1
|
Hiraishi N, Gondo T, Shimada Y, Hill R, Hayashi F. Crystallographic and Physicochemical Analysis of Bovine and Human Teeth Using X-ray Diffraction and Solid-State Nuclear Magnetic Resonance. J Funct Biomater 2022; 13:jfb13040254. [PMID: 36412897 PMCID: PMC9680385 DOI: 10.3390/jfb13040254] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
Dental research often uses bovine teeth as a substitute for human teeth. The aim of this study was to evaluate differences in the crystalline nanostructures of enamel and dentin between bovine and human teeth, using X-ray diffraction (XRD) and solid-state nuclear magnetic resonance (NMR). The crystallite size (crystallinity) and microstrains were analyzed using XRD with the Rietveld refinement technique and the Halder-Wagner method. The 31P and 1H NMR chemical environments were analyzed by two-dimensional (2D) 1H-31P heteronuclear-correlation (HETCOR) magic-angle spinning (MAS) NMR spectroscopy. Enamel had a greater crystallite size and fewer microstrains than dentin for both bovine and human teeth. When compared between the species, the bovine apatite had a smaller crystallite size with more microstrains than the human apatite for both dentin and enamel. The 2D HETCOR spectra demonstrated that a water-rich layer and inorganic HPO4- ions were abundant in dentin; meanwhile, the hydroxyl group in the lattice site was more dominant in enamel. A greater intensity of the hydroxyl group was detected in human than in bovine for both dentin and enamel. For 31P projections, bovine dentin and bovine enamel have wider linewidths than human dentin and human enamel, respectively. There are differences in the crystallite profile between human and bovine. The results of dental research should be interpreted with caution when bovine teeth are substituted for human teeth.
Collapse
Affiliation(s)
- Noriko Hiraishi
- Department of Cariology and Operative Dentistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8549, Japan
- Correspondence:
| | - Tadamu Gondo
- Department of Cariology and Operative Dentistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8549, Japan
| | - Yasushi Shimada
- Department of Cariology and Operative Dentistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8549, Japan
| | - Robert Hill
- Dental Physical Sciences Unit, Institute of Dentistry, Queen Mary University of London, London E1 4NS, UK
| | - Fumiaki Hayashi
- NMR Operation Team, Laboratory for Advanced NMR Application and Development, RIKEN Center for Biosystems Dynamics Research, Yokohama 230-0045, Japan
| |
Collapse
|
2
|
Lopez Kolkovsky AL, Carlier PG, Marty B, Meyerspeer M. Interleaved and simultaneous multi-nuclear magnetic resonance in vivo. Review of principles, applications and potential. NMR IN BIOMEDICINE 2022; 35:e4735. [PMID: 35352440 PMCID: PMC9542607 DOI: 10.1002/nbm.4735] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/03/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
Magnetic resonance signals from different nuclei can be excited or received at the same time,rendering simultaneous or rapidly interleaved multi-nuclear acquisitions feasible. The advan-tages are a reduction of total scan time compared to sequential multi-nuclear acquisitions or that additional information from heteronuclear data is obtained at thesame time and anatomical position. Information content can be qualitatively increased by delivering a more comprehensive MR-based picture of a transient state (such as an exercise bout). Also, combiningnon-proton MR acquisitions with 1 Hinformation (e.g., dynamic shim updates and motion correction) can be used to improve data quality during long scans and benefits image coregistration. This work reviews the literature on interleaved and simultaneous multi-nuclear MRI and MRS in vivo. Prominent use cases for this methodology in clinical and research applications are brain and muscle, but studies have also been carried out in other targets, including the lung, knee, breast and heart. Simultaneous multi-nuclear measurements in the liver and kidney have also been performed, but exclusively in rodents. In this review, a consistent nomenclature is proposed, to help clarify the terminology used for this principle throughout the literature on in-vivo MR. An overview covers the basic principles, the technical requirements on the MR scanner and the implementations realised either by MR system vendors or research groups, from the early days until today. Considerations regarding the multi-tuned RF coils required and heteronuclear polarisation interactions are briefly discussed, and fields for future in-vivo applications for interleaved multi-nuclear MR pulse sequences are identified.
Collapse
Affiliation(s)
- Alfredo L. Lopez Kolkovsky
- NMR Laboratory, Neuromuscular Investigation CenterInstitute of MyologyParisFrance
- NMR laboratoryCEA, DRF, IBFJParisFrance
| | - Pierre G. Carlier
- NMR Laboratory, Neuromuscular Investigation CenterInstitute of MyologyParisFrance
- NMR laboratoryCEA, DRF, IBFJParisFrance
| | - Benjamin Marty
- NMR Laboratory, Neuromuscular Investigation CenterInstitute of MyologyParisFrance
- NMR laboratoryCEA, DRF, IBFJParisFrance
| | - Martin Meyerspeer
- High‐Field MR Center, Center for Medical Physics and Biomedical EngineeringMedical University of ViennaViennaAustria
| |
Collapse
|
3
|
Mastrogiacomo S, Dou W, Jansen JA, Walboomers XF. Magnetic Resonance Imaging of Hard Tissues and Hard Tissue Engineered Bio-substitutes. Mol Imaging Biol 2020; 21:1003-1019. [PMID: 30989438 DOI: 10.1007/s11307-019-01345-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Magnetic resonance imaging (MRI) is a non-invasive diagnostic imaging tool based on the detection of protons into the tissues. This imaging technique is remarkable because of high spatial resolution, strong soft tissue contrast and specificity, and good depth penetration. However, MR imaging of hard tissues, such as bone and teeth, remains challenging due to low proton content in such tissues as well as to very short transverse relaxation times (T2). To overcome these issues, new MRI techniques, such as sweep imaging with Fourier transformation (SWIFT), ultrashort echo time (UTE) imaging, and zero echo time (ZTE) imaging, have been developed for hard tissues imaging with promising results reported. Within this article, MRI techniques developed for the detection of hard tissues, such as bone and dental tissues, have been reviewed. The main goal was thus to give a comprehensive overview on the corresponding (pre-) clinical applications and on the potential future directions with such techniques applied. In addition, a section dedicated to MR imaging of novel biomaterials developed for hard tissue applications was given as well.
Collapse
Affiliation(s)
- Simone Mastrogiacomo
- Department of Biomaterials, Radboud University Medical Center, Philips van Leijdenlaan 25, 6525 EX, Nijmegen, The Netherlands.
- Laboratory of Functional and Molecular Imaging, NINDS, National Institutes of Health, Building 10, 5S261, Bethesda, MD, 20892, USA.
| | - Weiqiang Dou
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, The Netherlands
- GE Healthcare, MR Research, Beijing, People's Republic of China
| | - John A Jansen
- Department of Biomaterials, Radboud University Medical Center, Philips van Leijdenlaan 25, 6525 EX, Nijmegen, The Netherlands
| | - X Frank Walboomers
- Department of Biomaterials, Radboud University Medical Center, Philips van Leijdenlaan 25, 6525 EX, Nijmegen, The Netherlands
| |
Collapse
|
4
|
Weiger M, Pruessmann KP. Short-T 2 MRI: Principles and recent advances. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2019; 114-115:237-270. [PMID: 31779882 DOI: 10.1016/j.pnmrs.2019.07.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/14/2019] [Accepted: 07/26/2019] [Indexed: 06/10/2023]
Abstract
Among current modalities of biomedical and diagnostic imaging, MRI stands out by virtue of its versatile contrast obtained without ionizing radiation. However, in various cases, e.g., water protons in tissues such as bone, tendon, and lung, MRI performance is limited by the rapid decay of resonance signals associated with short transverse relaxation times T2 or T2*. Efforts to address this shortcoming have led to a variety of specialized short-T2 techniques. Recent progress in this field expands the choice of methods and prompts fresh considerations with regard to instrumentation, data acquisition, and signal processing. In this review, the current status of short-T2 MRI is surveyed. In an attempt to structure the growing range of techniques, the presentation highlights overarching concepts and basic methodological options. The most frequently used approaches are described in detail, including acquisition strategies, image reconstruction, hardware requirements, means of introducing contrast, sources of artifacts, limitations, and applications.
Collapse
Affiliation(s)
- Markus Weiger
- Institute for Biomedical Engineering, ETH Zurich and University of Zurich, Zurich, Switzerland.
| | - Klaas P Pruessmann
- Institute for Biomedical Engineering, ETH Zurich and University of Zurich, Zurich, Switzerland
| |
Collapse
|
5
|
A theranostic dental pulp capping agent with improved MRI and CT contrast and biological properties. Acta Biomater 2017; 62:340-351. [PMID: 28842333 DOI: 10.1016/j.actbio.2017.08.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 07/12/2017] [Accepted: 08/12/2017] [Indexed: 11/21/2022]
Abstract
Different materials have been used for vital dental pulp treatment. Preferably a pulp capping agent should show appropriate biological performance, excellent handling properties, and a good imaging contrast. These features can be delivered into a single material through the combination of therapeutic and diagnostic agents (i.e. theranostic). Calcium phosphate based composites (CPCs) are potentially ideal candidate for pulp treatment, although poor imaging contrast and poor dentino-inductive properties are limiting their clinical use. In this study, a theranostic dental pulp capping agent was developed. First, imaging properties of the CPC were improved by using a core-shell structured dual contrast agent (csDCA) consisting of superparamagnetic iron oxide (SPIO) and colloidal gold, as MRI and CT contrast agent respectively. Second, biological properties were implemented by using a dentinogenic factor (i.e. bone morphogenetic protein 2, BMP-2). The obtained CPC/csDCA/BMP-2 composite was tested in vivo, as direct pulp capping agent, in a male Habsi goat incisor model. Our outcomes showed no relevant alteration of the handling and mechanical properties (e.g. setting time, injectability, and compressive strength) by the incorporation of csDCA particles. In vivo results proved MRI contrast enhancement up to 7weeks. Incisors treated with BMP-2 showed improved tertiary dentin deposition as well as faster cement degradation as measured by µCT assessment. In conclusion, the presented theranostic agent matches the imaging and regenerative requirements for pulp capping applications. STATEMENT OF SIGNIFICANCE In this study, we combined diagnostic and therapeutic agents in order to developed a theranostic pulp capping agent with enhanced MRI and CT contrast and improved dentin regeneration ability. In our study we cover all the steps from material preparation, mechanical and in vitro characterization, to in vivo study in a goat dental model. To the best of our knowledge, this is the first time that a theranostic pulp capping material have been developed and tested in an in vivo animal model. Our promising results in term of imaging contrast enhancement and of induction of new dentin formation, open a new scenario in the development of innovative dental materials.
Collapse
|
6
|
Yon M, Sarou-Kanian V, Scheler U, Bouler JM, Bujoli B, Massiot D, Fayon F. Solid-state 31P and 1H chemical MR micro-imaging of hard tissues and biomaterials with magic angle spinning at very high magnetic field. Sci Rep 2017; 7:8224. [PMID: 28811630 PMCID: PMC5557955 DOI: 10.1038/s41598-017-08458-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 07/10/2017] [Indexed: 11/09/2022] Open
Abstract
In this work, we show that it is possible to overcome the limitations of solid-state MRI for rigid tissues due to large line broadening and short dephasing times by combining Magic Angle Spinning (MAS) with rotating pulsed field gradients. This allows recording ex vivo 31P 3D and 2D slice-selected images of rigid tissues and related biomaterials at very high magnetic field, with greatly improved signal to noise ratio and spatial resolution when compared to static conditions. Cross-polarization is employed to enhance contrast and to further depict spatially localized chemical variations in reduced experimental time. In these materials, very high magnetic field and moderate MAS spinning rate directly provide high spectral resolution and enable the use of frequency selective excitation schemes for chemically selective imaging. These new possibilities are exemplified with experiments probing selectively the 3D spatial distribution of apatitic hydroxyl protons inside a mouse tooth with attached jaw bone with a nominal isotropic resolution nearing 100 µm.
Collapse
Affiliation(s)
- Maxime Yon
- CNRS, CEMHTI UPR3079, Université d'Orléans, F-45071, Orléans, France.
| | | | - Ulrich Scheler
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Str. 6, Dresden, Germany
| | - Jean-Michel Bouler
- CEISAM, Université de Nantes, CNRS, 2 rue de la Houssinière, BP 92208, 44322, Nantes, Cedex 3, France
| | - Bruno Bujoli
- CEISAM, Université de Nantes, CNRS, 2 rue de la Houssinière, BP 92208, 44322, Nantes, Cedex 3, France
| | - Dominique Massiot
- CNRS, CEMHTI UPR3079, Université d'Orléans, F-45071, Orléans, France
| | - Franck Fayon
- CNRS, CEMHTI UPR3079, Université d'Orléans, F-45071, Orléans, France.
| |
Collapse
|
7
|
Aranaz I, Martínez-Campos E, Moreno-Vicente C, Civantos A, García-Arguelles S, Del Monte F. Macroporous Calcium Phosphate/Chitosan Composites Prepared via Unidirectional Ice Segregation and Subsequent Freeze-Drying. MATERIALS 2017; 10:ma10050516. [PMID: 28772874 PMCID: PMC5459033 DOI: 10.3390/ma10050516] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 04/24/2017] [Accepted: 05/01/2017] [Indexed: 01/06/2023]
Abstract
Calcium phosphate chitosan-based composites have gained much interest in recent years for biomedical purposes. In this paper, three-dimensional calcium phosphate chitosan-based composites with different mineral contents were produced using a green method called ice segregation induced self-assembly (ISISA). In this methodology, ice crystals were used as a template to produce porous structures from an aqueous solution of chitosan (CS) and hydroxyapatite (Hap) also containing acetic acid (pH = 4.5). For better characterization of the nature of the inorganic matter entrapped within the resulting composite, we performed either oxygen plasma or calcination processes to remove the organic matter. The nature of the phosphate salts was studied by XRD and NMR studies. Amorphous calcium phosphate (ACP) was identified as the mineral phase in the composites submitted to oxygen plasma, whereas crystalline Hap was obtained after calcination. SEM microscopy revealed the formation of porous structures (porosity around 80–85%) in the original composites, as well as in the inorganic matrices obtained after calcination, with porous channels of up to 50 µm in diameter in the former case and of up to 20 µm in the latter. The biocompatibility of the composites was assessed using two different cell lines: C2C12GFP premyoblastic cells and MC3T3 preosteoblastic cells.
Collapse
Affiliation(s)
- Inmaculada Aranaz
- Instituto de Ciencia de Materiales de Madrid-ICMM, Consejo Superior de Investigaciones Científicas-CSIC, Cantoblanco 28049, Madrid, Spain.
| | - Enrique Martínez-Campos
- Tissue Engineering Group, Institute of Biofunctional Studies, Associated Unit to the Institute of Polymer Science and Technology (CSIC), Pharmacy Faculty, Complutense University of Madrid (UCM), Paseo Juan 23, n1 28040, Madrid, Spain.
| | - Carolina Moreno-Vicente
- Tissue Engineering Group, Institute of Biofunctional Studies, Associated Unit to the Institute of Polymer Science and Technology (CSIC), Pharmacy Faculty, Complutense University of Madrid (UCM), Paseo Juan 23, n1 28040, Madrid, Spain.
| | - Ana Civantos
- Tissue Engineering Group, Institute of Biofunctional Studies, Associated Unit to the Institute of Polymer Science and Technology (CSIC), Pharmacy Faculty, Complutense University of Madrid (UCM), Paseo Juan 23, n1 28040, Madrid, Spain.
| | - Sara García-Arguelles
- Instituto de Ciencia de Materiales de Madrid-ICMM, Consejo Superior de Investigaciones Científicas-CSIC, Cantoblanco 28049, Madrid, Spain.
- Departamento de Tecnología Química y Energética, Tecnología Química y Ambiental y Tecnología Mecánica y Química Analítica, Universidad Rey Juan Carlos, Móstoles 28933, Madrid, Spain.
| | - Francisco Del Monte
- Instituto de Ciencia de Materiales de Madrid-ICMM, Consejo Superior de Investigaciones Científicas-CSIC, Cantoblanco 28049, Madrid, Spain.
| |
Collapse
|