1
|
Alqahtani FH, Măndoiu II, Al-Shomrani BM, Al-Hashmi S, Jamshidi-Adegani F, Al-Kindi J, Golachowski A, Golachowska B, Al-Jabri AK, Manee MM. First Mitogenome of the Critically Endangered Arabian Leopard ( Panthera pardus nimr). Animals (Basel) 2025; 15:1562. [PMID: 40509028 PMCID: PMC12153558 DOI: 10.3390/ani15111562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2025] [Revised: 05/15/2025] [Accepted: 05/24/2025] [Indexed: 06/16/2025] Open
Abstract
The Arabian leopard (Panthera pardus nimr), a critically endangered subspecies endemic to the Arabian Peninsula, faces severe threats from habitat loss, prey depletion, and inbreeding, with fewer than 200 individuals remaining. Genomic resources for this subspecies have been scarce, limiting insights into its evolutionary history and conservation needs. Here, we present the first complete mitochondrial DNA (mtDNA) sequence of P. pardus nimr, derived from a wild-born male sampled at the Oman Wildlife Breeding Centre in 2023. Using PacBio HiFi sequencing, we assembled a 16,781 bp mitogenome (GenBank: PQ283265) comprising 13 protein-coding genes, 22 tRNA genes, two rRNA genes, and a control region, with a GC content of 40.94%. Phylogenetic analysis, incorporating 17 Panthera mtDNA sequences, positions P. pardus nimr closest to African leopard populations from South Africa (Panthera pardus), while distinguishing it from Asian subspecies (P. pardus japonensis and P. pardus orientalis). This mitogenome reveals conserved vertebrate mitochondrial structure and provides a critical tool for studying Panthera genus evolution. Moreover, it enhances conservation genetics efforts for P. pardus nimr by enabling population structure analysis and informing breeding strategies to strengthen its survival.
Collapse
Affiliation(s)
- Fahad H. Alqahtani
- National Center for Bioinformatics, King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia; (F.H.A.); (B.M.A.-S.)
- Advanced Agricultural and Food Technologies Institute, King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia
| | - Ion I. Măndoiu
- Computer Science and Engineering Department, University of Connecticut, Storrs, CT 06269, USA
| | - Badr M. Al-Shomrani
- National Center for Bioinformatics, King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia; (F.H.A.); (B.M.A.-S.)
- Advanced Agricultural and Food Technologies Institute, King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia
| | - Sulaiman Al-Hashmi
- Laboratory for Stem Cell and Regenerative Medicine, Natural and Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
| | - Fatemeh Jamshidi-Adegani
- Laboratory for Stem Cell and Regenerative Medicine, Natural and Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
| | - Juhaina Al-Kindi
- Laboratory for Stem Cell and Regenerative Medicine, Natural and Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
| | | | | | | | - Manee M. Manee
- National Center for Bioinformatics, King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia; (F.H.A.); (B.M.A.-S.)
- Advanced Agricultural and Food Technologies Institute, King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia
| |
Collapse
|
2
|
Ogolowa BO, Brelsford A, Fjeldså J, Fulgione A, Hadjioannou L, Henderson EC, Moyle RG, Moysi M, Nwankwo EC, Rancilhac L, Smith TB, von Holdt BM, Kirschel ANG. Plio-Pleistocene Climatic Fluctuations and Divergence With Gene Flow Drive Continent-Wide Diversification in an African Bird. Mol Ecol 2025; 34:e17770. [PMID: 40259458 PMCID: PMC12051741 DOI: 10.1111/mec.17770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 04/01/2025] [Accepted: 04/07/2025] [Indexed: 04/23/2025]
Abstract
Diversification mechanisms in Sub-Saharan Africa have long attracted research interest, with varying support for either allopatric or parapatric models of speciation. However, studies have seldom been performed across the entire continent, a scale which could elucidate the relative importance of allopatric and parapatric models of divergence. To shed light on continental-scale patterns of African biogeography and diversification, we investigated the historical demography of a bird with a continent-wide distribution in Sub-Saharan Africa, the Yellow-Rumped Tinkerbird, Pogoniulus bilineatus. We sampled populations from across the continent and, using genomic data, assessed genetic diversity, structure, and differentiation, reconstructed the phylogeny, and performed alternative demographic model selection between neighbouring clade pairs. We uncovered substantial genetic structure and differentiation patterns which corroborated the phylogenetic topology. Structure was chiefly influenced by the arid corridor, a postulated biogeographical barrier in Sub-Saharan Africa. Moreover, peak genetic diversities coincided with postulated refugial areas while demographic reconstructions between genetic lineages supported allopatric models consistent with the Pleistocene Forest Refuge hypothesis. However, within lineages, divergence with gene flow was supported. Continent-wide patterns of diversification involve an integration of both allopatric and parapatric mechanisms, with a role for both periods of divergence in isolation and across ecological gradients. Furthermore, our study emphasises the importance of the arid corridor as a primary biogeographical feature across which diversification occurs, yet one that has hitherto received scant attention regarding its importance in avian diversification in Sub-Saharan Africa.
Collapse
Affiliation(s)
| | - Alan Brelsford
- Department of Evolution, Ecology and Organismal BiologyUniversity of California RiversideRiversideCaliforniaUSA
| | - Jon Fjeldså
- Natural History of Museum, DenmarkUniversity of CopenhagenCopenhagenDenmark
| | - Andrea Fulgione
- Max Planck Institute for Plant Breeding ResearchCologneGermany
| | | | - Elisa C. Henderson
- Department of Evolution, Ecology and Organismal BiologyUniversity of California RiversideRiversideCaliforniaUSA
| | - Robert G. Moyle
- Biodiversity Institute and Department of Ecology and Evolutionary BiologyUniversity of KansasLawrenceKansasUSA
| | - Michaella Moysi
- Department of Biological SciencesUniversity of CyprusNicosiaCyprus
| | | | - Loïs Rancilhac
- Department of Biological SciencesUniversity of CyprusNicosiaCyprus
| | - Thomas B. Smith
- Department of Ecology and Evolutionary Biology and Institute of the Environment and SustainabilityUniversity of California Los AngelesLos AngelesCaliforniaUSA
| | - Bridgett M. von Holdt
- Department of Ecology and Evolutionary BiologyPrinceton UniversityPrincetonNew JerseyUSA
| | - Alexander N. G. Kirschel
- Department of Biological SciencesUniversity of CyprusNicosiaCyprus
- Department of Ecology and Evolutionary Biology and Institute of the Environment and SustainabilityUniversity of California Los AngelesLos AngelesCaliforniaUSA
| |
Collapse
|
3
|
Dussex N, Jansson I, van der Valk T, Packer C, Norman A, Kissui BM, E Mjingo E, Spong G. Constraints to gene flow increase the risk of genome erosion in the Ngorongoro Crater lion population. Commun Biol 2025; 8:640. [PMID: 40258987 PMCID: PMC12012037 DOI: 10.1038/s42003-025-07986-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 03/21/2025] [Indexed: 04/23/2025] Open
Abstract
Small, isolated populations are at greater risk of genome erosion than larger populations. Successful conservation efforts may lead to demographic recovery and mitigate the negative genetic effects of bottlenecks. However, constrained gene flow can hamper genomic recovery. Here, we use population genomic analyses and forward simulations to assess the genomic impacts of near extinction in the isolated Ngorongoro Crater lion (Panthera leo) sub-population. We show that 200 years of quasi-isolation and the recent epizootic in 1962 resulted in a two-fold increase in inbreeding and an excess in the frequency of highly deleterious mutations relative to other populations of the Greater Serengeti. There was little evidence for purging of genetic load. Furthermore, forward simulations indicate that higher gene flow from outside of the Crater is needed to prevent future genomic erosion in the population, with a minimum of one to five effective male migrants per decade required to reduce the risk of long-term inbreeding depression and reduction in genetic diversity. Our results suggest that in spite of a rapid post-epizootic demographic recovery since the 1970s, continued isolation of the population driven by habitat fragmentation and potentially male territoriality, exacerbate the effects of genome erosion.
Collapse
Affiliation(s)
- Nicolas Dussex
- Department of Population Analysis and Monitoring, Swedish Museum of Natural History, SE-106 91, Stockholm, Sweden.
| | - Ingela Jansson
- Molecular Ecology Group, Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, SE-901 83, Umeå, Sweden
| | - Tom van der Valk
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, SE-106 91, Stockholm, Sweden
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, SE-106 91, Stockholm, Sweden
| | - Craig Packer
- Department of Ecology, Evolution and Behavior, University of Minnesota, MN 55108, St. Paul, MN, USA
| | - Anita Norman
- Molecular Ecology Group, Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, SE-901 83, Umeå, Sweden
| | - Bernard M Kissui
- School for Field Studies, Centre for Wildlife Management Studies, Karatu, Tanzania
| | - Ernest E Mjingo
- Tanzania Wildlife Research Institute (TAWIRI), Arusha, Tanzania
| | - Göran Spong
- Molecular Ecology Group, Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, SE-901 83, Umeå, Sweden.
- Luke, FI 00790, Helsinki, Finland.
| |
Collapse
|
4
|
Nanova O, Cooper DM, Kitchener AC, Kerley GIH, Gnoske TP, Kerbis Peterhans JC, Simeonovski V, Patterson BD, Macdonald DW, Yamaguchi N. Skull morphology analysis suggests the extinct Cape lion, Panthera leo melanochaita (Smith, 1842), is not distinctive. Sci Rep 2024; 14:24251. [PMID: 39414828 PMCID: PMC11484747 DOI: 10.1038/s41598-024-74225-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/24/2024] [Indexed: 10/18/2024] Open
Abstract
The lion (Panthera leo) was extirpated from the Cape region of South Africa during the mid-nineteenth century. Whilst historically classified as a distinct subspecies known as the Cape lion (P. l. melanochaita), recent molecular studies challenge the distinctiveness of this population, suggesting that it represents the southernmost population of the species' Southern Clade. The Cape lion is often cited as having a distinctive skull morphology, which has justified its subspecific classification, but only a limited number of specimens have been available for examination, so that the Cape lion's skull morphology has not been satisfactorily understood. In this study we collected morphometric data from a greatly enlarged sample of 22 Cape lion skulls, including 12 adults, constituting the largest sample size analysed for this possible subspecies. The results suggest that (1) morphological characteristics of the skull previously thought to distinguish the Cape lion are not diagnostic, and (2) nor is the skull morphology of male and female Cape lions distinct from that of males and females of other southern African lions. Our results independently support those based on molecular investigations, which suggest that the Cape lion was not distinct from other lions within the Southern Clade.
Collapse
Affiliation(s)
- Olga Nanova
- Division of Mammals, Zoological Museum, M.V. Lomonosov Moscow State University, Ul. Bol'shaya Nikitskaya 6, 125009, Moscow, Russian Federation
| | - David M Cooper
- Department of Natural Sciences, National Museums Scotland, Edinburgh, EH1 1JF, UK
- Institute of Geography, School of Geosciences, University of Edinburgh, Edinburgh, EH8 9YL, UK
| | - Andrew C Kitchener
- Department of Natural Sciences, National Museums Scotland, Edinburgh, EH1 1JF, UK
- Institute of Geography, School of Geosciences, University of Edinburgh, Edinburgh, EH8 9YL, UK
| | - Graham I H Kerley
- Centre for African Conservation Ecology, Department of Zoology, Nelson Mandela University, PO Box 77000, Gqeberha, 6031, South Africa
| | - Thomas P Gnoske
- Negaunee Integrative Research Center, Field Museum of Natural History, 1400 S. DuSable Lake Shore Drive, Chicago, IL, 60605-2827, USA
| | - Julian C Kerbis Peterhans
- Negaunee Integrative Research Center, Field Museum of Natural History, 1400 S. DuSable Lake Shore Drive, Chicago, IL, 60605-2827, USA
- College of Arts and Sciences, Roosevelt University, 430 South Michigan Avenue 1856, Chicago, IL, 60605, USA
| | - Velizar Simeonovski
- Negaunee Integrative Research Center, Field Museum of Natural History, 1400 S. DuSable Lake Shore Drive, Chicago, IL, 60605-2827, USA
| | - Bruce D Patterson
- Negaunee Integrative Research Center, Field Museum of Natural History, 1400 S. DuSable Lake Shore Drive, Chicago, IL, 60605-2827, USA
| | - David W Macdonald
- WildCRU, Department of Biology, University of Oxford, Recanati-Kaplan Centre, Tubney House, Abingdon Road, Tubney, Abingdon, OX13 5QL, UK
| | - Nobuyuki Yamaguchi
- WildCRU, Department of Biology, University of Oxford, Recanati-Kaplan Centre, Tubney House, Abingdon Road, Tubney, Abingdon, OX13 5QL, UK.
- Institute of Tropical Biodiversity and Sustainable Development, University of Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia.
| |
Collapse
|
5
|
Talenti A, Wilkinson T, Cook EA, Hemmink JD, Paxton E, Mutinda M, Ngulu SD, Jayaraman S, Bishop RP, Obara I, Hourlier T, Garcia Giron C, Martin FJ, Labuschagne M, Atimnedi P, Nanteza A, Keyyu JD, Mramba F, Caron A, Cornelis D, Chardonnet P, Fyumagwa R, Lembo T, Auty HK, Michaux J, Smitz N, Toye P, Robert C, Prendergast JGD, Morrison LJ. Continent-wide genomic analysis of the African buffalo (Syncerus caffer). Commun Biol 2024; 7:792. [PMID: 38951693 PMCID: PMC11217449 DOI: 10.1038/s42003-024-06481-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 06/21/2024] [Indexed: 07/03/2024] Open
Abstract
The African buffalo (Syncerus caffer) is a wild bovid with a historical distribution across much of sub-Saharan Africa. Genomic analysis can provide insights into the evolutionary history of the species, and the key selective pressures shaping populations, including assessment of population level differentiation, population fragmentation, and population genetic structure. In this study we generated the highest quality de novo genome assembly (2.65 Gb, scaffold N50 69.17 Mb) of African buffalo to date, and sequenced a further 195 genomes from across the species distribution. Principal component and admixture analyses provided little support for the currently described four subspecies. Estimating Effective Migration Surfaces analysis suggested that geographical barriers have played a significant role in shaping gene flow and the population structure. Estimated effective population sizes indicated a substantial drop occurring in all populations 5-10,000 years ago, coinciding with the increase in human populations. Finally, signatures of selection were enriched for key genes associated with the immune response, suggesting infectious disease exert a substantial selective pressure upon the African buffalo. These findings have important implications for understanding bovid evolution, buffalo conservation and population management.
Collapse
Affiliation(s)
- Andrea Talenti
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, United Kingdom
- Centre for Tropical Livestock Genetics and Health (CTLGH), Roslin Institute, University of Edinburgh, Easter Bush Campus, Roslin, EH25 9RG, United Kingdom
| | - Toby Wilkinson
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, United Kingdom
- Centre for Tropical Livestock Genetics and Health (CTLGH), Roslin Institute, University of Edinburgh, Easter Bush Campus, Roslin, EH25 9RG, United Kingdom
| | - Elizabeth A Cook
- International Livestock Research Institute, P.O. Box 30709, Nairobi, 00100, Kenya
- Centre for Tropical Livestock Genetics and Health (CTLGH), ILRI Kenya, P.O. Box 30709, Nairobi, 00100, Kenya
| | - Johanneke D Hemmink
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, United Kingdom
- Centre for Tropical Livestock Genetics and Health (CTLGH), Roslin Institute, University of Edinburgh, Easter Bush Campus, Roslin, EH25 9RG, United Kingdom
- International Livestock Research Institute, P.O. Box 30709, Nairobi, 00100, Kenya
- Centre for Tropical Livestock Genetics and Health (CTLGH), ILRI Kenya, P.O. Box 30709, Nairobi, 00100, Kenya
| | - Edith Paxton
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, United Kingdom
| | - Matthew Mutinda
- Kenya Wildlife Service, P.O. Box 40241, Nairobi, 00100, Kenya
| | | | - Siddharth Jayaraman
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, United Kingdom
| | - Richard P Bishop
- International Livestock Research Institute, P.O. Box 30709, Nairobi, 00100, Kenya
| | - Isaiah Obara
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, 14163, Berlin, Germany
| | - Thibaut Hourlier
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SD, United Kingdom
| | - Carlos Garcia Giron
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SD, United Kingdom
| | - Fergal J Martin
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SD, United Kingdom
| | | | | | - Anne Nanteza
- College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
| | - Julius D Keyyu
- Tanzania Wildlife Research Institute, Box 661, Arusha, Tanzania
| | - Furaha Mramba
- Vector and Vector-Borne Diseases Institute, Tanga, Tanzania
| | - Alexandre Caron
- ASTRE, University of Montpellier (UMR), CIRAD, 34090, Montpellier, France
- CIRAD, UMR ASTRE, RP-PCP, Maputo, 01009, Mozambique
- Faculdade Veterinaria, Universidade Eduardo Mondlan, Maputo, Mozambique
| | - Daniel Cornelis
- CIRAD, Forêts et Sociétés, 34398, Montpellier, France
- Forêts et Sociétés, University of Montpellier, CIRAD, 34090, Montpellier, France
| | | | - Robert Fyumagwa
- Tanzania Wildlife Research Institute, Box 661, Arusha, Tanzania
| | - Tiziana Lembo
- School of Biodiversity, One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Harriet K Auty
- School of Biodiversity, One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Johan Michaux
- Laboratoire de Génétique de la Conservation, Institut de Botanique (Bat. 22), Université de Liège (Sart Tilman), Chemin de la Vallée 4, B4000, Liège, Belgium
| | - Nathalie Smitz
- Royal Museum for Central Africa (BopCo), Leuvensesteenweg 13, 3080, Tervuren, Belgium
| | - Philip Toye
- International Livestock Research Institute, P.O. Box 30709, Nairobi, 00100, Kenya
- Centre for Tropical Livestock Genetics and Health (CTLGH), ILRI Kenya, P.O. Box 30709, Nairobi, 00100, Kenya
| | - Christelle Robert
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, United Kingdom
- Centre for Tropical Livestock Genetics and Health (CTLGH), Roslin Institute, University of Edinburgh, Easter Bush Campus, Roslin, EH25 9RG, United Kingdom
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh, EH4 2XU, United Kingdom
| | - James G D Prendergast
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, United Kingdom
- Centre for Tropical Livestock Genetics and Health (CTLGH), Roslin Institute, University of Edinburgh, Easter Bush Campus, Roslin, EH25 9RG, United Kingdom
| | - Liam J Morrison
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, United Kingdom.
- Centre for Tropical Livestock Genetics and Health (CTLGH), Roslin Institute, University of Edinburgh, Easter Bush Campus, Roslin, EH25 9RG, United Kingdom.
| |
Collapse
|
6
|
Broggini C, Cavallini M, Vanetti I, Abell J, Binelli G, Lombardo G. From Caves to the Savannah, the Mitogenome History of Modern Lions ( Panthera leo) and Their Ancestors. Int J Mol Sci 2024; 25:5193. [PMID: 38791233 PMCID: PMC11121052 DOI: 10.3390/ijms25105193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/06/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Lions (Panthera leo) play a crucial ecological role in shaping and maintaining fragile ecosystems within Africa. Conservation efforts should focus on genetic variability within wild populations when considering reintroduction attempts. We studied two groups of lions from two conservation sites located in Zambia and Zimbabwe to determine their genetic make-up, information that is usually unknown to the sites. In this study, we analysed 17 specimens for cytb and seven microsatellite markers to ascertain family relationships and genetic diversity previously obtained by observational studies. We then produced a standardised haplogroup phylogeny using all available entire mitogenomes, as well as calculating a revised molecular clock. The modern lion lineage diverged ~151 kya and was divided into two subspecies, both containing three distinct haplogroups. We confirm that Panthera leo persica is not a subspecies, but rather a haplogroup of the northern P.l. leo that exited Africa at least ~31 kya. The progenitor to all lions existed ~1.2 Mya, possibly in SE Africa, and later exited Africa and split into the two cave lion lineages ~175 kya. Species demography is correlated to major climactic events. We now have a detailed phylogeny of lion evolution and an idea of their conservation status given the threat of climate change.
Collapse
Affiliation(s)
- Camilla Broggini
- Wildlife Research Unit (UIRCP-UCO), University of Cordoba, 14071 Córdoba, Spain;
| | - Marta Cavallini
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, 21100 Varese, Italy; (M.C.); (I.V.); (G.B.)
| | - Isabella Vanetti
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, 21100 Varese, Italy; (M.C.); (I.V.); (G.B.)
| | - Jackie Abell
- Centre for Agroecology, Water and Resilience, Coventry University, Coventry CV8 3LG, UK;
| | - Giorgio Binelli
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, 21100 Varese, Italy; (M.C.); (I.V.); (G.B.)
| | - Gianluca Lombardo
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, 21100 Varese, Italy; (M.C.); (I.V.); (G.B.)
| |
Collapse
|
7
|
Bertola LD, Quinn L, Hanghøj K, Garcia-Erill G, Rasmussen MS, Balboa RF, Meisner J, Bøggild T, Wang X, Lin L, Nursyifa C, Liu X, Li Z, Chege M, Moodley Y, Brüniche-Olsen A, Kuja J, Schubert M, Agaba M, Santander CG, Sinding MHS, Muwanika V, Masembe C, Siegismund HR, Moltke I, Albrechtsen A, Heller R. Giraffe lineages are shaped by major ancient admixture events. Curr Biol 2024; 34:1576-1586.e5. [PMID: 38479386 DOI: 10.1016/j.cub.2024.02.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 09/29/2023] [Accepted: 02/21/2024] [Indexed: 04/11/2024]
Abstract
Strong genetic structure has prompted discussion regarding giraffe taxonomy,1,2,3 including a suggestion to split the giraffe into four species: Northern (Giraffa c. camelopardalis), Reticulated (G. c. reticulata), Masai (G. c. tippelskirchi), and Southern giraffes (G. c. giraffa).4,5,6 However, their evolutionary history is not yet fully resolved, as previous studies used a simple bifurcating model and did not explore the presence or extent of gene flow between lineages. We therefore inferred a model that incorporates various evolutionary processes to assess the drivers of contemporary giraffe diversity. We analyzed whole-genome sequencing data from 90 wild giraffes from 29 localities across their current distribution. The most basal divergence was dated to 280 kya. Genetic differentiation, FST, among major lineages ranged between 0.28 and 0.62, and we found significant levels of ancient gene flow between them. In particular, several analyses suggested that the Reticulated lineage evolved through admixture, with almost equal contribution from the Northern lineage and an ancestral lineage related to Masai and Southern giraffes. These new results highlight a scenario of strong differentiation despite gene flow, providing further context for the interpretation of giraffe diversity and the process of speciation in general. They also illustrate that conservation measures need to target various lineages and sublineages and that separate management strategies are needed to conserve giraffe diversity effectively. Given local extinctions and recent dramatic declines in many giraffe populations, this improved understanding of giraffe evolutionary history is relevant for conservation interventions, including reintroductions and reinforcements of existing populations.
Collapse
Affiliation(s)
- Laura D Bertola
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Liam Quinn
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Kristian Hanghøj
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Renzo F Balboa
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Jonas Meisner
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Bøggild
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Xi Wang
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Long Lin
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Casia Nursyifa
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Xiaodong Liu
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Zilong Li
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Mumbi Chege
- Institute of Environmental Sciences (CML), Leiden University, Leiden, The Netherlands; Wildlife Research and Training Institute, Naivasha, Kenya
| | - Yoshan Moodley
- Department of Biological Sciences, University of Venda, Private Bag X5050, Thohoyandou 0950, Republic of South Africa
| | | | - Josiah Kuja
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Mikkel Schubert
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Morris Agaba
- School of Life Sciences and Bioengineering, Nelson Mandela African Institution of Science and Technology, Nelson Mandela Road, Arusha, Tanzania
| | - Cindy G Santander
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | - Vincent Muwanika
- College of Agricultural and Environmental Sciences, Makerere University, P.O. Box 7062, Kampala, Uganda
| | - Charles Masembe
- College of Natural Sciences, Makerere University, P O. Box 7062, Kampala, Uganda
| | - Hans R Siegismund
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Ida Moltke
- Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| | | | - Rasmus Heller
- Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
8
|
de Flamingh A, Gnoske TP, Rivera-Colón AG, Simeonovski VA, Kerbis Peterhans JC, Yamaguchi N, Witt KE, Catchen J, Roca AL, Malhi RS. Genomic analysis supports Cape Lion population connectivity prior to colonial eradication and extinction. J Hered 2024; 115:155-165. [PMID: 38150491 DOI: 10.1093/jhered/esad081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 12/26/2023] [Indexed: 12/29/2023] Open
Abstract
Cape lions (Panthera leo melanochaitus) formerly ranged throughout the grassland plains of the "Cape Flats" in what is today known as the Western Cape Province, South Africa. Cape lions were likely eradicated because of overhunting and habitat loss after European colonization. European naturalists originally described Cape lions as "black-maned lions" and claimed that they were phenotypically distinct. However, other depictions and historical descriptions of lions from the Cape report mixed or light coloration and without black or extensively developed manes. These findings suggest that, rather than forming a distinct population, Cape lions may have had phenotypic and genotypic variation similar to other African lions. Here we investigate Cape lion genome characteristics, population dynamics, and genetic distinctiveness prior to their extinction. We generated genomic data from 2 historic Cape lions to compare to 118 existing high-coverage mitogenomes, and low-coverage nuclear genomes of 53 lions from 13 African countries. We show that, before their eradication, lions from the Cape Flats had diverse mitogenomes and nuclear genomes that clustered with lions from both southern and eastern Africa. Cape lions had high genome-wide heterozygosity and low inbreeding coefficients, indicating that populations in the Cape Flats went extinct so rapidly that genomic effects associated with long-term small population size and isolation were not detectable. Our findings do not support the characterization of Cape lions as phylogeographically distinct, as originally put forth by some European naturalists, and illustrates how alternative knowledge systems, for example, Indigenous perspectives, could potentially further inform interpretations of species histories.
Collapse
Affiliation(s)
- Alida de Flamingh
- Center for Indigenous Science, Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, IL, United States
| | - Thomas P Gnoske
- Field Museum of Natural History (FMNH), Chicago, IL, United States
| | | | | | - Julian C Kerbis Peterhans
- Field Museum of Natural History (FMNH), Chicago, IL, United States
- College of Arts & Sciences, Roosevelt University, Chicago, IL, United States
| | - Nobuyuki Yamaguchi
- Institute of Tropical Biodiversity and Sustainable Development, University of Malaysia Terengganu, Terengganu, Malaysia
| | - Kelsey E Witt
- Department of Genetics & Biochemistry, Center for Human Genetics, Clemson, SC, United States
| | - Julian Catchen
- Center for Indigenous Science, Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, IL, United States
- Department of Evolution, Ecology, and Behavior, UIUC, Urbana, IL, United States
| | - Alfred L Roca
- Center for Indigenous Science, Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, IL, United States
- Department of Animal Sciences, UIUC, Urbana, IL, United States
| | - Ripan Singh Malhi
- Center for Indigenous Science, Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, IL, United States
- Department of Anthropology, UIUC, Urbana, IL, United States
| |
Collapse
|
9
|
Chege M, Sewalt B, Lesilau F, de Snoo G, Patterson BD, Kariuki L, Otiende M, Omondi P, de Iongh H, Vrieling K, Bertola LD. Genetic diversity of lion populations in Kenya: Evaluating past management practices and recommendations for future conservation actions. Evol Appl 2024; 17:e13676. [PMID: 38505216 PMCID: PMC10950092 DOI: 10.1111/eva.13676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/14/2024] [Accepted: 02/29/2024] [Indexed: 03/21/2024] Open
Abstract
The decline of lions (Panthera leo) in Kenya has raised conservation concerns about their overall population health and long-term survival. This study aimed to assess the genetic structure, differentiation and diversity of lion populations in the country, while considering the influence of past management practices. Using a lion-specific Single Nucleotide Polymorphism (SNP) panel, we genotyped 171 individuals from 12 populations representative of areas with permanent lion presence. Our results revealed a distinct genetic pattern with pronounced population structure, confirmed a north-south split and found no indication of inbreeding in any of the tested populations. Differentiation seems to be primarily driven by geographical barriers, human presence and climatic factors, but management practices may have also affected the observed patterns. Notably, the Tsavo population displayed evidence of admixture, perhaps attributable to its geographic location as a suture zone, vast size or past translocations, while the fenced populations of Lake Nakuru National Park and Solio Ranch exhibited reduced genetic diversity due to restricted natural dispersal. The Amboseli population had a high number of monomorphic loci likely reflecting a historical population decline. This illustrates that patterns of genetic diversity should be seen in the context of population histories and that future management decisions should take these insights into account. To address the conservation implications of our findings, we recommend prioritizing the maintenance of suitable habitats to facilitate population connectivity. Initiation of genetic restoration efforts and separately managing populations with unique evolutionary histories is crucial for preserving genetic diversity and promoting long-term population viability.
Collapse
Affiliation(s)
- Mumbi Chege
- Wildlife Research and Training InstituteNaivashaKenya
- Institute of Environmental Sciences CMLLeiden UniversityLeidenThe Netherlands
| | - Bobbie Sewalt
- Institute of Biology IBLLeiden UniversityLeidenThe Netherlands
| | - Francis Lesilau
- Institute of Environmental Sciences CMLLeiden UniversityLeidenThe Netherlands
| | - Geert de Snoo
- Institute of Environmental Sciences CMLLeiden UniversityLeidenThe Netherlands
- Netherlands Institute of Ecology (NIOO‐KNAW)WageningenThe Netherlands
| | - Bruce D. Patterson
- Negaunee Integrative Research CenterField Museum of Natural HistoryChicagoUnited States
| | | | - Moses Otiende
- Wildlife Research and Training InstituteNaivashaKenya
| | | | - Hans de Iongh
- Institute of Environmental Sciences CMLLeiden UniversityLeidenThe Netherlands
- Department of Evolutionary EcologyUniversity of AntwerpAntwerpBelgium
- Department BiologyUniversity of AntwerpAntwerpBelgium
| | - K. Vrieling
- Institute of Biology IBLLeiden UniversityLeidenThe Netherlands
| | | |
Collapse
|
10
|
Balboa RF, Bertola LD, Brüniche-Olsen A, Rasmussen MS, Liu X, Besnard G, Salmona J, Santander CG, He S, Zinner D, Pedrono M, Muwanika V, Masembe C, Schubert M, Kuja J, Quinn L, Garcia-Erill G, Stæger FF, Rakotoarivony R, Henrique M, Lin L, Wang X, Heaton MP, Smith TPL, Hanghøj K, Sinding MHS, Atickem A, Chikhi L, Roos C, Gaubert P, Siegismund HR, Moltke I, Albrechtsen A, Heller R. African bushpigs exhibit porous species boundaries and appeared in Madagascar concurrently with human arrival. Nat Commun 2024; 15:172. [PMID: 38172616 PMCID: PMC10764920 DOI: 10.1038/s41467-023-44105-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/30/2023] [Indexed: 01/05/2024] Open
Abstract
Several African mammals exhibit a phylogeographic pattern where closely related taxa are split between West/Central and East/Southern Africa, but their evolutionary relationships and histories remain controversial. Bushpigs (Potamochoerus larvatus) and red river hogs (P. porcus) are recognised as separate species due to morphological distinctions, a perceived lack of interbreeding at contact, and putatively old divergence times, but historically, they were considered conspecific. Moreover, the presence of Malagasy bushpigs as the sole large terrestrial mammal shared with the African mainland raises intriguing questions about its origin and arrival in Madagascar. Analyses of 67 whole genomes revealed a genetic continuum between the two species, with putative signatures of historical gene flow, variable FST values, and a recent divergence time (<500,000 years). Thus, our study challenges key arguments for splitting Potamochoerus into two species and suggests their speciation might be incomplete. Our findings also indicate that Malagasy bushpigs diverged from southern African populations and underwent a limited bottleneck 1000-5000 years ago, concurrent with human arrival in Madagascar. These results shed light on the evolutionary history of an iconic and widespread African mammal and provide insight into the longstanding biogeographic puzzle surrounding the bushpig's presence in Madagascar.
Collapse
Affiliation(s)
- Renzo F Balboa
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Laura D Bertola
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Xiaodong Liu
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Guillaume Besnard
- Laboratoire Evolution et Diversité Biologique (EDB), UMR 5174, CNRS, IRD, Université Toulouse Paul Sabatier, 31062, Toulouse, France
| | - Jordi Salmona
- Laboratoire Evolution et Diversité Biologique (EDB), UMR 5174, CNRS, IRD, Université Toulouse Paul Sabatier, 31062, Toulouse, France
| | - Cindy G Santander
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Shixu He
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Dietmar Zinner
- Cognitive Ecology Laboratory, German Primate Center, Leibniz Institute for Primate Research, 37077, Göttingen, Germany
- Department of Primate Cognition, Georg-August-Universität Göttingen, 37077, Göttingen, Germany
- Leibniz Science Campus Primate Cognition, 37077, Göttingen, Germany
| | - Miguel Pedrono
- UMR ASTRE, CIRAD, Campus International de Baillarguet, Montpellier, France
| | - Vincent Muwanika
- College of Agricultural and Environmental Sciences, Makerere University, Kampala, Uganda
| | - Charles Masembe
- College of Natural Sciences, Makerere University, Kampala, Uganda
| | - Mikkel Schubert
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Josiah Kuja
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Liam Quinn
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | - Long Lin
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Xi Wang
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Kristian Hanghøj
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | - Anagaw Atickem
- Department of Zoological Sciences, Addis Ababa University, PO Box 1176, Addis Ababa, Ethiopia
| | - Lounès Chikhi
- Laboratoire Evolution et Diversité Biologique (EDB), UMR 5174, CNRS, IRD, Université Toulouse Paul Sabatier, 31062, Toulouse, France
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Christian Roos
- Gene Bank of Primates and Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, 37077, Göttingen, Germany
| | - Philippe Gaubert
- Laboratoire Evolution et Diversité Biologique (EDB), UMR 5174, CNRS, IRD, Université Toulouse Paul Sabatier, 31062, Toulouse, France
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208, Porto, Portugal
| | - Hans R Siegismund
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Ida Moltke
- Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| | | | - Rasmus Heller
- Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
11
|
Russo IM, de Jager D, van Wyk AM, Klopper AW, Uiseb K, Birss C, Rushworth I, Bloomer P. The Contribution of Digital Sequence Information to Conservation Biology: A Southern African Perspective. ADVANCED GENETICS (HOBOKEN, N.J.) 2023; 4:2200032. [PMID: 37288168 PMCID: PMC10242406 DOI: 10.1002/ggn2.202200032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Indexed: 06/09/2023]
Abstract
Many recent contributions have made a compelling case that genetic diversity is not adequately reflected in international frameworks and policies, as well as in local governmental processes implementing such frameworks. Using digital sequence information (DSI) and other publicly available data is supported to assess genetic diversity, toward formulation of practical actions for long-term conservation of biodiversity, with the particular goal of maintaining ecological and evolutionary processes. Given the inclusion of specific goals and targets regarding DSI in the latest draft of the Global Biodiversity Framework negotiated at the 15th Conference of the Parties (COP15) in Montreal in December 2022 and the crucial decisions on access and benefit sharing to DSI that will be taken in the coming months and future COP meetings, a southern African perspective on how and why open access to DSI is essential for the conservation of intraspecific biodiversity (genetic diversity and structure) across country borders is provided.
Collapse
Affiliation(s)
| | - Deon de Jager
- Section of Molecular Ecology and EvolutionGlobe InstituteUniversity of CopenhagenCopenhagen1353Denmark
| | - Anna M. van Wyk
- Department of BiochemistryGenetics and MicrobiologyUniversity of PretoriaPretoria0002South Africa
| | - Arrie W. Klopper
- Department of BiochemistryGenetics and MicrobiologyUniversity of PretoriaPretoria0002South Africa
| | - Kenneth Uiseb
- Ministry of Environment, Forestry and TourismWindhoek13306Namibia
| | | | - Ian Rushworth
- Ezemvelo KZN WildlifePietermaritzburg3201South Africa
| | - Paulette Bloomer
- Department of BiochemistryGenetics and MicrobiologyUniversity of PretoriaPretoria0002South Africa
| |
Collapse
|
12
|
Visser F, Drouilly M, Moodley Y, Michaux JR, Somers MJ. Mismatch between conservation needs and actual representation of lions from West and Central Africa in in situ and ex situ conservation. Conserv Lett 2023. [DOI: 10.1111/conl.12949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
|
13
|
Museomics Provides Insights into Conservation and Education: The Instance of an African Lion Specimen from the Museum of Zoology “Pietro Doderlein”. DIVERSITY 2023. [DOI: 10.3390/d15010087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Innovative technological approaches are crucial to enhance naturalistic museum collections and develop information repositories of relevant interest to science, such as threatened animal taxa. In this context, museomics is an emerging discipline that provides a novel approach to the enhancement and exploitation of these collections. In the present study, the discovery of a neglected lion skeleton in the Museum of Zoology “Pietro Doderlein” of the University of Palermo (Italy) offered the opportunity to undertake a multidisciplinary project. The aims of the study consisted of the following: (i) adding useful information for museographic strategies, (ii) obtaining a new genetic data repository from a vulnerable species, (iii) strengthening public awareness of wildlife conservation, and (iv) sharing new learning material. The remains of the lion were examined with a preliminary osteological survey, then they were restored by means of 3D printing of missing skeletal fragments. Phylogenetic analyses based on cytochrome b sequence clearly indicate that the specimen belongs to the Central Africa mitochondrial clade. At the end of the study, the complete and restored skeleton was exhibited, along with all of the information and data available from this project. This study shows a useful approach for the restoration and enhancement of a museum specimen, with important opportunities for preserving biodiversity and driving specific conservation policies, but also for providing Life Science learning material.
Collapse
|
14
|
Veron G, Daniel C, Pagani P, Do Linh San E, Kitchener AC, Hassanin A. A tale of two African mongooses (Carnivora: Herpestidae): differing genetic diversity and geographical structure across a continent. Mamm Biol 2022. [DOI: 10.1007/s42991-022-00321-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
15
|
Loveridge AJ, Sousa LL, Cushman S, Kaszta Ż, Macdonald DW. Where have all the lions gone? Establishing realistic baselines to assess decline and recovery of African lions. DIVERS DISTRIB 2022. [DOI: 10.1111/ddi.13637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Affiliation(s)
- Andrew J. Loveridge
- Wildlife Conservation Research Unit, Recanati‐Kaplan Centre, Department of Zoology University of Oxford Oxford UK
| | - Lara L. Sousa
- Wildlife Conservation Research Unit, Recanati‐Kaplan Centre, Department of Zoology University of Oxford Oxford UK
| | - Samuel Cushman
- Wildlife Conservation Research Unit, Recanati‐Kaplan Centre, Department of Zoology University of Oxford Oxford UK
- US Forest Service, Rocky Mountain Research Station Flagstaff Arizona USA
| | - Żaneta Kaszta
- Wildlife Conservation Research Unit, Recanati‐Kaplan Centre, Department of Zoology University of Oxford Oxford UK
| | - David W. Macdonald
- Wildlife Conservation Research Unit, Recanati‐Kaplan Centre, Department of Zoology University of Oxford Oxford UK
| |
Collapse
|
16
|
Prost S, Machado AP, Zumbroich J, Preier L, Mahtani‐Williams S, Meissner R, Guschanski K, Brealey JC, Fernandes CR, Vercammen P, Hunter LTB, Abramov AV, Plasil M, Horin P, Godsall‐Bottriell L, Bottriell P, Dalton DL, Kotze A, Burger PA. Genomic analyses show extremely perilous conservation status of African and Asiatic cheetahs (Acinonyx jubatus). Mol Ecol 2022; 31:4208-4223. [PMID: 35748392 PMCID: PMC9540975 DOI: 10.1111/mec.16577] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/01/2022] [Accepted: 06/09/2022] [Indexed: 11/29/2022]
Abstract
We live in a world characterized by biodiversity loss and global environmental change. The extinction of large carnivores can have ramifying effects on ecosystems like an uncontrolled increase in wild herbivores, which in turn can have knock-on impacts on vegetation regeneration and communities. Cheetahs (Acinonyx jubatus) serve important ecosystem functions as apex predators; yet, they are quickly heading towards an uncertain future. Threatened by habitat loss, human-wildlife conflict and illegal trafficking, there are only approximately 7100 individuals remaining in nature. We present the most comprehensive genome-wide analysis of cheetah phylogeography and conservation genomics to date, assembling samples from nearly the entire current and past species' range. We show that their phylogeography is more complex than previously thought, and that East African cheetahs (A. j. raineyi) are genetically distinct from Southern African individuals (A. j. jubatus), warranting their recognition as a distinct subspecies. We found strong genetic differentiation between all classically recognized subspecies, thus refuting earlier findings that cheetahs show only little differentiation. The strongest differentiation was observed between the Asiatic and all the African subspecies. We detected high inbreeding in the Critically Endangered Iranian (A. j. venaticus) and North-western (A. j. hecki) subspecies, and show that overall cheetahs, along with snow leopards, have the lowest genome-wide heterozygosity of all the big cats. This further emphasizes the cheetah's perilous conservation status. Our results provide novel and important information on cheetah phylogeography that can support evidence-based conservation policy decisions to help protect this species. This is especially relevant in light of ongoing and proposed translocations across subspecies boundaries, and the increasing threats of illegal trafficking.
Collapse
Affiliation(s)
- Stefan Prost
- Research Institute of Wildlife EcologyVetmeduni ViennaViennaAustria
- LOEWE‐Center for Translational Biodiversity Genomics, Senckenberg MuseumFrankfurtGermany
- South African National Biodiversity InstitutePretoriaSouth Africa
| | - Ana Paula Machado
- Department of Ecology and EvolutionUniversity of LausanneLausanneSwitzerland
| | - Julia Zumbroich
- Research Institute of Wildlife EcologyVetmeduni ViennaViennaAustria
| | - Lisa Preier
- Research Institute of Wildlife EcologyVetmeduni ViennaViennaAustria
| | | | - Rene Meissner
- Research Institute of Wildlife EcologyVetmeduni ViennaViennaAustria
- LOEWE‐Center for Translational Biodiversity Genomics, Senckenberg MuseumFrankfurtGermany
- Institute for Ecology, Evolution and DiversityGoethe UniversityFrankfurtGermany
| | - Katerina Guschanski
- Animal Ecology, Department of Ecology and Genetics, Evolutionary Biology Centre, Science for Life LaboratoryUppsala UniversitetUppsalaSweden
- Institute of Evolutionary Biology, School of Biological SciencesUniversity of EdinburghEdinburghUK
| | - Jaelle C. Brealey
- Animal Ecology, Department of Ecology and Genetics, Evolutionary Biology Centre, Science for Life LaboratoryUppsala UniversitetUppsalaSweden
- Department of Natural HistoryNTNU University Museum, Norwegian University of Science and Technology (NTNU)TrondheimNorway
| | - Carlos Rodríguez Fernandes
- CE3C ‐ Centre for Ecology, Evolution and Environmental Changes & CHANGE ‐ Global Change and Sustainability Institute, Departamento de Biologia Animal, Faculdade de CiênciasUniversidade de LisboaLisbonPortugal
- Faculdade de PsicologiaUniversidade de Lisboa, Alameda da UniversidadeLisbonPortugal
| | - Paul Vercammen
- Breeding Centre for Endangered Arabian WildlifeSharjahUnited Arab Emirates
| | - Luke T. B. Hunter
- Wildlife Conservation SocietyNew YorkNew YorkUSA
- School of Life SciencesUniversity of KwaZulu‐NatalDurbanSouth Africa
| | - Alexei V. Abramov
- Zoological InstituteRussian Academy of SciencesSaint PetersburgRussia
| | - Martin Plasil
- Department of Animal GeneticsUniversity of Veterinary SciencesBrnoCzech Republic
- Central European Institute of TechnologyUniversity of Veterinary Sciences Brno (CEITEC Vetuni)BrnoCzech Republic
| | - Petr Horin
- Department of Animal GeneticsUniversity of Veterinary SciencesBrnoCzech Republic
- Central European Institute of TechnologyUniversity of Veterinary Sciences Brno (CEITEC Vetuni)BrnoCzech Republic
| | | | | | | | - Antoinette Kotze
- South African National Biodiversity InstitutePretoriaSouth Africa
- Genetics DepartmentUniversity of the Free StateBloemfonteinSouth Africa
| | | |
Collapse
|
17
|
Bertola LD, Vermaat M, Lesilau F, Chege M, Tumenta PN, Sogbohossou EA, Schaap OD, Bauer H, Patterson BD, White PA, de Iongh HH, Laros JFJ, Vrieling K. Whole genome sequencing and the application of a SNP panel reveal primary evolutionary lineages and genomic variation in the lion (Panthera leo). BMC Genomics 2022; 23:321. [PMID: 35459090 PMCID: PMC9027350 DOI: 10.1186/s12864-022-08510-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 03/29/2022] [Indexed: 11/23/2022] Open
Abstract
Background Previous phylogeographic studies of the lion (Panthera leo) have improved our insight into the distribution of genetic variation, as well as a revised taxonomy which now recognizes a northern (Panthera leo leo) and a southern (Panthera leo melanochaita) subspecies. However, existing whole range phylogeographic studies on lions either consist of very limited numbers of samples, or are focused on mitochondrial DNA and/or a limited set of microsatellites. The geographic extent of genetic lineages and their phylogenetic relationships remain uncertain, clouded by massive sampling gaps, sex-biased dispersal and incomplete lineage sorting. Results In this study we present results of low depth whole genome sequencing and subsequent variant calling in ten lions sampled throughout the geographic range, resulting in the discovery of >150,000 Single Nucleotide Polymorphisms (SNPs). Phylogenetic analyses revealed the same basal split between northern and southern populations, as well as four population clusters on a more local scale. Further, we designed a SNP panel, including 125 autosomal and 14 mitochondrial SNPs, which was tested on >200 lions from across their range. Results allow us to assign individuals to one of these four major clades (West & Central Africa, India, East Africa, or Southern Africa) and delineate these clades in more detail. Conclusions The results presented here, particularly the validated SNP panel, have important applications, not only for studying populations on a local geographic scale, but also for tracing samples of unknown origin for forensic purposes, and for guiding conservation management of ex situ populations. Thus, these genomic resources not only contribute to our understanding of the evolutionary history of the lion, but may also play a crucial role in conservation efforts aimed at protecting the species in its full diversity. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08510-y.
Collapse
Affiliation(s)
- L D Bertola
- City University of New York, City College of New York, 160 Convent Avenue, New York, NY, 10031, USA. .,Institute of Environmental Sciences (CML), Leiden University, PO Box 9518, 2300 RA, Leiden, The Netherlands. .,Institute of Biology Leiden (IBL), Leiden University, PO Box 9505, 2300 RA, Leiden, The Netherlands.
| | - M Vermaat
- Department of Human Genetics, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands.,Leiden Genome Technology Center, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands
| | - F Lesilau
- Institute of Environmental Sciences (CML), Leiden University, PO Box 9518, 2300 RA, Leiden, The Netherlands.,Kenya Wildlife Service, Nairobi, Kenya
| | - M Chege
- Institute of Environmental Sciences (CML), Leiden University, PO Box 9518, 2300 RA, Leiden, The Netherlands.,Kenya Wildlife Service, Nairobi, Kenya
| | - P N Tumenta
- Centre for Environment and Developmental Studies, Cameroon (CEDC), Yaounde, Cameroon.,Regional Training Centre Specialized in Agriculture, Forest and Wood, University of Dschang, BP 138, Yaounde, Cameroon
| | - E A Sogbohossou
- Laboratoire d'Ecologie Appliquée, Université d'Abomey-Calavi, 03 BP 294, Cotonou, Benin
| | - O D Schaap
- Institute of Biology Leiden (IBL), Leiden University, PO Box 9505, 2300 RA, Leiden, The Netherlands
| | - H Bauer
- Wildlife Conservation Research Unit, Zoology, University of Oxford Recanati-Kaplan Centre, Tubney, OX13 5QL, UK
| | - B D Patterson
- Negaunee Integrative Research Center, Field Museum of Natural History, Chicago, IL, 60605, USA
| | - P A White
- Center for Tropical Research, Institute of the Environment and Sustainability, University of California, Los Angeles, CA, 90095-1496, USA
| | - H H de Iongh
- Institute of Environmental Sciences (CML), Leiden University, PO Box 9518, 2300 RA, Leiden, The Netherlands.,Department of Biology, Evolutionary Ecology Group, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerpen, Belgium
| | - J F J Laros
- Department of Human Genetics, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands.,Leiden Genome Technology Center, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands
| | - K Vrieling
- Institute of Biology Leiden (IBL), Leiden University, PO Box 9505, 2300 RA, Leiden, The Netherlands
| |
Collapse
|
18
|
Kitchener AC, Hoffmann M, Yamaguchi N, Breitenmoser-Würsten C, Wilting A. A system for designating taxonomic certainty in mammals and other taxa. Mamm Biol 2022. [DOI: 10.1007/s42991-021-00205-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
19
|
Bertola LD, Miller SM, Williams VL, Naude VN, Coals P, Dures SG, Henschel P, Chege M, Sogbohossou EA, Ndiaye A, Kiki M, Gaylard A, Ikanda DK, Becker MS, Lindsey P. Genetic guidelines for translocations: Maintaining intraspecific diversity in the lion ( Panthera leo). Evol Appl 2022; 15:22-39. [PMID: 35126646 PMCID: PMC8792481 DOI: 10.1111/eva.13318] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 11/26/2022] Open
Abstract
Conservation translocations have become an important management tool, particularly for large wildlife species such as the lion (Panthera leo). When planning translocations, the genetic background of populations needs to be taken into account; failure to do so risks disrupting existing patterns of genetic variation, ultimately leading to genetic homogenization, and thereby reducing resilience and adaptability of the species. We urge wildlife managers to include knowledge of the genetic background of source/target populations, as well as species-wide patterns, in any management intervention. We present a hierarchical decision-making tool in which we list 132 lion populations/lion conservation units and provide information on genetic assignment, uncertainty and suitability for translocation for each source/target combination. By including four levels of suitability, from 'first choice' to 'no option', we provide managers with a range of options. To illustrate the extent of international trade of lions, and the potential disruption of natural patterns of intraspecific diversity, we mined the CITES Trade Database for estimated trade quantities of live individuals imported into lion range states during the past 4 decades. We identified 1056 recorded individuals with a potential risk of interbreeding with wild lions, 772 being captive-sourced. Scoring each of the records with our decision-making tool illustrates that only 7% of the translocated individuals were 'first choice' and 73% were 'no option'. We acknowledge that other, nongenetic factors are important in the decision-making process, and hence a pragmatic approach is needed. A framework in which source/target populations are scored based on suitability is not only relevant to lion, but also to other species of wildlife that are frequently translocated. We hope that the presented overview supports managers to include genetics in future management decisions and contributes towards conservation of the lion in its full diversity.
Collapse
Affiliation(s)
- Laura D. Bertola
- Department of BiologyUniversity of CopenhagenCopenhagenDenmark
- City College of New YorkNew YorkNew YorkUSA
| | - Susan M. Miller
- FitzPatrick Institute of African OrnithologyDSI‐NRF Centre of ExcellenceUniversity of Cape TownCape TownSouth Africa
- Institute for Communities and Wildlife in AfricaUniversity of Cape TownCape TownSouth Africa
| | - Vivienne L. Williams
- School of Animal, Plant and Environmental SciencesUniversity of the WitwatersrandJohannesburgSouth Africa
| | - Vincent N. Naude
- Institute for Communities and Wildlife in AfricaUniversity of Cape TownCape TownSouth Africa
| | - Peter Coals
- School of Animal, Plant and Environmental SciencesUniversity of the WitwatersrandJohannesburgSouth Africa
- Wildlife Conservation Research UnitUniversity of OxfordOxfordUK
| | | | | | - Monica Chege
- Institute of Environmental Sciences (CML)Leiden UniversityLeidenThe Netherlands
- Kenya Wildlife ServiceNairobiKenya
| | | | | | - Martial Kiki
- Département de Génie de l’EnvironnementUniversité d’Abomey‐CalaviCotonouBenin
| | - Angela Gaylard
- Conservation Development & Assurance DepartmentAfrican Parks NetworkJohannesburgSouth Africa
| | | | | | - Peter Lindsey
- Department of Zoology and EntomologyMammal Research InstituteUniversity of PretoriaPretoriaSouth Africa
- Environmental Futures Research InstituteGriffith UniversityNathanQueenslandAustralia
- Wildlife Conservation NetworkSan FranciscoCaliforniaUSA
| |
Collapse
|
20
|
Genetic diversity, viability and conservation value of the global captive population of the Moroccan Royal lions. PLoS One 2021; 16:e0258714. [PMID: 34962925 PMCID: PMC8714086 DOI: 10.1371/journal.pone.0258714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 10/04/2021] [Indexed: 11/19/2022] Open
Abstract
This study evaluates the diversity of the so-called ‘Moroccan Royal lions’ using genealogical information. Lions are no longer extant in North Africa, but the previous wild population was an important element of the now-recognised northern subspecies (Panthera leo leo) that ranged across West Africa, North Africa and the Middle East into India. The remaining captive population of ‘Moroccan Royal lions’ seems to be significantly endangered by the loss of diversity due to the effective population size decrease. The pedigree file of this captive lion population consisted of 454 individuals, while the reference population included 98 animals (47 males and 51 females). The completeness of the pedigree data significantly decreased with an increasing number of generations. The highest percentage of pedigree completeness (over 70%) was achieved in the first generation of the reference population. Pedigree-based parameters derived from the common ancestor and gene origin were used to estimate the state of diversity. In the reference population, the average inbreeding coefficient was 2.14%, while the individual increase in inbreeding over generations was 2.31%. Overall, the reference population showed lower average inbreeding and average relatedness compared with the pedigree file. The number of founders (47), the effective number of founders (24) and the effective number of ancestors (22) were estimated in the reference population. The effective population size of 14.02 individuals confirms the critically endangered status of the population and rapid loss of diversity in the future. Thus, continuous monitoring of the genetic diversity of the ‘Moroccan Royal lion’ group is required, especially for long-term conservation management purposes, as it would be an important captive group should further DNA studies establish an affinity to P. leo leo.
Collapse
|
21
|
Kiki MAD, Astaras C, Montgomery RA, Henschel P, Tehou A, Macdonald D, Bauer H. Cost effective assessment of human and habitat factors essential for critically endangered lions in West Africa. WILDLIFE BIOLOGY 2021. [DOI: 10.2981/wlb.00848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Martial A. D. Kiki
- M. A. D. Kiki, Dept of Environment, Polytechnic College of the Univ. of Abomey-Calavi, Abomey-Calavi, Republic of Benin and Dept of Wildlife Ecology and Conservation, School of Natural Resources and Environment, Univ. of Florida, USA
| | - Christos Astaras
- C. Astaras, Forest Research Inst., Hellenic Agricultural Organization ‘Demeter’, Vasilika, Thessaloniki, Greece
| | - Robert A. Montgomery
- R. A. Montgomery, Research on the Ecology of Carnivores and their Prey Laboratory, Dept of Fisheries and Wildlife, Michigan State Univ., East Lansing, MI, USA
| | | | - Aristide Tehou
- A. Tehou, Centre National de Gestion des Réserves de Faunes, Cotonou, Benin
| | - David Macdonald
- RAM, D. Macdonald and H. Bauer ✉ , Wildlife Conservation Research Unit, Dept of Zoology, Univ. of Oxford, Recanati-Kaplan Centre, Tubney House, Tubney, Oxfordshire, UK
| | - Hans Bauer
- RAM, D. Macdonald and H. Bauer ✉ , Wildlife Conservation Research Unit, Dept of Zoology, Univ. of Oxford, Recanati-Kaplan Centre, Tubney House, Tubney, Oxfordshire, UK
| |
Collapse
|
22
|
Abstract
In this study, we synthesize terrestrial and marine proxy records, spanning the past 620 ky, to decipher pan-African climate variability and its drivers and potential linkages to hominin evolution. We find a tight correlation between moisture availability across Africa to El Niño Southern Ocean oscillation (ENSO) variability, a manifestation of the Walker Circulation, that was most likely driven by changes in Earth's eccentricity. Our results demonstrate that low-latitude insolation was a prominent driver of pan-African climate change during the Middle to Late Pleistocene. We argue that these low-latitude climate processes governed the dispersion and evolution of vegetation as well as mammals in eastern and western Africa by increasing resource-rich and stable ecotonal settings thought to have been important to early modern humans.
Collapse
|
23
|
Korablev MP, Poyarkov AD, Karnaukhov AS, Zvychaynaya EY, Kuksin AN, Malykh SV, Istomov SV, Spitsyn SV, Aleksandrov DY, Hernandez-Blanco JA, Munkhtsog B, Munkhtogtokh O, Putintsev NI, Vereshchagin AS, Becmurody A, Afzunov S, Rozhnov VV. Large-scale and fine-grain population structure and genetic diversity of snow leopards (Panthera uncia Schreber, 1776) from the northern and western parts of the range with an emphasis on the Russian population. CONSERV GENET 2021. [DOI: 10.1007/s10592-021-01347-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
24
|
Lester JD, Vigilant L, Gratton P, McCarthy MS, Barratt CD, Dieguez P, Agbor A, Álvarez-Varona P, Angedakin S, Ayimisin EA, Bailey E, Bessone M, Brazzola G, Chancellor R, Cohen H, Danquah E, Deschner T, Egbe VE, Eno-Nku M, Goedmakers A, Granjon AC, Head J, Hedwig D, Hernandez-Aguilar RA, Jeffery KJ, Jones S, Junker J, Kadam P, Kaiser M, Kalan AK, Kehoe L, Kienast I, Langergraber KE, Lapuente J, Laudisoit A, Lee K, Marrocoli S, Mihindou V, Morgan D, Muhanguzi G, Neil E, Nicholl S, Orbell C, Ormsby LJ, Pacheco L, Piel A, Robbins MM, Rundus A, Sanz C, Sciaky L, Siaka AM, Städele V, Stewart F, Tagg N, Ton E, van Schijndel J, Vyalengerera MK, Wessling EG, Willie J, Wittig RM, Yuh YG, Yurkiw K, Zuberbuehler K, Boesch C, Kühl HS, Arandjelovic M. Recent genetic connectivity and clinal variation in chimpanzees. Commun Biol 2021; 4:283. [PMID: 33674780 PMCID: PMC7935964 DOI: 10.1038/s42003-021-01806-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 02/04/2021] [Indexed: 01/31/2023] Open
Abstract
Much like humans, chimpanzees occupy diverse habitats and exhibit extensive behavioural variability. However, chimpanzees are recognized as a discontinuous species, with four subspecies separated by historical geographic barriers. Nevertheless, their range-wide degree of genetic connectivity remains poorly resolved, mainly due to sampling limitations. By analyzing a geographically comprehensive sample set amplified at microsatellite markers that inform recent population history, we found that isolation by distance explains most of the range-wide genetic structure of chimpanzees. Furthermore, we did not identify spatial discontinuities corresponding with the recognized subspecies, suggesting that some of the subspecies-delineating geographic barriers were recently permeable to gene flow. Substantial range-wide genetic connectivity is consistent with the hypothesis that behavioural flexibility is a salient driver of chimpanzee responses to changing environmental conditions. Finally, our observation of strong local differentiation associated with recent anthropogenic pressures portends future loss of critical genetic diversity if habitat fragmentation and population isolation continue unabated.
Collapse
Affiliation(s)
- Jack D Lester
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Leipzig, Germany.
| | - Linda Vigilant
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Leipzig, Germany
| | - Paolo Gratton
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Leipzig, Germany
| | - Maureen S McCarthy
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Leipzig, Germany
| | - Christopher D Barratt
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Paula Dieguez
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Leipzig, Germany
| | - Anthony Agbor
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Leipzig, Germany
| | - Paula Álvarez-Varona
- Jane Goodall Institute Spain and Senegal, Dindefelo Biological Station, Dindefelo, Kedougou, Senegal
| | - Samuel Angedakin
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Leipzig, Germany
| | | | - Emma Bailey
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Leipzig, Germany
| | - Mattia Bessone
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Leipzig, Germany
| | - Gregory Brazzola
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Leipzig, Germany
| | - Rebecca Chancellor
- West Chester University, Depts of Anthropology & Sociology and Psychology, West Chester, PA, USA
| | - Heather Cohen
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Leipzig, Germany
| | - Emmanuel Danquah
- Department of Wildlife and Range Management, Faculty of Renewable Natural Resources, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Tobias Deschner
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Leipzig, Germany
| | - Villard Ebot Egbe
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Leipzig, Germany
| | | | | | - Anne-Céline Granjon
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Leipzig, Germany
| | - Josephine Head
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Leipzig, Germany
| | - Daniela Hedwig
- Elephant Listening Project, Center for Conservation Bioacoustics, Cornell Lab of Ornithology, Cornell University, Ithaca, NY, USA
| | - R Adriana Hernandez-Aguilar
- Jane Goodall Institute Spain and Senegal, Dindefelo Biological Station, Dindefelo, Kedougou, Senegal
- Department of Social Psychology and Quantitative Psychology, Faculty of Psychology, University of Barcelona, Barcelona, Spain
| | - Kathryn J Jeffery
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, UK
| | - Sorrel Jones
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Leipzig, Germany
| | - Jessica Junker
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Leipzig, Germany
| | | | - Michael Kaiser
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Leipzig, Germany
| | - Ammie K Kalan
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Leipzig, Germany
| | - Laura Kehoe
- Wild Chimpanzee Foundation (WCF), Leipzig, Germany
| | - Ivonne Kienast
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Leipzig, Germany
| | - Kevin E Langergraber
- School of Human Evolution and Social Change, Arizona State University, 900 Cady Mall, Tempe, AZ 85287 Arizona State University, Tempe, AZ, USA
| | - Juan Lapuente
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Leipzig, Germany
- Comoé Chimpanzee Conservation Project, Comoé National Park, Kakpin, Côte d'Ivoire
| | - Anne Laudisoit
- Ecohealth Alliance, New York, NY, USA
- University of Antwerp, Campus Drie Eiken, lokaal D.133, Universiteitsplein 1 - 2610, Antwerpen, Belgium
| | - Kevin Lee
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Leipzig, Germany
| | - Sergio Marrocoli
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Leipzig, Germany
| | - Vianet Mihindou
- Agence National des Parcs Nationaux (ANPN) Batterie 4, Libreville, Gabon
- Ministère des Eaux, des Forêts, de la Mer, de l'Environnement, Chargé du Plan Climat, des Objectifs de Développement Durable et du Plan d'Affectation des Terres, Libreville, Gabon
| | - David Morgan
- Lester E. Fisher Center for the Study and Conservation of Apes, Lincoln Park Zoo, Chicago, IL, USA
| | | | - Emily Neil
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Leipzig, Germany
| | - Sonia Nicholl
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Leipzig, Germany
| | | | - Lucy Jayne Ormsby
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Leipzig, Germany
| | - Liliana Pacheco
- Jane Goodall Institute Spain and Senegal, Dindefelo Biological Station, Dindefelo, Kedougou, Senegal
| | - Alex Piel
- Department of Anthropology, University College London, London, UK
| | - Martha M Robbins
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Leipzig, Germany
| | - Aaron Rundus
- West Chester University, Department of Psychology, West Chester, PA, USA
| | - Crickette Sanz
- Washington University in Saint Louis, Department of Anthropology, One Brookings Drive, St. Louis, MO, USA
- Wildlife Conservation Society, Congo Program, Brazzaville, Republic of Congo
| | - Lilah Sciaky
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Leipzig, Germany
| | - Alhaji M Siaka
- National Protected Area Authority, Freetown, Sierra Leone
| | - Veronika Städele
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Leipzig, Germany
| | - Fiona Stewart
- School of Biological & Environmental Sciences, Liverpool John Moores University, Liverpool, UK
| | - Nikki Tagg
- KMDA, Centre for Research and Conservation, Royal Zoological Society of Antwerp, Antwerp, Belgium
| | - Els Ton
- Chimbo Foundation, Amsterdam, Netherlands
| | | | | | - Erin G Wessling
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Jacob Willie
- KMDA, Centre for Research and Conservation, Royal Zoological Society of Antwerp, Antwerp, Belgium
| | - Roman M Wittig
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Leipzig, Germany
- Taï Chimpanzee Project, Centre Suisse de Recherches Scientifiques, Abidjan, Côte d'Ivoire
| | - Yisa Ginath Yuh
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Leipzig, Germany
| | - Kyle Yurkiw
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Leipzig, Germany
- Pan Verus Project Outamba-Kilimi National Park, Freetown, Sierra Leone
| | - Klaus Zuberbuehler
- Budongo Conservation Field Station, Masindi, Uganda
- Université de Neuchâtel, Institut de Biologie, Neuchâtel, Switzerland
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, UK
| | - Christophe Boesch
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Leipzig, Germany
| | - Hjalmar S Kühl
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Leipzig, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Mimi Arandjelovic
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Leipzig, Germany.
| |
Collapse
|
25
|
Cooper DM, Dugmore AJ, Kitchener AC, Metzger MJ, Trabucco A. A kingdom in decline: Holocene range contraction of the lion ( Panthera leo) modelled with global environmental stratification. PeerJ 2021; 9:e10504. [PMID: 33628628 PMCID: PMC7891088 DOI: 10.7717/peerj.10504] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 11/15/2020] [Indexed: 12/02/2022] Open
Abstract
Aim We use ecological niche models and environmental stratification of palaeoclimate to reconstruct the changing range of the lion (Panthera leo) during the late Pleistocene and Holocene. Location The modern (early 21st century) range of the lion extends from southern Africa to the western Indian Subcontinent, yet through the 20th century this range has been drastically reduced in extent and become increasingly fragmented as a result of human impacts. Methods We use Global Environmental Stratification with MaxEnt ecological niche models to map environmental suitability of the lion under current and palaeoclimatic scenarios. By examining modelled lion range in terms of categorical environmental strata, we characterise suitable bioclimatic conditions for the lion in a descriptive manner. Results We find that lion habitat suitability has reduced throughout the Holocene, controlled by pluvial/interpluvial cycles. The aridification of the Sahara 6ka dramatically reduced lion range throughout North Africa. The association of Saharan aridification with the development of pastoralism and the growth of sedentary communities, who practised animal husbandry, would have placed additional and lasting anthropogenic pressures on the lion. Main Conclusions This research highlights the need to integrate the full effects of the fluctuating vegetation and desiccation of the Sahara into palaeoclimatic models, and provides a starting point for further continental-scale analyses of shifting faunal ranges through North Africa and the Near East during the Holocene. This scale of ecological niche modelling does not explain the current pattern of genetic variation in the lion, and we conclude that narrow but substantial physical barriers, such as rivers, have likely played a major role in population vicariance throughout the Late Pleistocene.
Collapse
Affiliation(s)
- David M Cooper
- Institute of Geography, University of Edinburgh, School of Geosciences,, Edinburgh, United Kingdom.,Department of Natural Sciences, National Museums Scotland, Edinburgh, United Kingdom
| | - Andrew J Dugmore
- Institute of Geography, University of Edinburgh, School of Geosciences,, Edinburgh, United Kingdom.,Human Ecodynamics Research Center and Doctoral Program in Anthropology, City University of New York (CUNY), NY, United States of America
| | - Andrew C Kitchener
- Institute of Geography, University of Edinburgh, School of Geosciences,, Edinburgh, United Kingdom.,Department of Natural Sciences, National Museums Scotland, Edinburgh, United Kingdom
| | - Marc J Metzger
- Institute of Geography, University of Edinburgh, School of Geosciences,, Edinburgh, United Kingdom
| | - Antonio Trabucco
- Euro-Mediterranean Center on Climate Change, IAFES Division, Sassari, Italy
| |
Collapse
|
26
|
Curry CJ, Davis BW, Bertola LD, White PA, Murphy WJ, Derr JN. Spatiotemporal Genetic Diversity of Lions Reveals the Influence of Habitat Fragmentation across Africa. Mol Biol Evol 2021; 38:48-57. [PMID: 32667997 PMCID: PMC8480188 DOI: 10.1093/molbev/msaa174] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Direct comparisons between historical and contemporary populations allow for detecting changes in genetic diversity through time and assessment of the impact of habitat fragmentation. Here, we determined the genetic architecture of both historical and modern lions to document changes in genetic diversity over the last century. We surveyed microsatellite and mitochondrial genome variation from 143 high-quality museum specimens of known provenance, allowing us to directly compare this information with data from several recently published nuclear and mitochondrial studies. Our results provide evidence for male-mediated gene flow and recent isolation of local subpopulations, likely due to habitat fragmentation. Nuclear markers showed a significant decrease in genetic diversity from the historical (HE = 0.833) to the modern (HE = 0.796) populations, whereas mitochondrial genetic diversity was maintained (Hd = 0.98 for both). Although the historical population appears to have been panmictic based on nDNA data, hierarchical structure analysis identified four tiers of genetic structure in modern populations and was able to detect most sampling locations. Mitogenome analyses identified four clusters: Southern, Mixed, Eastern, and Western and were consistent between modern and historically sampled haplotypes. Within the last century, habitat fragmentation caused lion subpopulations to become more geographically isolated as human expansion changed the African landscape. This resulted in an increase in fine-scale nuclear genetic structure and loss of genetic diversity as lion subpopulations became more differentiated, whereas mitochondrial structure and diversity were maintained over time.
Collapse
Affiliation(s)
- Caitlin J Curry
- Interdisciplinary Program in Genetics, Texas A&M University, College Station, TX
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX
| | - Brian W Davis
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX
| | - Laura D Bertola
- Department of Biology, City College of New York, New York, NY
| | - Paula A White
- Center for Tropical Research, Institute of the Environment and Sustainability, University of California Los Angeles, Los Angeles, CA
| | - William J Murphy
- Interdisciplinary Program in Genetics, Texas A&M University, College Station, TX
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX
| | - James N Derr
- Interdisciplinary Program in Genetics, Texas A&M University, College Station, TX
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX
| |
Collapse
|
27
|
Sarabia C, vonHoldt B, Larrasoaña JC, Uríos V, Leonard JA. Pleistocene climate fluctuations drove demographic history of African golden wolves (Canis lupaster). Mol Ecol 2020; 30:6101-6120. [PMID: 33372365 DOI: 10.1111/mec.15784] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 12/03/2020] [Accepted: 12/14/2020] [Indexed: 12/31/2022]
Abstract
Pleistocene climate change impacted entire ecosystems throughout the world. In the northern hemisphere, the distribution of Arctic species expanded during glacial periods, while more temperate and mesic species contracted into climatic refugia, where isolation drove genetic divergence. Cycles of local cooling and warming in the Sahara region of northern Africa caused repeated contractions and expansions of savannah-like environments which connected mesic species isolated in refugia during interglacial times, possibly driving population expansions and contractions; divergence and geneflow in the associated fauna. Here, we use whole genome sequences of African golden wolves (Canis lupaster), a generalist mesopredator with a wide distribution in northern Africa to estimate their demographic history and past episodes of geneflow. We detect a correlation between divergence times and cycles of increased aridity-associated Pleistocene glacial cycles. A complex demographic history with responses to local climate change in different lineages was found, including a relict lineage north of the High Atlas Mountains of Morocco that has been isolated for more than 18,000 years, possibly a distinct ecotype.
Collapse
Affiliation(s)
- Carlos Sarabia
- Conservation and Evolutionary Genetics Group, Estación Biológica de Doñana (EBD-CSIC, Seville, Spain
| | - Bridgett vonHoldt
- Faculty of Ecology and Evolutionary Biology, University of Princeton, Princeton, NJ, USA
| | | | - Vicente Uríos
- Vertebrate Zoology Research Group, University of Alicante, Alicante, Spain
| | - Jennifer A Leonard
- Conservation and Evolutionary Genetics Group, Estación Biológica de Doñana (EBD-CSIC, Seville, Spain
| |
Collapse
|
28
|
Molecular Species Delimitation of Larks (Aves: Alaudidae), and Integrative Taxonomy of the Genus Calandrella, with the Description of a Range-Restricted African Relic Taxon. DIVERSITY 2020. [DOI: 10.3390/d12110428] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Larks constitute an avian family of exceptional cryptic diversity and striking examples of convergent evolution. Therefore, traditional morphology-based taxonomy has recurrently failed to reflect evolutionary relationships. While taxonomy ideally should integrate morphology, vocalizations, behaviour, ecology, and genetics, this can be challenging for groups that span several continents including areas that are difficult to access. Here, we combine morphometrics and mitochondrial DNA to evaluate the taxonomy of Calandrella larks, with particular focus on the African C. cinerea and the Asian C. acutirostris complexes. We describe a new range-restricted West African taxon, Calandrella cinerea rufipecta ssp. nov. (type locality: Jos, Plateau State, Nigeria), with an isolated relic population 3000 km from its closest relative in the Rift Valley. We performed molecular species delimitation, employing coalescence-based multi-rate Poisson Tree Processes (mPTP) on cytochrome b sequences across 52 currently recognized lark species, including multiple taxa currently treated as subspecies. Three species-level splits were inferred within the genus Calandrella and another 13 across other genera, primarily among fragmented sub-Saharan taxa and taxa distributed from Northwest Africa to Arabia or East Africa. Previously unknown divergences date back as far as to the Miocene, indicating the presence of currently unrecognized species. However, we stress that taxonomic decisions should not be based on single datasets, such as mitochondrial DNA, although analyses of mitochondrial DNA can be a good indicator of taxa in need of further integrative taxonomic assessment.
Collapse
|
29
|
Migliore J, Lézine AM, Hardy OJ. The recent colonization history of the most widespread Podocarpus tree species in Afromontane forests. ANNALS OF BOTANY 2020; 126:73-83. [PMID: 32193530 PMCID: PMC7304463 DOI: 10.1093/aob/mcaa049] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 03/18/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND AND AIMS Afromontane forests host a unique biodiversity distributed in isolated high-elevation habitats within a matrix of rain forests or savannahs, yet they share a remarkable flora that raises questions about past connectivity between currently isolated forests. Here, we focused on the Podocarpus latifolius-P. milanjianus complex (Podocarpaceae), the most widely distributed conifers throughout sub-Saharan African highlands, to infer its demographic history from genetic data. METHODS We sequenced the whole plastid genome, mitochondrial DNA regions and nuclear ribosomal DNA of 88 samples from Cameroon to Angola in western Central Africa and from Kenya to the Cape region in eastern and southern Africa to reconstruct time-calibrated phylogenies and perform demographic inferences. KEY RESULTS We show that P. latifolius and P. milanjianus form a single species, whose lineages diverged during the Pleistocene, mostly between approx, 200 000 and 300 000 years BP, after which they underwent a wide range expansion leading to their current distributions. Confronting phylogenomic and palaeoecological data, we argue that the species originated in East Africa and reached the highlands of the Atlantic side of Africa through two probable latitudinal migration corridors: a northern one towards the Cameroon volcanic line, and a southern one towards Angola. Although the species is now rare in large parts of its range, no demographic decline was detected, probably because it occurred too recently to have left a genetic signature in our DNA sequences. CONCLUSIONS Despite the ancient and highly fluctuating history of podocarps in Africa revealed by palaeobotanical records, the extended distribution of current P. latifolius/milanjianus lineages is shown to result from a more recent history, mostly during the mid-late Pleistocene, when Afromontane forests were once far more widespread and continuous.
Collapse
Affiliation(s)
- Jérémy Migliore
- Sorbonne Université, Laboratoire d’Océanographie et du Climat: Expérimentations et Approches Numériques (LOCEAN/IPSL), CNRS UMR, Paris, France
- Université Libre de Bruxelles, Faculté des Sciences, Service Evolution Biologique et Ecologie, Bruxelles, Belgium
- Muséum départemental du Var, Toulon, France
| | - Anne-Marie Lézine
- Sorbonne Université, Laboratoire d’Océanographie et du Climat: Expérimentations et Approches Numériques (LOCEAN/IPSL), CNRS UMR, Paris, France
| | - Olivier J Hardy
- Université Libre de Bruxelles, Faculté des Sciences, Service Evolution Biologique et Ecologie, Bruxelles, Belgium
| |
Collapse
|
30
|
Miller SM, Moeller CH, Harper CK, Bloomer P. Anthropogenic movement results in hybridisation in impala in southern Africa. CONSERV GENET 2020. [DOI: 10.1007/s10592-020-01276-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
31
|
Tighe AJ, Overby S, Thurman K, Gandola R, Fulanda B, Byrne J, Carlsson J. Investigating a simplified method for noninvasive genetic sampling in East African mammals using silica dried scat swabs. Ecol Evol 2020; 10:3330-3337. [PMID: 32273990 PMCID: PMC7141023 DOI: 10.1002/ece3.6115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 01/13/2020] [Accepted: 01/15/2020] [Indexed: 11/06/2022] Open
Abstract
Swabbing scat has proved to be an effective noninvasive method to collect DNA from mammals in the field. Previously, this method has relied on preservative liquids or freezing to preserve the DNA collected on swabs. In this study, we determine the effectiveness of using silica to simply dry the swab in field as an alternative way to prevent DNA degredation. Four species were included in the study; reticulated giraffe, impala, fringe-eared oryx, and lion. Swabs were taken at multiple time points for giraffe and impala scat samples, with the lion and oryx sampled opportunistically. Mitochondrial DNA was successfully amplified and sequenced from scat swabs from all species; however, effectiveness varied between species, with 81.8% amplification success rate from swabs taken from impala scat compared to 25% amplification success rate in giraffe. This variation in success rate was overcome by taking multiple swabs, thus increasing the probability of a successful amplification. The true merit of this method is in its simplicity and cheapness; no preservative liquids were required to be brought into the field, at no stage in the 2 weeks of field sampling were samples frozen, and no commercial kits were used for DNA extraction.
Collapse
Affiliation(s)
- Andrew J Tighe
- Area 52 Research Group School of Biology and Environmental Science/Earth Institute University College Dublin Dublin Ireland
- Fish Health Unit Marine Institute Oranmore Ireland
| | - Sarah Overby
- Area 52 Research Group School of Biology and Environmental Science/Earth Institute University College Dublin Dublin Ireland
- Interdisciplinary Research Structure for Biotechnology and Biomedicine (ERI BIOTECMED) University of Valencia Valencia Spain
| | - Kiera Thurman
- Area 52 Research Group School of Biology and Environmental Science/Earth Institute University College Dublin Dublin Ireland
| | - Robert Gandola
- Area 52 Research Group School of Biology and Environmental Science/Earth Institute University College Dublin Dublin Ireland
| | - Bernerd Fulanda
- Department of Biological Sciences Pwani University Kilifi Kenya
| | - John Byrne
- Area 52 Research Group School of Biology and Environmental Science/Earth Institute University College Dublin Dublin Ireland
| | - Jens Carlsson
- Area 52 Research Group School of Biology and Environmental Science/Earth Institute University College Dublin Dublin Ireland
| |
Collapse
|
32
|
Armstrong EE, Taylor RW, Miller DE, Kaelin CB, Barsh GS, Hadly EA, Petrov D. Long live the king: chromosome-level assembly of the lion (Panthera leo) using linked-read, Hi-C, and long-read data. BMC Biol 2020; 18:3. [PMID: 31915011 PMCID: PMC6950864 DOI: 10.1186/s12915-019-0734-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 12/20/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The lion (Panthera leo) is one of the most popular and iconic feline species on the planet, yet in spite of its popularity, the last century has seen massive declines for lion populations worldwide. Genomic resources for endangered species represent an important way forward for the field of conservation, enabling high-resolution studies of demography, disease, and population dynamics. Here, we present a chromosome-level assembly from a captive African lion from the Exotic Feline Rescue Center (Center Point, IN) as a resource for current and subsequent genetic work of the sole social species of the Panthera clade. RESULTS Our assembly is composed of 10x Genomics Chromium data, Dovetail Hi-C, and Oxford Nanopore long-read data. Synteny is highly conserved between the lion, other Panthera genomes, and the domestic cat. We find variability in the length of runs of homozygosity across lion genomes, indicating contrasting histories of recent and possibly intense inbreeding and bottleneck events. Demographic analyses reveal similar ancient histories across all individuals during the Pleistocene except the Asiatic lion, which shows a more rapid decline in population size. We show a substantial influence on the reference genome choice in the inference of demographic history and heterozygosity. CONCLUSIONS We demonstrate that the choice of reference genome is important when comparing heterozygosity estimates across species and those inferred from different references should not be compared to each other. In addition, estimates of heterozygosity or the amount or length of runs of homozygosity should not be taken as reflective of a species, as these can differ substantially among individuals. This high-quality genome will greatly aid in the continuing research and conservation efforts for the lion, which is rapidly moving towards becoming a species in danger of extinction.
Collapse
Affiliation(s)
| | - Ryan W Taylor
- Department of Biology, Stanford University, Stanford, CA, USA
- End2EndGenomics, LLC, Davis, CA, USA
| | - Danny E Miller
- Department of Pediatrics, Seattle Children's Hospital and The University of Washington, Seattle, WA, USA
| | - Christopher B Kaelin
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Gregory S Barsh
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
| | | | - Dmitri Petrov
- Department of Biology, Stanford University, Stanford, CA, USA
| |
Collapse
|
33
|
Fuchs J, Alström P, Yosef R, Olsson U. Miocene diversification of an open‐habitat predatorial passerine radiation, the shrikes (Aves: Passeriformes: Laniidae). ZOOL SCR 2019. [DOI: 10.1111/zsc.12363] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jérôme Fuchs
- UMR7205 Institut de Systématique, Evolution, Biodiversité CNRS MNHN UPMC EPHE, Muséum National d’Histoire Naturelle Sorbonne Université Paris France
| | - Per Alström
- Department of Ecology and Genetics, Animal Ecology, Evolutionary Biology Centre Uppsala University Uppsala Sweden
- Swedish Species Information Centre Swedish University of Agricultural Sciences Uppsala Sweden
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology Chinese Academy of Sciences Beijing China
| | | | - Urban Olsson
- Department of Biology and Environmental Science University of Gothenburg Gothenburg Sweden
| |
Collapse
|
34
|
The evolutionary history of the Cape hare (Lepus capensis sensu lato): insights for systematics and biogeography. Heredity (Edinb) 2019; 123:634-646. [PMID: 31073237 DOI: 10.1038/s41437-019-0229-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 04/11/2019] [Accepted: 04/19/2019] [Indexed: 12/27/2022] Open
Abstract
Inferring the phylogeography of species with large distributions helps deciphering major diversification patterns that may occur in parallel across taxa. Here, we infer the evolutionary history of the Cape hare, Lepus capensis sensu lato, a species distributed from southern Africa to Asia, by analyzing variation at 18 microsatellites and 9 DNA (1 mitochondrial and 8 nuclear) sequenced loci, from field and museum-collected samples. Using a combination of assignment and coalescent-based methods, we show that the Cape hare is composed of five evolutionary lineages, distributed in distinct biogeographic regions-north-western Africa, eastern Africa, southern Africa, the Near East and the Arabian Peninsula. A deep phylogenetic break possibly dating to the Early Pleistocene was inferred between the African and Asian L. capensis groups, and the latter appear more closely related to other Eurasian hare species than to African Cape hares. The inferred phylogeographic structure is shared by numerous taxa distributed across the studied range, suggesting that environmental changes, such as the progressive aridification of the Saharo-Arabian desert and the fluctuations of savannah habitats in Sub-Saharan Africa, had comparable impacts across species. Fine-scale analyses of the western Sahara-Sahel populations showed rich fragmentation patterns for mitochondrial DNA but not for microsatellites, compatible with the environmental heterogeneity of the region and female philopatry. The complex evolutionary history of L. capensis sensu lato, which possibly includes interspecific gene flow, is not reflected by taxonomy. Integrating evolutionary inference contributes to an improved characterization of biodiversity, which is fundamental to foster the conservation of relevant evolutionary units.
Collapse
|
35
|
Barratt CD, Bwong BA, Jehle R, Liedtke HC, Nagel P, Onstein RE, Portik DM, Streicher JW, Loader SP. Vanishing refuge? Testing the forest refuge hypothesis in coastal East Africa using genome-wide sequence data for seven amphibians. Mol Ecol 2018; 27:4289-4308. [DOI: 10.1111/mec.14862] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 08/08/2018] [Accepted: 08/29/2018] [Indexed: 01/03/2023]
Affiliation(s)
- Christopher D. Barratt
- Department of Environmental Sciences; University of Basel; Basel Switzerland
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig; Leipzig Germany
| | - Beryl A. Bwong
- Department of Environmental Sciences; University of Basel; Basel Switzerland
- Herpetology Section; National Museums of Kenya; Nairobi Kenya
| | - Robert Jehle
- School of Environment and Life Sciences; University of Salford; Salford UK
| | - H. Christoph Liedtke
- Department of Environmental Sciences; University of Basel; Basel Switzerland
- Ecology, Evolution and Developmental Group; Department of Wetland Ecology; Estación Biológica de Doñana (CSIC); Sevilla Spain
| | - Peter Nagel
- Department of Environmental Sciences; University of Basel; Basel Switzerland
| | - Renske E. Onstein
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig; Leipzig Germany
| | - Daniel M. Portik
- Department of Biology; The University of Texas at Arlington; Arlington Texas
- Department of Ecology and Evolutionary Biology; University of Arizona; Tucson Arizona
| | | | - Simon P. Loader
- Department of Environmental Sciences; University of Basel; Basel Switzerland
- Department of Life Sciences; Natural History Museum; London UK
| |
Collapse
|
36
|
Kerr TJ, Matthee S, Govender D, Tromp G, Engelbrecht S, Matthee CA. Viruses as indicators of contemporary host dispersal and phylogeography: an example of feline immunodeficiency virus (FIV P le ) in free-ranging African lion (Panthera leo). J Evol Biol 2018; 31:1529-1543. [PMID: 29964350 DOI: 10.1111/jeb.13348] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 06/13/2018] [Accepted: 06/18/2018] [Indexed: 11/30/2022]
Abstract
Measuring contemporary dispersal in highly mobile terrestrial species is challenging, especially when species are characterized by low levels of population differentiation. Directly transmitted viruses can be used as a surrogate for traditional methods of tracking host movement. Feline immunodeficiency virus (FIV) is a species-specific lentivirus, which has an exceptionally high mutation rate and circulates naturally in wild felids. Using samples derived from 35 lion (Panthera leo) prides, we tested the prediction that FIV in lions (FIVP le ) can be used to track the dispersal of individuals between prides. As FIVP le subtypes are geographically structured throughout Africa, we predicted that this marker could be used to detect phylogeographic structure of lions at smaller spatial scales. Phylogenetic analyses of FIVP le pol-RT sequences showed that core pride members (females and subadults) shared evolutionary close viral lineages which differed from neighbouring core prides, whereas sequences from sexually mature males associated with the same pride were always the most divergent. In six instances, natal pride associations of divergent male lions could be inferred, on the assumption that FIVP le infections are acquired during early life stages. Congruence between the genetic pattern of FIV and pride structure suggests that vertical transmission plays an important role in lion FIV dynamics. At a fine spatial scale, significant viral geographic structuring was also detected between lions occurring north of the Olifants River within the Kruger National Park (KNP) and those occupying the southern and central regions. This pattern was further supported by phylogenetic analyses and the confinement of FIVP le subtype E to the northern region of KNP. The study provides new insights into the use of retroviral sequences to predict host dispersal and fine-scale contemporary geographic structure in a social felid species.
Collapse
Affiliation(s)
- Tanya J Kerr
- Department of Conservation Ecology and Entomology, Faculty of AgriScience, Stellenbosch University, Stellenbosch, South Africa.,Division of Medical Virology, Department of Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.,Evolutionary Genomics Group, Department of Botany and Zoology, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
| | - Sonja Matthee
- Department of Conservation Ecology and Entomology, Faculty of AgriScience, Stellenbosch University, Stellenbosch, South Africa
| | - Danny Govender
- Scientific Services, SANParks, Skukuza, South Africa.,Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa
| | - Gerard Tromp
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, SAMRC-SHIP South African Tuberculosis Bioinformatics Initiative (SATBBI), Center for Bioinformatics and Computational Biology, Stellenbosch University, Cape Town, South Africa.,Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, NRF/DST Centre of Excellence for Biomedical Tuberculosis Research, Stellenbosch University, Cape Town, South Africa.,Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Susan Engelbrecht
- Division of Medical Virology, Department of Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.,National Health Laboratory Service (NHLS), Tygerberg Coastal, Cape Town, South Africa
| | - Conrad A Matthee
- Evolutionary Genomics Group, Department of Botany and Zoology, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
37
|
Did Our Species Evolve in Subdivided Populations across Africa, and Why Does It Matter? Trends Ecol Evol 2018; 33:582-594. [PMID: 30007846 PMCID: PMC6092560 DOI: 10.1016/j.tree.2018.05.005] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 05/15/2018] [Accepted: 05/17/2018] [Indexed: 01/27/2023]
Abstract
We challenge the view that our species, Homo sapiens, evolved within a single population and/or region of Africa. The chronology and physical diversity of Pleistocene human fossils suggest that morphologically varied populations pertaining to the H. sapiens clade lived throughout Africa. Similarly, the African archaeological record demonstrates the polycentric origin and persistence of regionally distinct Pleistocene material culture in a variety of paleoecological settings. Genetic studies also indicate that present-day population structure within Africa extends to deep times, paralleling a paleoenvironmental record of shifting and fractured habitable zones. We argue that these fields support an emerging view of a highly structured African prehistory that should be considered in human evolutionary inferences, prompting new interpretations, questions, and interdisciplinary research directions. The view that Homo sapiens evolved from a single region/population within Africa has been given primacy in studies of human evolution. However, developments across multiple fields show that relevant data are no longer consistent with this view. We argue instead that Homo sapiens evolved within a set of interlinked groups living across Africa, whose connectivity changed through time. Genetic models therefore need to incorporate a more complex view of ancient migration and divergence in Africa. We summarize this new framework emphasizing population structure, outline how this changes our understanding of human evolution, and identify new research directions.
Collapse
|
38
|
Janecka JE, Janecka MJ, Helgen KM, Murphy WJ. The validity of three snow leopard subspecies: response to Senn et al. Heredity (Edinb) 2018; 120:586-590. [PMID: 29434338 PMCID: PMC5943360 DOI: 10.1038/s41437-018-0052-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 01/04/2018] [Accepted: 01/08/2018] [Indexed: 11/09/2022] Open
Affiliation(s)
- J E Janecka
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA, USA.
| | - M J Janecka
- Department of Biology, Texas A & M University, College Station, TX, USA
| | - K M Helgen
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - W J Murphy
- Department of Veterinary Integrative Biosciences, Texas A & M University, College Station, TX, USA
| |
Collapse
|
39
|
Tensen L, Groom RJ, Khuzwayo J, Jansen van Vuuren B. The genetic tale of a recovering lion population (Panthera leo) in the Savé Valley region (Zimbabwe): A better understanding of the history and managing the future. PLoS One 2018; 13:e0190369. [PMID: 29415031 PMCID: PMC5802433 DOI: 10.1371/journal.pone.0190369] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 12/13/2017] [Indexed: 11/24/2022] Open
Abstract
The rapid decline of the African lion (Panthera leo) has raised conservation concerns. In the Savé Valley Conservancy (SVC), in the Lowveld of Zimbabwe, lions were presumably reduced to approximately 5 to 10 individuals. After ten lions were reintroduced in 2005, the population has recovered to over 200 lions in 2016. Although the increase of lions in the SVC seems promising, a question remains whether the population is genetically viable, considering their small founding population. In this study, we document the genetic diversity in the SVC lion population using both mitochondrial and nuclear genetic markers, and compare our results to literature from other lion populations across Africa. We also tested whether genetic diversity is spatially structured between lion populations residing on several reserves in the Lowveld of Zimbabwe. A total of 42 lions were genotyped successfully for 11 microsatellite loci. We confirmed that the loss of allelic richness (probably resulting from genetic drift and small number of founders) has resulted in low genetic diversity and inbreeding. The SVC lion population was also found to be genetically differentiated from surrounding population, as a result of genetic drift and restricted natural dispersal due to anthropogenic barriers. From a conservation perspective, it is important to avoid further loss of genetic variability in the SVC lion population and maintain evolutionary potential required for future survival. Genetic restoration through the introduction of unrelated individuals is recommended, as this will increase genetic heterozygosity and improve survival and reproductive fitness in populations.
Collapse
Affiliation(s)
- Laura Tensen
- Centre for Ecological Genomics and Wildlife Conservation, Department of Zoology, University of Johannesburg, Johannesburg, South Africa
| | - Rosemary J. Groom
- Centre for Ecological Genomics and Wildlife Conservation, Department of Zoology, University of Johannesburg, Johannesburg, South Africa
- African Wildlife Conservation Fund, Chishakwe Ranch, Savé Valley Conservancy, Zimbabwe
| | - Joy Khuzwayo
- Centre for Ecological Genomics and Wildlife Conservation, Department of Zoology, University of Johannesburg, Johannesburg, South Africa
| | - Bettine Jansen van Vuuren
- Centre for Ecological Genomics and Wildlife Conservation, Department of Zoology, University of Johannesburg, Johannesburg, South Africa
| |
Collapse
|
40
|
Barnett R, Sinding MHS, Vieira FG, Mendoza MLZ, Bonnet M, Araldi A, Kienast I, Zambarda A, Yamaguchi N, Henschel P, Gilbert MTP. No longer locally extinct? Tracing the origins of a lion ( Panthera leo) living in Gabon. CONSERV GENET 2018; 19:611-618. [PMID: 31007636 PMCID: PMC6448349 DOI: 10.1007/s10592-017-1039-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 12/16/2017] [Indexed: 12/22/2022]
Abstract
Lions (Panthera leo) are of particular conservation concern due to evidence of recent, widespread population declines in what has hitherto been seen as a common species, robust to anthropogenic disturbance. Here we use non-invasive methods to recover complete mitochondrial genomes from single hair samples collected in the field in order to explore the identity of the Gabonese Plateaux Batéké lion. Comparison of the mitogenomes against a comprehensive dataset of African lion sequences that includes relevant geographically proximate lion populations from both contemporary and ancient sources, enabled us to identify the Plateaux Batéké lion as a close maternal relative to now extirpated populations found in Gabon and nearby Congo during the twentieth century, and to extant populations of Southern Africa. Our study demonstrates the relevance of ancient DNA methods to field conservation work, and the ability of trace field samples to provide copious genetic information about free-ranging animals.
Collapse
Affiliation(s)
- Ross Barnett
- Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark
| | - Mikkel-Holder S. Sinding
- Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark
- Natural History Museum, University of Oslo, Blindern, P.O. Box 1172, 0318 Oslo, Norway
| | - Filipe G. Vieira
- Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark
| | | | - Matthieu Bonnet
- The Aspinall Foundation, Port Lympne Wild Animal Park, Hythe, Kent CT21 4PD UK
| | - Alessandro Araldi
- The Aspinall Foundation, Port Lympne Wild Animal Park, Hythe, Kent CT21 4PD UK
| | - Ivonne Kienast
- Congo Program, Wildlife Conservation Society, Brazzaville, Congo
| | - Alice Zambarda
- The Aspinall Foundation, Port Lympne Wild Animal Park, Hythe, Kent CT21 4PD UK
| | - Nobuyuki Yamaguchi
- Department of Biological and Environmental Sciences, Qatar University, Doha, Qatar
| | - Philipp Henschel
- Panthera, 8 West 40th Street, 18th Floor, New York, NY 10018 USA
- Institut de Recherche en Ecologie Tropicale, CENAREST, BP 842 Libreville, Gabon
| | - M. Thomas P. Gilbert
- Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark
- NTNU University Museum, 7491 Trondheim, Norway
| |
Collapse
|
41
|
Atkinson KE, Kitchener AC, Tobe SS, O’Donoghue P. An assessment of the genetic diversity of the founders of the European captive population of Asian lion (Panthera leo leo), using microsatellite markers and studbook analysis. Mamm Biol 2018. [DOI: 10.1016/j.mambio.2017.10.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
42
|
Berger LR, Hawks J, Dirks PHGM, Elliott M, Roberts EM. Homo naledi and Pleistocene hominin evolution in subequatorial Africa. eLife 2017; 6:e24234. [PMID: 28483041 PMCID: PMC5423770 DOI: 10.7554/elife.24234] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 04/19/2017] [Indexed: 01/22/2023] Open
Abstract
New discoveries and dating of fossil remains from the Rising Star cave system, Cradle of Humankind, South Africa, have strong implications for our understanding of Pleistocene human evolution in Africa. Direct dating of Homo naledi fossils from the Dinaledi Chamber (Berger et al., 2015) shows that they were deposited between about 236 ka and 335 ka (Dirks et al., 2017), placing H. naledi in the later Middle Pleistocene. Hawks and colleagues (Hawks et al., 2017) report the discovery of a second chamber within the Rising Star system (Dirks et al., 2015) that contains H. naledi remains. Previously, only large-brained modern humans or their close relatives had been demonstrated to exist at this late time in Africa, but the fossil evidence for any hominins in subequatorial Africa was very sparse. It is now evident that a diversity of hominin lineages existed in this region, with some divergent lineages contributing DNA to living humans and at least H. naledi representing a survivor from the earliest stages of diversification within Homo. The existence of a diverse array of hominins in subequatorial comports with our present knowledge of diversity across other savanna-adapted species, as well as with palaeoclimate and paleoenvironmental data. H. naledi casts the fossil and archaeological records into a new light, as we cannot exclude that this lineage was responsible for the production of Acheulean or Middle Stone Age tool industries.
Collapse
Affiliation(s)
- Lee R Berger
- Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg, South Africa
| | - John Hawks
- Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg, South Africa
- Department of Anthropology, University of Wisconsin, Madison, United States
| | - Paul HGM Dirks
- Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg, South Africa
- Department of Geosciences, James Cook University, Townsville, Australia
| | - Marina Elliott
- Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg, South Africa
| | - Eric M Roberts
- Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg, South Africa
- Department of Geosciences, James Cook University, Townsville, Australia
| |
Collapse
|
43
|
Gippoliti S, Cotterill FPD, Zinner D, Groves CP. Impacts of taxonomic inertia for the conservation of African ungulate diversity: an overview. Biol Rev Camb Philos Soc 2017; 93:115-130. [PMID: 28429851 DOI: 10.1111/brv.12335] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 03/23/2017] [Accepted: 03/27/2017] [Indexed: 01/27/2023]
Abstract
We review the state of African ungulate taxonomy over the last 120 years, with an emphasis on the introduction of the polytypic species concept and the discipline's general neglect since the middle of the 20th century. We single out negative consequences of 'orthodox' taxonomy, highlighting numerous cases of neglect of threatened lineages, unsound translocations that led to lineage introgression, and cases of maladaptation to local conditions including parasitic infections. Additionally, several captive breeding programmes have been hampered by chromosome rearrangements caused by involuntary lineage mixing. We advocate that specimen-based taxonomy should regain its keystone role in mammal research and conservation biology, with its scientific values augmented with genomic evidence. While integration with molecular biology, ecology and behaviour is needed for a full understanding of ungulate alpha diversity, we stress that morphological diversity has been neglected despite its tremendous practical importance for some groups of 'utilizers' such as trophy hunters, wildlife tourists and conservationists. We conclude that there is no evidence that purported 'taxonomic inflation' has adverse effects on ungulate conservation: rather, it is taxonomic inertia that has such adverse effects. We stress that sound science, founded on robust taxonomy, should underpin effective sustainable management (hunting, ranching, captive breeding and reintroduction programmes) of this unique African natural resource.
Collapse
Affiliation(s)
- Spartaco Gippoliti
- Società Italiana di Storia della Fauna 'G. Altobello' Viale Liegi 48, 00198, Roma, Italy
| | - Fenton P D Cotterill
- Geoecodynamics Research Hub, Department of Earth Sciences, University of Stellenbosch, Stellenbosch, 7602, South Africa
| | - Dietmar Zinner
- Cognitive Ethology Laboratory, German Primate Center, 37077, Göttingen, Germany
| | - Colin P Groves
- School of Archaeology & Anthropology, Australian National University, Canberra, Australia
| |
Collapse
|
44
|
Anco C, Kolokotronis SO, Henschel P, Cunningham SW, Amato G, Hekkala E. Historical mitochondrial diversity in African leopards (Panthera pardus) revealed by archival museum specimens. Mitochondrial DNA A DNA Mapp Seq Anal 2017; 29:455-473. [PMID: 28423965 DOI: 10.1080/24701394.2017.1307973] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Once found throughout Africa and Eurasia, the leopard (Panthera pardus) was recently uplisted from Near Threatened to Vulnerable by the International Union for the Conservation of Nature (IUCN). Historically, more than 50% of the leopard's global range occurred in continental Africa, yet sampling from this part of the species' distribution is only sparsely represented in prior studies examining patterns of genetic variation at the continental or global level. Broad sampling to determine baseline patterns of genetic variation throughout the leopard's historical distribution is important, as these measures are currently used by the IUCN to direct conservation priorities and management plans. By including data from 182 historical museum specimens, faecal samples from ongoing field surveys, and published sequences representing sub-Saharan Africa, we identify previously unrecognized genetic diversity in African leopards. Our mtDNA data indicates high levels of divergence among regional populations and strongly differentiated lineages in West Africa on par with recent studies of other large vertebrates. We provide a reference benchmark of genetic diversity in African leopards against which future monitoring can be compared. These findings emphasize the utility of historical museum collections in understanding the processes that shape present biodiversity. Additionally, we suggest future research to clarify African leopard taxonomy and to differentiate between delineated units requiring monitoring or conservation action.
Collapse
Affiliation(s)
- Corey Anco
- a Department of Biological Sciences , Fordham University , Bronx , USA.,b Sackler Institute for Comparative Genomics, American Museum of Natural History , New York , USA
| | - Sergios-Orestis Kolokotronis
- b Sackler Institute for Comparative Genomics, American Museum of Natural History , New York , USA.,c Department of Epidemiology and Biostatistics, School of Public Health , SUNY Downstate Medical Center , Brooklyn , USA
| | | | - Seth W Cunningham
- a Department of Biological Sciences , Fordham University , Bronx , USA
| | - George Amato
- b Sackler Institute for Comparative Genomics, American Museum of Natural History , New York , USA
| | - Evon Hekkala
- a Department of Biological Sciences , Fordham University , Bronx , USA.,b Sackler Institute for Comparative Genomics, American Museum of Natural History , New York , USA
| |
Collapse
|
45
|
Bauer H, Henschel P, Packer C, Sillero-Zubiri C, Chardonnet B, Sogbohossou EA, De Iongh HH, Macdonald DW. Lion trophy hunting in West Africa: A response to Bouché et al. PLoS One 2017; 12:e0173691. [PMID: 28323837 PMCID: PMC5360238 DOI: 10.1371/journal.pone.0173691] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 02/24/2017] [Indexed: 11/18/2022] Open
Affiliation(s)
- H. Bauer
- Wildlife Conservation Research Unit, Zoology, University of Oxford, Recanati-Kaplan Centre, Tubney, United Kingdom
- * E-mail:
| | - P. Henschel
- Panthera, New York, New York, United States of America
| | - C. Packer
- Wildlife Conservation Research Unit, Zoology, University of Oxford, Recanati-Kaplan Centre, Tubney, United Kingdom
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, Minnesota, United States of America
| | - C. Sillero-Zubiri
- Wildlife Conservation Research Unit, Zoology, University of Oxford, Recanati-Kaplan Centre, Tubney, United Kingdom
| | - B. Chardonnet
- African Protected Areas & Wildlife, Saint Cloud, France
| | - E. A. Sogbohossou
- Laboratory of Applied Ecology, University of Abomey-Calavi, Cotonou, Benin
| | - H. H. De Iongh
- Institute for Environmental Sciences, University of Leiden, Leiden, The Netherlands
| | - D. W. Macdonald
- Wildlife Conservation Research Unit, Zoology, University of Oxford, Recanati-Kaplan Centre, Tubney, United Kingdom
| |
Collapse
|
46
|
The Challenges and Relevance of Exploring the Genetics of North Africa's "Barbary Lion" and the Conservation of Putative Descendants in Captivity. INTERNATIONAL JOURNAL OF EVOLUTIONARY BIOLOGY 2016; 2016:6901892. [PMID: 27656310 PMCID: PMC5021484 DOI: 10.1155/2016/6901892] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 06/05/2016] [Accepted: 07/17/2016] [Indexed: 12/03/2022]
Abstract
The lions of North Africa were unique in ecological terms as well as from a human cultural perspective and were the definitive lions of Roman and Medieval Europe. Labelled “Barbary” lions, they were once numerous in North Africa but were exterminated by the mid-20th century. Despite subsequent degeneration of the Atlas Mountain ecosystem through human pressures, the feasibility of lion reintroduction has been debated since the 1970s. Research on the long-established captive lion collection traditionally kept by the sultans and kings of Morocco has enabled selective breeding coordinated across Moroccan and European zoos involving a significant number of animals. Molecular genetic research has recently provided insights into lion phylogeny which, despite previous suggestions that all lions share recent common ancestry, now indicates clear distinctions between lions in North, West, and Central Africa, the Middle East, and India versus those in Southern and Eastern Africa. A review of the evolutionary relevance of North African lions highlights the important challenges and opportunities in understanding relationships between Moroccan lions, extinct North African lions, and extant lion populations in India and West and Central Africa and the potential role for lions in ecosystem recovery in those regions.
Collapse
|