1
|
Ehstand N, Donner RV, López C, Hernández-García E. Network percolation provides early warnings of abrupt changes in coupled oscillatory systems: An explanatory analysis. Phys Rev E 2023; 108:054207. [PMID: 38115534 DOI: 10.1103/physreve.108.054207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 10/02/2023] [Indexed: 12/21/2023]
Abstract
Functional networks are powerful tools to study statistical interdependency structures in spatially extended or multivariable systems. They have been used to get insights into the dynamics of complex systems in various areas of science. In particular, percolation properties of correlation networks have been employed to identify early warning signals of critical transitions. In this work, we further investigate the corresponding potential of percolation measures for the anticipation of different types of sudden shifts in the state of coupled irregularly oscillating systems. As a paradigmatic model system, we study the dynamics of a ring of diffusively coupled noisy FitzHugh-Nagumo oscillators and show that, when the oscillators are nearly completely synchronized, the percolation-based precursors successfully provide very early warnings of the rapid switches between the two states of the system. We clarify the mechanisms behind the percolation transition by separating global trends given by the mean-field behavior from the synchronization of individual stochastic fluctuations. We then apply the same methodology to real-world data of sea surface temperature anomalies during different phases of the El Niño-Southern Oscillation. This leads to a better understanding of the factors that make percolation precursors effective as early warning indicators of incipient El Niño and La Niña events.
Collapse
Affiliation(s)
- Noémie Ehstand
- IFISC (CSIC-UIB), Instituto de Física Interdisciplinar y Sistemas Complejos, Campus Universitat de les Illes Balears, E-07122 Palma de Mallorca, Spain
| | - Reik V Donner
- Department of Water, Environment, Construction and Safety, Magdeburg-Stendal University of Applied Sciences, Breitscheidstraße 2, D-39114 Magdeburg, Germany
- Research Department IV-Complexity Science and Research Department I-Earth System Analysis, Potsdam Institute for Climate Impact Research (PIK)-Member of the Leibniz Association, Telegrafenberg A31, D-14473 Potsdam, Germany
| | - Cristóbal López
- IFISC (CSIC-UIB), Instituto de Física Interdisciplinar y Sistemas Complejos, Campus Universitat de les Illes Balears, E-07122 Palma de Mallorca, Spain
| | - Emilio Hernández-García
- IFISC (CSIC-UIB), Instituto de Física Interdisciplinar y Sistemas Complejos, Campus Universitat de les Illes Balears, E-07122 Palma de Mallorca, Spain
| |
Collapse
|
2
|
Network-based forecasting of climate phenomena. Proc Natl Acad Sci U S A 2021; 118:1922872118. [PMID: 34782455 DOI: 10.1073/pnas.1922872118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2021] [Indexed: 12/26/2022] Open
Abstract
Network theory, as emerging from complex systems science, can provide critical predictive power for mitigating the global warming crisis and other societal challenges. Here we discuss the main differences of this approach to classical numerical modeling and highlight several cases where the network approach substantially improved the prediction of high-impact phenomena: 1) El Niño events, 2) droughts in the central Amazon, 3) extreme rainfall in the eastern Central Andes, 4) the Indian summer monsoon, and 5) extreme stratospheric polar vortex states that influence the occurrence of wintertime cold spells in northern Eurasia. In this perspective, we argue that network-based approaches can gainfully complement numerical modeling.
Collapse
|
3
|
Sonone R, Gupte N. Precursors of the El Niño phenomenon: A climate network analysis. Phys Rev E 2021; 103:L040301. [PMID: 34005911 DOI: 10.1103/physreve.103.l040301] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 03/23/2021] [Indexed: 11/07/2022]
Abstract
The identification of precursors of climatic phenomena has enormous practical importance. Recent work constructs a climate network based on surface air temperature data to analyze the El Niño phenomena. We utilize microtransitions which occur before the discontinuous percolation transition in the network as well as other network quantities to identify a set of reliable precursors of El Niño episodes. These precursors identify 10 out of 13 El Niño episodes occurring in the period of 1979-2018 with an average lead time of approximately 6.4 months. We also find indicators of tipping events in the data.
Collapse
Affiliation(s)
- Rupali Sonone
- Department of Physics, Indian Institute of Technology Madras, Chennai 600036, India
| | - Neelima Gupte
- Department of Physics, Indian Institute of Technology Madras, Chennai 600036, India and Complex Systems and Dynamics Group, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
4
|
Fan J, Meng J, Ludescher J, Chen X, Ashkenazy Y, Kurths J, Havlin S, Schellnhuber HJ. Statistical physics approaches to the complex Earth system. PHYSICS REPORTS 2021; 896:1-84. [PMID: 33041465 PMCID: PMC7532523 DOI: 10.1016/j.physrep.2020.09.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 09/23/2020] [Indexed: 05/20/2023]
Abstract
Global warming, extreme climate events, earthquakes and their accompanying socioeconomic disasters pose significant risks to humanity. Yet due to the nonlinear feedbacks, multiple interactions and complex structures of the Earth system, the understanding and, in particular, the prediction of such disruptive events represent formidable challenges to both scientific and policy communities. During the past years, the emergence and evolution of Earth system science has attracted much attention and produced new concepts and frameworks. Especially, novel statistical physics and complex networks-based techniques have been developed and implemented to substantially advance our knowledge of the Earth system, including climate extreme events, earthquakes and geological relief features, leading to substantially improved predictive performances. We present here a comprehensive review on the recent scientific progress in the development and application of how combined statistical physics and complex systems science approaches such as critical phenomena, network theory, percolation, tipping points analysis, and entropy can be applied to complex Earth systems. Notably, these integrating tools and approaches provide new insights and perspectives for understanding the dynamics of the Earth systems. The overall aim of this review is to offer readers the knowledge on how statistical physics concepts and theories can be useful in the field of Earth system science.
Collapse
Affiliation(s)
- Jingfang Fan
- Potsdam Institute for Climate Impact Research, Potsdam 14412, Germany
- School of Systems Science, Beijing Normal University, Beijing 100875, China
| | - Jun Meng
- School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China
- Potsdam Institute for Climate Impact Research, Potsdam 14412, Germany
| | - Josef Ludescher
- Potsdam Institute for Climate Impact Research, Potsdam 14412, Germany
| | - Xiaosong Chen
- School of Systems Science, Beijing Normal University, Beijing 100875, China
| | - Yosef Ashkenazy
- Department of Solar Energy and Environmental Physics, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion 84990, Israel
| | - Jürgen Kurths
- Potsdam Institute for Climate Impact Research, Potsdam 14412, Germany
- Department of Physics, Humboldt University, 10099 Berlin, Germany
- Lobachevsky University of Nizhny Novgorod, Nizhnij Novgorod 603950, Russia
| | - Shlomo Havlin
- Department of Physics, Bar Ilan University, Ramat Gan 52900, Israel
| | - Hans Joachim Schellnhuber
- Potsdam Institute for Climate Impact Research, Potsdam 14412, Germany
- Department of Earth System Science, Tsinghua University, 100084 Beijing, China
| |
Collapse
|
5
|
Pseudo-Darwinian evolution of physical flows in complex networks. Sci Rep 2020; 10:15477. [PMID: 32968126 PMCID: PMC7511406 DOI: 10.1038/s41598-020-72379-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 07/28/2020] [Indexed: 12/04/2022] Open
Abstract
The evolution of complex transport networks is investigated under three strategies of link removal: random, intentional attack and “Pseudo-Darwinian” strategy. At each evolution step and regarding the selected strategy, one removes either a randomly chosen link, or the link carrying the strongest flux, or the link with the weakest flux, respectively. We study how the network structure and the total flux between randomly chosen source and drain nodes evolve. We discover a universal power-law decrease of the total flux, followed by an abrupt transport collapse. The time of collapse is shown to be determined by the average number of links per node in the initial network, highlighting the importance of this network property for ensuring safe and robust transport against random failures, intentional attacks and maintenance cost optimizations.
Collapse
|
6
|
Zappalà DA, Barreiro M, Masoller C. Uncovering temporal regularity in atmospheric dynamics through Hilbert phase analysis. CHAOS (WOODBURY, N.Y.) 2019; 29:051101. [PMID: 31154786 DOI: 10.1063/1.5091817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 04/09/2019] [Indexed: 06/09/2023]
Abstract
Uncovering meaningful regularities in complex oscillatory signals is a challenging problem with applications across a wide range of disciplines. Here, we present a novel approach, based on the Hilbert transform (HT). We show that temporal periodicity can be uncovered by averaging the signal in a moving window of appropriated length, τ, before applying the HT. As a case study, we investigate global gridded surface air temperature (SAT) datasets. By analyzing the variation of the mean rotation period, T¯, of the Hilbert phase as a function of τ, we discover well-defined plateaus. In many geographical regions, the plateau corresponds to the expected 1-yr solar cycle; however, in regions where SAT dynamics is highly irregular, the plateaus reveal non-trivial periodicities, which can be interpreted in terms of climatic phenomena such as El Niño. In these regions, we also find that Fourier analysis is unable to detect the periodicity that emerges when τ increases and gradually washes out SAT variability. The values of T¯ obtained for different τs are then given to a standard machine learning algorithm. The results demonstrate that these features are informative and constitute a new approach for SAT time series classification. To support these results, we analyze the synthetic time series generated with a simple model and confirm that our method extracts information that is fully consistent with our knowledge of the model that generates the data. Remarkably, the variation of T¯ with τ in the synthetic data is similar to that observed in the real SAT data. This suggests that our model contains the basic mechanisms underlying the unveiled periodicities. Our results demonstrate that Hilbert analysis combined with temporal averaging is a powerful new tool for discovering hidden temporal regularity in complex oscillatory signals.
Collapse
Affiliation(s)
- Dario A Zappalà
- Departament de Física, Universitat Politècnica de Catalunya, Rambla St. Nebridi 22, 08222 Terrassa, Barcelona, Spain
| | - Marcelo Barreiro
- Instituto de Física, Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo 11400, Uruguay
| | - Cristina Masoller
- Departament de Física, Universitat Politècnica de Catalunya, Rambla St. Nebridi 22, 08222 Terrassa, Barcelona, Spain
| |
Collapse
|
7
|
Meng J, Fan J, Ashkenazy Y, Havlin S. Percolation framework to describe El Niño conditions. CHAOS (WOODBURY, N.Y.) 2017; 27:035807. [PMID: 28364749 DOI: 10.1063/1.4975766] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Complex networks have been used intensively to investigate the flow and dynamics of many natural systems including the climate system. Here, we develop a percolation based measure, the order parameter, to study and quantify climate networks. We find that abrupt transitions of the order parameter usually occur ∼1 year before El Niño events, suggesting that they can be used as early warning precursors of El Niño. Using this method, we analyze several reanalysis datasets and show the potential for good forecasting of El Niño. The percolation based order parameter exhibits discontinuous features, indicating a possible relation to the first order phase transition mechanism.
Collapse
Affiliation(s)
- Jun Meng
- Department of Physics, Bar Ilan University, Ramat Gan 52900, Israel
| | - Jingfang Fan
- Department of Physics, Bar Ilan University, Ramat Gan 52900, Israel
| | - Yosef Ashkenazy
- Solar Energy and Environmental Physics, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beersheba, 84996, Israel
| | - Shlomo Havlin
- Department of Physics, Bar Ilan University, Ramat Gan 52900, Israel
| |
Collapse
|
8
|
Donner RV, Hernández-García E, Ser-Giacomi E. Introduction to Focus Issue: Complex network perspectives on flow systems. CHAOS (WOODBURY, N.Y.) 2017; 27:035601. [PMID: 28364738 DOI: 10.1063/1.4979129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
During the last few years, complex network approaches have demonstrated their great potentials as versatile tools for exploring the structural as well as dynamical properties of dynamical systems from a variety of different fields. Among others, recent successful examples include (i) functional (correlation) network approaches to infer hidden statistical interrelationships between macroscopic regions of the human brain or the Earth's climate system, (ii) Lagrangian flow networks allowing to trace dynamically relevant fluid-flow structures in atmosphere, ocean or, more general, the phase space of complex systems, and (iii) time series networks unveiling fundamental organization principles of dynamical systems. In this spirit, complex network approaches have proven useful for data-driven learning of dynamical processes (like those acting within and between sub-components of the Earth's climate system) that are hidden to other analysis techniques. This Focus Issue presents a collection of contributions addressing the description of flows and associated transport processes from the network point of view and its relationship to other approaches which deal with fluid transport and mixing and/or use complex network techniques.
Collapse
Affiliation(s)
- Reik V Donner
- Research Domain IV - Transdisciplinary Concepts and Methods, Potsdam Institute for Climate Impact Research, Telegrafenberg A31, 14473 Potsdam, Germany
| | - Emilio Hernández-García
- IFISC (CSIC-UIB), Instituto de Física Interdisciplinar y Sistemas Complejos, Campus Universitat de les Illes Balears, E-07122 Palma de Mallorca, Spain
| | - Enrico Ser-Giacomi
- École Normale Supérieure, PSL Research University, CNRS, Inserm, Institut de Biologie de l'École Normale Supérieure (IBENS), F-75005 Paris, France
| |
Collapse
|