1
|
Ahmed U, Sundholm D, Johansson MP. The effect of hydrogen bonding on the π depletion and the π-π stacking interaction. Phys Chem Chem Phys 2024; 26:27431-27438. [PMID: 39445462 DOI: 10.1039/d4cp02889a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Non-covalent interactions such as hydrogen bonding and π-π stacking are essential types of interactions governing molecular self-assembly. The π-π stacking ability of aromatic rings depends on the electron density of the π orbitals, which is affected by the electron-withdrawing or electron-donating properties of the substituents. We have here studied the effect of hydrogen bonding on the strength of the π-π stacking interactions by calculating the binding energies at the explicitly correlated Møller-Plesset (MP2-F12) perturbation theory level using polarized triple-ζ quality basis sets. The stacking interactions in the presence of hydrogen bonding are found to be stronger than in the absence of the hydrogen bonding suggesting that hydrogen bonds lead to π depletion, which affects the aromatic character of the aromatic rings and increases the strength of the π-π stacking interaction. We have also studied how hydrogen bonding affects the stacking interaction by calculating local orbital locator integrated pi over plane (LOLIPOP) indices. Comparing LOLIPOP indices with the stacking-interaction energies calculated at the MP2-F12 level shows that there is no clear correlation between the stacking-interaction energies and LOLIPOP indices.
Collapse
Affiliation(s)
- Usman Ahmed
- Department of Chemistry, Faculty of Science, University of Helsinki, A.I. Virtasen aukio 1, P.O. Box 55, FI-00014, Finland.
| | - Dage Sundholm
- Department of Chemistry, Faculty of Science, University of Helsinki, A.I. Virtasen aukio 1, P.O. Box 55, FI-00014, Finland.
| | - Mikael P Johansson
- Department of Chemistry, Faculty of Science, University of Helsinki, A.I. Virtasen aukio 1, P.O. Box 55, FI-00014, Finland.
- CSC-IT Center for Science Ltd., P.O. Box 405, FI-02101 Espoo, Finland.
| |
Collapse
|
2
|
Wu C, Kakarla LN, Chandrasekaran CP, Zhang X, Mague JT, Sproules S, Donahue JP. Asymmetric by Design: Heteroleptic Coordination Compounds with Redox-Active Dithiolene and 1,2,4,5-Tetrakis(isopropylthio)benzene Ligands. Inorg Chem 2024; 63:173-183. [PMID: 38134365 PMCID: PMC10777400 DOI: 10.1021/acs.inorgchem.3c02928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 12/24/2023]
Abstract
The 1,2,4,5-tetrakis(alkylthio)benzenes are redox-active organosulfur molecules that support oxidation to a stable radical cation. Their utility as ligands for the assembly of multimetal complexes with tailored functionality/property is unexamined. Here, 1,2,4,5-tetrakis(isopropylthio)benzene (tptbz, 1) is shown to bind PdCl2 at either one end, leaving the other open, or at both ends to form centrosymmetric [Cl2Pd(tptbz)PdCl2], 4. Ligand metathesis between Na2[(N≡C)2C2S2] (Na2mnt) and [Cl2M(tptbz)] (M = Pd, 2; M = Pt, 3) yields [(mnt)M(tptbz)] (M = Pd, 5; M = Pt, 6), but an alternative route involving transmetalation with [(mnt)SnMe2] delivers substantially greater yield. The mixed dithiolene-dithioether compound [(Ph2C2S2)Pt(tptbz)] (8) is formed by a similar transmetalation protocol using [(Ph2C2S2)SnnBu2]. Compounds 5, 6, and 8 are the first such heteroleptic complexes prepared by deliberate synthesis. The cyclic voltammetry of 8 reveals anodic waves at +0.14 and +0.97 V vs Fc+/Fc, which are attributed to successive dithiolene oxidation processes. While oxidized at +0.73 V as a free ligand, the redox-active MO of tptbz is pushed to a higher potential upon coordination to Pt2+ and is inaccessible. Calculations of the structures of [8]+ and of [((Cl2-3,5-C6H3)2C2S2)Pt(tptbz)]+ show that, in the latter, the dithiolene MOs are drawn down in energy into proximity with the tptbz MOs.
Collapse
Affiliation(s)
- Che Wu
- Department
of Chemistry, Tulane University, 6400 Freret Street, New Orleans, Louisiana 70118-5698, United States
| | - Lakshmi Nishanth Kakarla
- Department
of Chemistry and Biochemistry, Lamar University, Beaumont, Texas 77710, United States
| | | | - Xiaodong Zhang
- Department
of Chemistry, Tulane University, 6400 Freret Street, New Orleans, Louisiana 70118-5698, United States
| | - Joel T. Mague
- Department
of Chemistry, Tulane University, 6400 Freret Street, New Orleans, Louisiana 70118-5698, United States
| | - Stephen Sproules
- WestCHEM,
School of Chemistry, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - James P. Donahue
- Department
of Chemistry, Tulane University, 6400 Freret Street, New Orleans, Louisiana 70118-5698, United States
| |
Collapse
|
3
|
Molčanov K, Milašinović V, Kojić-Prodić B, Maltar-Strmečki N, You J, Šantić A, Kanižaj L, Stilinović V, Fotović L. Semiconductive 2D arrays of pancake-bonded oligomers of partially charged TCNQ radicals. IUCRJ 2022; 9:449-467. [PMID: 35844480 PMCID: PMC9252159 DOI: 10.1107/s2052252522004717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 05/03/2022] [Indexed: 06/15/2023]
Abstract
Multicentre two-electron (mc/2e or 'pancake bonding') bonding between 7,7,8,8-tetra-cyano-quinodi-methane (TCNQ) radical anions was studied on its 14 novel salts with planar organic cations. The formal charges of the TCNQδ- moieties are -1/2 and -2/3, and they form mc/2e bonded dimers, trimers and tetramers which are further stacked into extended arrays. Multicentre bonding within these oligomers is characterized by short interplanar separations of 2.9-3.2 Å; distances between the oligomers are larger, typically >3.3 Å. The stacks are laterally connected by C-H⋯N hydrogen bonding, forming 2D arrays. The nature of mc/2e bonding is characterized by structural, magnetic and electrical data. The compounds are found to be semiconductors, and high conductivity [10-2 (Ω cm)-1] correlates with short interplanar distances between pancake-bonded oligomers.
Collapse
Affiliation(s)
- Krešimir Molčanov
- Department of Physical Chemistry, Rudjer Bošković Institute, Bijenička 54, Zagreb 10000, Croatia
| | - Valentina Milašinović
- Department of Physical Chemistry, Rudjer Bošković Institute, Bijenička 54, Zagreb 10000, Croatia
| | - Biserka Kojić-Prodić
- Department of Physical Chemistry, Rudjer Bošković Institute, Bijenička 54, Zagreb 10000, Croatia
| | - Nadica Maltar-Strmečki
- Department of Physical Chemistry, Rudjer Bošković Institute, Bijenička 54, Zagreb 10000, Croatia
| | - Jiangyang You
- Department of Physical Chemistry, Rudjer Bošković Institute, Bijenička 54, Zagreb 10000, Croatia
| | - Ana Šantić
- Department of Materials Chemistry, Rudjer Bošković Institute, Bijenička 54, Zagreb 10000, Croatia
| | - Lidija Kanižaj
- Department of Materials Physics, Rudjer Bošković Institute, Bijenička 54, Zagreb 10000, Croatia
| | - Vladimir Stilinović
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, Zagreb HR-10000, Croatia
| | - Luka Fotović
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, Zagreb HR-10000, Croatia
| |
Collapse
|
4
|
Molčanov K, Kojić-Prodić B. Towards understanding π-stacking interactions between non-aromatic rings. IUCRJ 2019; 6:156-166. [PMID: 30867913 PMCID: PMC6400184 DOI: 10.1107/s2052252519000186] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 01/04/2019] [Indexed: 05/16/2023]
Abstract
The first systematic study of π interactions between non-aromatic rings, based on the authors' own results from an experimental X-ray charge-density analysis assisted by quantum chemical calculations, is presented. The landmark (non-aromatic) examples include quinoid rings, planar radicals and metal-chelate rings. The results can be summarized as: (i) non-aromatic planar polyenic rings can be stacked, (ii) interactions are more pronounced between systems or rings with little or no π-electron delocalization (e.g. quinones) than those involving delocalized systems (e.g. aromatics), and (iii) the main component of the interaction is electrostatic/multipolar between closed-shell rings, whereas (iv) interactions between radicals involve a significant covalent contribution (multicentric bonding). Thus, stacking covers a wide range of interactions and energies, ranging from weak dispersion to unlocalized two-electron multicentric covalent bonding ('pancake bonding'), allowing a face-to-face stacking arrangement in some chemical species (quinone anions). The predominant interaction in a particular stacked system modulates the physical properties and defines a strategy for crystal engineering of functional materials.
Collapse
Affiliation(s)
- Krešimir Molčanov
- Department of Physical Chemistry, Rudjer Bošković Institute, Bijenička 54, Zagreb 10000, Croatia
| | - Biserka Kojić-Prodić
- Department of Physical Chemistry, Rudjer Bošković Institute, Bijenička 54, Zagreb 10000, Croatia
| |
Collapse
|
5
|
Molčanov K, Milašinović V, Ivić N, Stilinović V, Kolarić D, Kojić-Prodić B. Influence of organic cations on the stacking of semiquinone radical anions. CrystEngComm 2019. [DOI: 10.1039/c9ce00919a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of salts of tetrachloro- and tetrabromosemiquinone radical anions reveal four types of stacks: 1) pancake bonded dimers, 2) pancake-bonded trimers, 3) equidistant radicals and 4) a novel type of equidistant stacks of partially charged radicals.
Collapse
Affiliation(s)
| | | | - Nives Ivić
- Ruđer Bošković Institute
- Zagreb HR-10000
- Croatia
| | - Vladimir Stilinović
- Department of Chemistry
- Faculty of Science
- University of Zagreb
- Zagreb HR-10000
- Croatia
| | - Dinko Kolarić
- Special Hospital for Medical Rehabilitation
- Daruvarske Toplice
- Daruvar HR-43500
- Croatia
| | | |
Collapse
|