced reconstruction algorithm for moiré artifact suppression in Talbot–Lau x-ray imaging. ACTA ACUST UNITED AC 2018; 63:135018. [DOI: 10.1088/1361-6560/aacb07] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
11
|
Applications of Laboratory-Based Phase-Contrast Imaging Using Speckle Tracking Technique towards High Energy X-Rays. J Imaging 2018. [DOI: 10.3390/jimaging4050069] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
12
|
|
13
|
Horn F, Gelse K, Jabari S, Hauke C, Kaeppler S, Ludwig V, Meyer P, Michel T, Mohr J, Pelzer G, Rieger J, Riess C, Seifert M, Anton G. High-energy x-ray Talbot–Lau radiography of a human knee. ACTA ACUST UNITED AC 2017; 62:6729-6745. [DOI: 10.1088/1361-6560/aa7721] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|