1
|
Li P, Ma X, Huang D, Gu X. Exploring the roles of non-coding RNAs in liver regeneration. Noncoding RNA Res 2024; 9:945-953. [PMID: 38680418 PMCID: PMC11046251 DOI: 10.1016/j.ncrna.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/26/2024] [Accepted: 04/16/2024] [Indexed: 05/01/2024] Open
Abstract
Liver regeneration (LR) is a complex process encompassing three distinct phases: priming, proliferation phase and restoration, all influenced by various regulatory factors. After liver damage or partial resection, the liver tissue demonstrates remarkable restorative capacity, driven by cellular proliferation and repair mechanisms. The essential roles of non-coding RNAs (ncRNAs), predominantly microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and circular RNA (circRNA), in regulating LR have been vastly studied. Additionally, the impact of ncRNAs on LR and their abnormal expression profiles during this process have been extensively documented. Mechanistic investigations have revealed that ncRNAs interact with genes involved in proliferation to regulate hepatocyte proliferation, apoptosis and differentiation, along with liver progenitor cell proliferation and migration. Given the significant role of ncRNAs in LR, an in-depth exploration of their involvement in the liver's self-repair capacity can reveal promising therapeutic strategies for LR and liver-related diseases. Moreover, understanding the unique regenerative potential of the adult liver and the mechanisms and regulatory factors of ncRNAs in LR are crucial for improving current treatment strategies and exploring new therapeutic approaches for various liver-related diseases. This review provides a brief overview of the LR process and the ncRNA expression profiles during this process. Furthermore, we also elaborate on the specific molecular mechanisms through which multiple key ncRNAs regulate the LR process. Finally, based on the expression characteristics of ncRNAs and their interactions with proliferation-associated genes, we explore their potential clinical application, such as developing predictive indicators reflecting liver regenerative activity and manipulating LR processes for therapeutic purposes.
Collapse
Affiliation(s)
- Penghui Li
- Department of Oncology, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, 471000, Henan, China
| | - Xiao Ma
- Zhejiang University School of Medicine, Hangzhou, 310000, Zhejiang, China
| | - Di Huang
- Department of Child Health Care, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Xinyu Gu
- Department of Oncology, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, 471000, Henan, China
| |
Collapse
|
2
|
Lu X, Yu L, Zheng J, Li A, Li J, Lou H, Zhang W, Guo H, Wang Y, Li X, Gao Y, Fan X, Borlak J. miR-106b-5p protects against drug-induced liver injury by targeting vimentin to stimulate liver regeneration. MedComm (Beijing) 2024; 5:e692. [PMID: 39170945 PMCID: PMC11337467 DOI: 10.1002/mco2.692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 07/02/2024] [Accepted: 07/17/2024] [Indexed: 08/23/2024] Open
Abstract
Understanding the endogenous mechanism of adaptive response to drug-induced liver injury (arDILI) may discover innovative strategies to manage DILI. To gain mechanistic insight into arDILI, we investigated exosomal miRNAs in the adaptive response to toosendanin-induced liver injury (TILI) of mice. Exosomal miR-106b-5p was identified as a specific regulator of arDILI by comprehensive miRNA profiling. Outstandingly, miR-106b-5p agomir treatment alleviated TILI and other DILI by inhibiting apoptosis and promoting hepatocyte proliferation. Conversely, antagomir treatments had opposite effects, indicating that miR-106b-5p protects mice from liver injury. Injured hepatocytes released miR-106b-5p-enriched exosomes taken up by surrounding hepatocytes. Vim (encodes vimentin) was identified as an important target of miR-106b-5p by dual luciferase reporter and siRNA assays. Furthermore, single-cell RNA-sequencing analysis of toosendanin-injured mouse liver revealed a cluster of Vim + hepatocytes; nonetheless declined following miR-106b-5p cotreatment. More importantly, Vim knockout protected mice from acetaminophen poisoning and TILI. In the clinic, serum miR-106b-5p expression levels correlated with the severity of DILI. Indeed, liver biopsies of clinical cases exposed to different DILI causing drugs revealed marked vimentin expression among harmed hepatocytes, confirming clinical relevance. Together, we report mechanisms of arDILI whereby miR-106b-5p safeguards restorative tissue repair by targeting vimentin.
Collapse
Affiliation(s)
- Xiaoyan Lu
- Pharmaceutical Informatics InstituteCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouChina
- State Key Laboratory of Chinese Medicine ModernizationInnovation Center of Yangtze River DeltaZhejiang UniversityJiaxingChina
- State Key Laboratory of Component‐Based Chinese MedicineTianjin University of Traditional Chinese MedicineTianjinChina
| | - Lingqi Yu
- Pharmaceutical Informatics InstituteCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouChina
- State Key Laboratory of Chinese Medicine ModernizationInnovation Center of Yangtze River DeltaZhejiang UniversityJiaxingChina
| | - Jie Zheng
- Pharmaceutical Informatics InstituteCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouChina
| | - Anyao Li
- Pharmaceutical Informatics InstituteCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouChina
| | - Junying Li
- Pharmaceutical Informatics InstituteCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouChina
| | - He Lou
- Pharmaceutical Informatics InstituteCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouChina
| | - Wentao Zhang
- Department of Hepatobiliarythe First Affiliated Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
| | - Hui Guo
- Department of Hepatobiliarythe First Affiliated Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
| | - Yuzhen Wang
- Department of PharmacySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
| | - Xuemei Li
- State Key Laboratory of Component‐Based Chinese MedicineTianjin University of Traditional Chinese MedicineTianjinChina
| | - Yue Gao
- State Key Laboratory of Component‐Based Chinese MedicineTianjin University of Traditional Chinese MedicineTianjinChina
- Department of Pharmaceutical SciencesBeijing Institute of Radiation MedicineBeijingChina
| | - Xiaohui Fan
- Pharmaceutical Informatics InstituteCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouChina
- State Key Laboratory of Chinese Medicine ModernizationInnovation Center of Yangtze River DeltaZhejiang UniversityJiaxingChina
- State Key Laboratory of Component‐Based Chinese MedicineTianjin University of Traditional Chinese MedicineTianjinChina
- The Joint‐Laboratory of Clinical Multi‐Omics Research Between Zhejiang University and Ningbo Municipal Hospital of TCMNingbo Municipal Hospital of TCMNingboChina
| | - Jürgen Borlak
- Centre for Pharmacology and ToxicologyHannover Medical SchoolHannoverGermany
| |
Collapse
|
3
|
Chen Y, Meng L, Xu N, Chen H, Wei X, Lu D, Wang S, Xu X. Ten-eleven translocation-2-mediated macrophage activation promotes liver regeneration. Cell Commun Signal 2024; 22:95. [PMID: 38308318 PMCID: PMC10835877 DOI: 10.1186/s12964-023-01407-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 11/23/2023] [Indexed: 02/04/2024] Open
Abstract
BACKGROUND The remarkable regenerative capacity of the liver enables recovery after radical Hepatocellular carcinoma (HCC) resection. After resection, macrophages secrete interleukin 6 and hepatocyte growth factors to promote liver regeneration. Ten-eleven translocation-2 (Tet2) DNA dioxygenase regulates pro-inflammatory factor secretion in macrophages. In this study, we explored the role of Tet2 in macrophages and its function independent of its enzymatic activity in liver regeneration. METHODS The model of liver regeneration after 70% partial hepatectomy (PHx) is a classic universal model for studying reparative processes in the liver. Mice were euthanized at 0, 24, and 48 h after PHx. Enzyme-linked immunosorbent assays, quantitative reverse transcription-polymerase chain reaction, western blotting, immunofluorescence analysis, and flow cytometry were performed to explore immune cell infiltration and liver regenerative capability. Molecular dynamics simulations were performed to study the interaction between Tet2 and signal transducer and activator of transcription 1 (Stat1). RESULTS Tet2 in macrophages negatively regulated liver regeneration in the partial hepatectomy mice model. Tet2 interacted with Stat1, inhibiting the expression of proinflammatory factors and suppressing liver regeneration. The Tet2 inhibitor attenuated the interaction between Stat1 and Tet2, enhanced Stat1 phosphorylation, and promoted hepatocyte proliferation. The proliferative function of the Tet2 inhibitor relied on macrophages and did not affect hepatocytes directly. CONCLUSION Our findings underscore that Tet2 in macrophages negatively regulates liver regeneration by interacting with Stat1. Targeting Tet2 in macrophages promotes liver regeneration and function after a hepatectomy, presenting a novel target to promote liver regeneration and function.
Collapse
Affiliation(s)
- Yiyuan Chen
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Lijun Meng
- Zhejiang University School of Medicine, Hangzhou, 310058, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China
| | - Nan Xu
- Zhejiang University School of Medicine, Hangzhou, 310058, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China
| | - Huan Chen
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Xuyong Wei
- Zhejiang University School of Medicine, Hangzhou, 310058, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China
| | - Di Lu
- Zhejiang University School of Medicine, Hangzhou, 310058, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China
| | - Shuai Wang
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
- Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China.
| | - Xiao Xu
- Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China.
- Institute of Organ Transplantation, Zhejiang University, Hangzhou, 310003, China.
| |
Collapse
|
4
|
Shu W, Yang M, Yang J, Lin S, Wei X, Xu X. Cellular crosstalk during liver regeneration: unity in diversity. Cell Commun Signal 2022; 20:117. [PMID: 35941604 PMCID: PMC9358812 DOI: 10.1186/s12964-022-00918-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/08/2022] [Indexed: 11/27/2022] Open
Abstract
The liver is unique in its ability to regenerate from a wide range of injuries and diseases. Liver regeneration centers around hepatocyte proliferation and requires the coordinated actions of nonparenchymal cells, including biliary epithelial cells, liver sinusoidal endothelial cells, hepatic stellate cells and kupffer cells. Interactions among various hepatocyte and nonparenchymal cells populations constitute a sophisticated regulatory network that restores liver mass and function. In addition, there are two different ways of liver regeneration, self-replication of liver epithelial cells and transdifferentiation between liver epithelial cells. The interactions among cell populations and regenerative microenvironment in the two modes are distinct. Herein, we first review recent advances in the interactions between hepatocytes and surrounding cells and among nonparenchymal cells in the context of liver epithelial cell self-replication. Next, we discuss the crosstalk of several cell types in the context of liver epithelial transdifferentiation, which is also crucial for liver regeneration. Video abstract
Collapse
Affiliation(s)
- Wenzhi Shu
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China.,Institute of Organ Transplantation, Zhejiang University, Hangzhou, 310003, China.,NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China.,Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, China.,Program in Clinical Medicine, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Mengfan Yang
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China.,Institute of Organ Transplantation, Zhejiang University, Hangzhou, 310003, China.,NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China.,Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, China
| | - Jiayin Yang
- Department of Liver Surgery and Liver Transplantation Center, West China Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Shengda Lin
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China.,Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Xuyong Wei
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China. .,Institute of Organ Transplantation, Zhejiang University, Hangzhou, 310003, China. .,NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China. .,Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, China.
| | - Xiao Xu
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China. .,Institute of Organ Transplantation, Zhejiang University, Hangzhou, 310003, China. .,NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China. .,Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, China.
| |
Collapse
|
5
|
Xue C, Kang B, Su P, Wang D, Zhao F, Zhang J, Wang X, Lang H, Cao Z. MicroRNA-106b-5p participates in lead (Pb 2+)-induced cell viability inhibition by targeting XIAP in HT-22 and PC12 cells. Toxicol In Vitro 2020; 66:104876. [PMID: 32344020 DOI: 10.1016/j.tiv.2020.104876] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 04/20/2020] [Accepted: 04/23/2020] [Indexed: 12/25/2022]
Abstract
Previous studies reported perturbed expressing of X-linked inhibitor of apoptosis protein (XIAP) under lead (Pb) exposure. However, researches on XIAP expression mainly focused on its transcriptional and post-translational regulation, rarely involving post-transcriptional mechanism manipulated by certain indispensable microRNAs (miRNAs). Interestingly, we unveiled that miR-106b-5p, a widely expressed miRNA in various tissues, is up-regulated by Pb2+-induced stress. Moreover, we found a binding site for miR-106b-5p in the 3'-UTR of xiap mRNA using bioinformatics analysis, and provided the evidences that miR-106b-5p can interact and function with this regulatory region via luciferase reporter assay. Our results further showed that miR-106b-5p down-regulates XIAP protein level, and suppression of miR-106b-5p reverses the decrease in both XIAP level and cell viability in Pb2+-treated HT-22 and PC12 cells. In brief, we identified a novel function of miR-106b-5p in the post-transcriptional regulation of XIAP expression associated with Pb neurotoxicity.
Collapse
Affiliation(s)
- Chong Xue
- Department of Occupational & Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Military Medical University, Xi'an 710032, China
| | - Beipei Kang
- Department of Occupational & Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Military Medical University, Xi'an 710032, China; Department of Clinical Laboratory, Xijing Hospital, Air Force Military Medical University, Xi'an 710032, China
| | - Peng Su
- Department of Occupational & Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Military Medical University, Xi'an 710032, China
| | - Diya Wang
- Department of Occupational & Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Military Medical University, Xi'an 710032, China
| | - Fang Zhao
- Department of Occupational & Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Military Medical University, Xi'an 710032, China
| | - Jianbin Zhang
- Department of Occupational & Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Military Medical University, Xi'an 710032, China
| | - Xiaojing Wang
- Department of Occupational & Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Military Medical University, Xi'an 710032, China; Department of Neurology and Endocrinology, 989 Hospital of PLA, Pingdingshan 467021, China
| | - Haiyang Lang
- School of Public Health, Air Force Military Medical University, Xi'an 710032, China.
| | - Zipeng Cao
- Department of Occupational & Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Military Medical University, Xi'an 710032, China.
| |
Collapse
|
6
|
Li F, Huang J, Liu J, Xu W, Yuan Z. Multivariate analysis of clinicopathological and prognostic significance of miRNA 106b~25 cluster in gastric cancer. Cancer Cell Int 2019; 19:200. [PMID: 31384175 PMCID: PMC6664745 DOI: 10.1186/s12935-019-0918-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 07/22/2019] [Indexed: 12/11/2022] Open
Abstract
Background miRNA 106b~25 cluster were demonstrated to be an oncogene. In previous study, we had analyzed the diagnostic significance of miRNA 106b~25 based on its carcinogenesis effect. The significance of miRNA 106b~25 for prognosis of gastric cancer were not researched. Methods We applied multivariate analysis of PCA, PLS-DA and Cox Regression for clinicopathological features and survival time to explore the significance of miRNA 106b~25 expression in plasma and cancer tissues for gastric cancer. Results The expression of miRNA 106b, miRNA 93 and miRNA 25 in plasma were positively correlated with their expression in tumor tissues. Via PCA analysis, it was found that miRNA 106b~25 expression in plasma and tumor, T, N and TNM stage were correlated with each other. Via PLS-DA analysis, we identified that T, N and TNM stage were important factors for miRNA 106b~25 expression both in plasma and tumor (all VIP value > 1.2). According to loading weights of variables for the first and second components, it was found that the importance of the miRNA 106b~25s expression carried with the progressed stage of gastric cancer. In the survival analysis, COX regression showed that T stage, plasma miRNA 106b and tumor miRNA 93 were significant risk factors for overall survival [HR: 0.400 (0.205–0.780); P = 0.007; HR: 0.371 (0.142–0.969), P = 0.043; 0.295 (0.134–0.650), P = 0.002]. Conclusion Plasma and tumor miRNA 106b~25 expression correlated with T, N and TNM stage. Increased miRNA 106b~25 expression was important characters carried with gastric cancer progression. T stage, plasma miRNA106b and tumor miRNA 93 significant risk factors for overall survival. Electronic supplementary material The online version of this article (10.1186/s12935-019-0918-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fangxuan Li
- 1Department of Radiotherapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Huanhuxi Road, Hexi District, Tianjin, 300060 China.,2Department of Cancer Prevention, Tianjin Medical University Cancer Institute and Hospital, Huanhuxi Road, Hexi District, Tianjin, 300060 China
| | - Jinchao Huang
- 2Department of Cancer Prevention, Tianjin Medical University Cancer Institute and Hospital, Huanhuxi Road, Hexi District, Tianjin, 300060 China.,3Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, Huanhuxi Road, Hexi District, Tianjin, 300060 China
| | - Juntian Liu
- 2Department of Cancer Prevention, Tianjin Medical University Cancer Institute and Hospital, Huanhuxi Road, Hexi District, Tianjin, 300060 China
| | - Wengui Xu
- 3Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, Huanhuxi Road, Hexi District, Tianjin, 300060 China
| | - Zhiyong Yuan
- 1Department of Radiotherapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Huanhuxi Road, Hexi District, Tianjin, 300060 China
| |
Collapse
|
7
|
Bai H, Guo J, Chang C, Guo X, Xu C, Jin W. Comprehensive analysis of lncRNA-miRNA-mRNA during proliferative phase of rat liver regeneration. J Cell Physiol 2019; 234:18897-18905. [PMID: 30916358 PMCID: PMC6617821 DOI: 10.1002/jcp.28529] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/24/2019] [Accepted: 03/05/2019] [Indexed: 12/16/2022]
Abstract
This study aims to reveal the regulatory mechanism of lncRNAs-miRNAs-mRNAs network during the proliferative phase of liver regeneration (LR). High-throughput sequencing technology was performed, and a total of 1,738 differentially expressed lncRNAs (DE lncRNAs), 167 known differentially expressed miRNAs (DE miRNAs), and 2,727 differentially expressed mRNAs were identified. Then, the target DE lncRNAs and DE mRNAs regulated by the same miRNAs were screened and a ceRNA regulatory network containing 32 miRNAs, 107 lncRNAs, and 270 mRNAs was constructed. Insulin signaling pathway, pyrimidine metabolism, axon guidance, carbohydrate digestion and absorption, and pyruvate metabolism were significantly enriched in the network. Through literature review and the regulatory relationship between lncRNAs and miRNAs, nine core lncRNAs were identified, which might play important roles during the proliferative phase of rat LR. This study analyzed lncRNA-miRNA-mRNA regulatory network for the first time during the proliferative phase of rat LR, providing clues for exploring the mechanism of LR and the treatment of liver diseases.
Collapse
Affiliation(s)
- Haijing Bai
- College of Life Science, Henan Normal University, Xinxiang, Henan, China.,State Key Laboratory Cultivation Base for Cell Differentiation Regulation, Xinxiang, Henan, China
| | - Jianlin Guo
- College of Life Science, Henan Normal University, Xinxiang, Henan, China.,State Key Laboratory Cultivation Base for Cell Differentiation Regulation, Xinxiang, Henan, China
| | - Cuifang Chang
- College of Life Science, Henan Normal University, Xinxiang, Henan, China.,State Key Laboratory Cultivation Base for Cell Differentiation Regulation, Xinxiang, Henan, China
| | - Xueqiang Guo
- College of Life Science, Henan Normal University, Xinxiang, Henan, China.,State Key Laboratory Cultivation Base for Cell Differentiation Regulation, Xinxiang, Henan, China
| | - Cunshuan Xu
- College of Life Science, Henan Normal University, Xinxiang, Henan, China.,State Key Laboratory Cultivation Base for Cell Differentiation Regulation, Xinxiang, Henan, China
| | - Wei Jin
- College of Life Science, Henan Normal University, Xinxiang, Henan, China.,State Key Laboratory Cultivation Base for Cell Differentiation Regulation, Xinxiang, Henan, China
| |
Collapse
|
8
|
Bu W, Wang Y, Min X. MicroRNA-106b promotes the proliferation, migration and invasion of retinoblastoma cells by inhibiting the expression of ZBTB4 protein. Exp Ther Med 2018; 16:4537-4545. [PMID: 30542402 PMCID: PMC6257475 DOI: 10.3892/etm.2018.6811] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 12/06/2017] [Indexed: 12/18/2022] Open
Abstract
The present study investigated the function of microRNA (miR)-106b in the proliferation, migration and invasion of retinoblastoma (RB) cells, and aimed to elucidate the underlying mechanism. A total of 56 patients with RB were enrolled in the present study. The expression of miR-106b in RB tissues was measured by reverse transcription quantitative polymerase chain reaction. After transfection with miR-106b mimics or miR-106b inhibitor, a Cell-Counting kit-8 assay was used to determine the proliferation of WERI-Rb-1 cells and a Transwell assay was employed to measure the migration and invasion of the cells. Western blot analysis was performed to determine the expression of zinc finger and BTB domain containing 4 (ZBTB4) protein. By silencing or overexpression of ZBTB4 protein, the biological functions of ZBTB4 in WERI-Rb-1 cells were studied. A dual luciferase reporter assay was performed to test whether ZBTB4 was a target gene of miR-106b. The expression of miR-106b in RB tissues was elevated and closely associated with the severity of the disease. Overexpression of miR-106b increased but inhibition of miR-106b expression decreased the proliferation, migration and invasion abilities of WERI-Rb-1 cells. In addition, overexpression of miR-106b decreased but inhibition of miR-106b expression increased ZBTB4 protein expression in WERI-Rb-1 cells. Similarly, overexpression of ZBTB4 reduced but inhibition of ZBTB4 expression promoted the proliferation, migration and invasion of WERI-Rb-1 cells. Finally, miR-106b regulated the expression of ZBTB4 by binding to the 3'-untranslated region of the ZBTB4 gene. The present study demonstrated that increased expression of miR-106b in RB tissues is positively associated with the metastasis and differentiation of RB cells. As an oncogene, miR-106b promotes the proliferation, migration and invasion of WERI-Rb-1 cells by inhibiting the expression of ZBTB4 protein.
Collapse
Affiliation(s)
- Wenjuan Bu
- Department of Ophthalmology, Jining No. 1 People's Hospital, Jining, Shandong 272011, P.R. China
| | - Yanhui Wang
- Department of Fundus Surgery, Hebei Province Eye Hospital, Xingtai, Hebei 054000, P.R. China
| | - Xiangrong Min
- Department of Ophthalmology, Jining No. 1 People's Hospital, Jining, Shandong 272011, P.R. China
| |
Collapse
|
9
|
Lin X, Chen L, Li H, Liu Y, Guan Y, Li X, Jia Z, Lin X, Jia J, Sun Y, Xiao D. miR-155 accelerates proliferation of mouse hepatocytes during liver regeneration by directly targeting SOCS1. Am J Physiol Gastrointest Liver Physiol 2018; 315:G443-G453. [PMID: 29792529 DOI: 10.1152/ajpgi.00072.2018] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Liver regeneration after two-thirds partial hepatectomy (PH) is a clinically significant repair process for restoring proper liver architecture. Although microRNA-155 (miR-155) has been found to serve as a crucial microRNA regulator that controls liver cell function and proliferation, little is known about its specific role in the regenerating liver. Using a mouse model with miR-155 overexpression or miR-155 knockout, we investigated the molecular mechanisms of miR-155 in liver regeneration. We found a marked induction of miR-155 in C57BL/6 mice after PH. Furthermore, RL-m155 mice showed enhanced liver regeneration as a result of accelerated progression of hepatocytes into the cell cycle, mainly through an increase in cyclin levels. However, proliferation of hepatocytes was delayed in miR-155-deficient livers. Expression of suppressor of cytokine signaling 1 (SOCS1) was dramatically downregulated in the process of liver regeneration, and enhancement of SOCS1 contributed to impaired proliferation of hepatocytes. Additionally, in vitro and in vivo experiments showed that adenovirus- or adeno-associated virus-mediated overexpression of SOCS1 attenuated improved liver regeneration induced by miR-155 overexpression. Our study shows that miR-155 is a pro-proliferative regulator in liver regeneration by facilitating the cell cycle and directly targeting SOCS1. NEW & NOTEWORTHY Our findings suggest a microRNA-155 (miR-155)-mediated positive regulation pattern in liver regeneration. A series of in vivo and in vitro studies showed that miR-155 upregulation enhanced partial hepatectomy-induced proliferation of hepatocytes by promoting the cell cycle without inducing DNA damage or apoptosis. Suppressor of cytokine signaling 1, a target gene of miR-155, antagonized the proliferation-promoting effect of miR-155. Therefore, pharmacological intervention targeting miR-155 may be therapeutically beneficial in various liver diseases.
Collapse
Affiliation(s)
- Xia Lin
- Guangdong Provincial Key Laboratory of Cancer Immunotherapy Research and Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, Southern Medical University , Guangzhou , China
| | - Li Chen
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University , Guangzhou , China
| | - Haiyan Li
- Guangdong Provincial Key Laboratory of Cancer Immunotherapy Research and Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, Southern Medical University , Guangzhou , China
| | - Yu Liu
- Institute of Comparative Medicine & Laboratory Animal Center, Southern Medical University , Guangzhou , China
| | - Yanhong Guan
- Department of Endocrinology, The Second Affiliated Hospital, Guangzhou Medical University , Guangzhou , China
| | - Xiaoyan Li
- School of Laboratory Medicine and Biotechnology, Southern Medical University , Guangzhou , China
| | - Zhenchang Jia
- School of Laboratory Medicine and Biotechnology, Southern Medical University , Guangzhou , China
| | - Xiaolin Lin
- Guangdong Provincial Key Laboratory of Cancer Immunotherapy Research and Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, Southern Medical University , Guangzhou , China
| | - Junshuang Jia
- Guangdong Provincial Key Laboratory of Cancer Immunotherapy Research and Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, Southern Medical University , Guangzhou , China
| | - Yan Sun
- Zhongshan School of Medicine, Sun Yat-sen University , Guangzhou , China
| | - Dong Xiao
- Guangdong Provincial Key Laboratory of Cancer Immunotherapy Research and Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, Southern Medical University , Guangzhou , China.,Institute of Comparative Medicine & Laboratory Animal Center, Southern Medical University , Guangzhou , China
| |
Collapse
|
10
|
Guarnieri AL, Towers CG, Drasin DJ, Oliphant MUJ, Andrysik Z, Hotz TJ, Vartuli RL, Linklater ES, Pandey A, Khanal S, Espinosa JM, Ford HL. The miR-106b-25 cluster mediates breast tumor initiation through activation of NOTCH1 via direct repression of NEDD4L. Oncogene 2018; 37:3879-3893. [PMID: 29662198 PMCID: PMC6043359 DOI: 10.1038/s41388-018-0239-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 02/01/2018] [Accepted: 03/03/2018] [Indexed: 01/07/2023]
Abstract
Tumor-initiating cells (TIC) represent a subset of tumor cells with increased self-renewal capability. TICs display resistance to frontline cancer treatment and retain the ability to repopulate a tumor after therapy, leading to cancer relapse. NOTCH signaling has been identified as an important driver of the TIC population, yet mechanisms governing regulation of this pathway in cancer remain to be fully elucidated. Here we identify a novel mechanism of NOTCH regulation and TIC induction in breast cancer via the miR-106b-25 miRNA cluster. We show that the miR-106b-25 cluster upregulates NOTCH1 in multiple breast cancer cell lines, representing both estrogen receptor (ER+) and triple negative breast cancer (TNBC) through direct repression of the E3 ubiquitin ligase, NEDD4L. We further show that upregulation of NOTCH1 is necessary for TIC induction downstream of miR-106b-25 in both ER + and TNBC breast cancer cells, and that re-expression of NEDD4L is sufficient to reverse miR106b-25-mediated NOTCH1 upregulation and TIC induction. Importantly, we demonstrate a significant positive correlation between miR-106b-25 and NOTCH1 protein, yet a significant inverse correlation between miR-106b-25 and NEDD4L mRNA in human breast cancer, suggesting a critical role for the miR106b-25/NEDD4L/NOTCH1 axis in the disease. Further, we show for the first time that NEDD4L expression alone is significantly associated with a better relapse-free prognosis for breast cancer patients. These data expand our knowledge of the mechanisms underlying NOTCH activation and TIC induction in breast cancer, and may provide new avenues for the development of therapies targeting this resistant subset of tumor cells.
Collapse
Affiliation(s)
- A L Guarnieri
- Program in Molecular Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - C G Towers
- Program in Molecular Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - D J Drasin
- Program in Molecular Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - M U J Oliphant
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- Integrated Physiology Program, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Z Andrysik
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - T J Hotz
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - R L Vartuli
- Program in Molecular Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - E S Linklater
- Program in Molecular Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - A Pandey
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - S Khanal
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - J M Espinosa
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- Department of Molecular, Cellular and Developmental Biology, University of Colorado at Boulder, Boulder, CO, 80309, USA
| | - H L Ford
- Program in Molecular Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
- Integrated Physiology Program, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| |
Collapse
|
11
|
Chen J, Zhuo JY, Yang F, Liu ZK, Zhou L, Xie HY, Xu X, Zheng SS. 17-beta-hydroxysteroid dehydrogenase 13 inhibits the progression and recurrence of hepatocellular carcinoma. Hepatobiliary Pancreat Dis Int 2018; 17:220-226. [PMID: 29748147 DOI: 10.1016/j.hbpd.2018.04.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 03/19/2018] [Indexed: 02/05/2023]
Abstract
BACKGROUND Our previous study showed that 17-beta-hydroxysteroid dehydrogenase 13 (HSD17B13) is down-regulated in hepatocellular carcinoma (HCC). But its function in HCC remains unknown. This study aimed to reveal the function of HSD17B13 and its clinical significance in HCC. METHODS mRNA levels of HSD17B13 were analyzed in cohort 1 (30 normal, 30 HBV cirrhosis, 60 HBV-related HCC and 60 peritumoral tissue) by real-time PCR. HSD17B13 protein was evaluated in cohort 2 (15 normal, 33 HBV-cirrhosis, 12 dysplastic nodules, 34 HBV-related HCC, and 9 metastatic HCC) using immunohistochemistry. The association between HSD17B13 and the survival of HCC patients was analyzed in cohort 3 (n = 88). The inhibitory mechanism of HSD17B13 on HCC was explored . RESULTS The mRNA of HSD17B13 and its protein expression were significantly down-regulated in HCC compared to non-tumor specimens (P < 0.001). The sensitivity, specificity and area under curve (AUC) values of HSD17B13 expression levels for HCC detection were 81.7%, 83.7% and 0.856, respectively (P < 0.001). Lower HSD17B13 in peritumoral tissue was an independent risk factor of worse recurrence free survival of HCC patients (HR: 0.41; 95% CI: 0.20-0.83; P = 0.014). The study in Huh 7 and SK-HEP-1 cells showed that HSD17B13 induced an accumulation of cells in G1 phase and reduction of cells in S and G2 phases via up-regulating the expression of P21, P27 and MMP2. CONCLUSIONS Lower HSD17B13 in peritumoral tissues was associated with worse recurrence free survival and overall survival of HCC patients. HSD17B13 delayed G1/S progression of HCC cells. HSD17B13 may be a therapeutic target for the treatment of HCC.
Collapse
Affiliation(s)
- Jun Chen
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou 310003, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003, China
| | - Jian-Yong Zhuo
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou 310003, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003, China
| | - Fan Yang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou 310003, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003, China
| | - Zhi-Kun Liu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou 310003, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003, China
| | - Lin Zhou
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou 310003, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003, China
| | - Hai-Yang Xie
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou 310003, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003, China
| | - Xiao Xu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou 310003, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003, China
| | - Shu-Sen Zheng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou 310003, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003, China.
| |
Collapse
|
12
|
Sárközy M, Kahán Z, Csont T. A myriad of roles of miR-25 in health and disease. Oncotarget 2018; 9:21580-21612. [PMID: 29765562 PMCID: PMC5940376 DOI: 10.18632/oncotarget.24662] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 01/30/2018] [Indexed: 02/06/2023] Open
Abstract
Small non-coding RNAs including microRNAs (miRNAs) have been recently recognized as important regulators of gene expression. MicroRNAs play myriads of roles in physiological processes as well as in the pathogenesis of a number of diseases by translational repression or mRNA destabilization of numerous target genes. The miR-106b-25 cluster is highly conserved in vertebrates and consists of three members including miR-106b, miR-93 and miR-25. MiR-106b and miR-93 share the same seed sequences; however, miR-25 has only a similar seed sequence resulting in different predicted target mRNAs. In this review, we specifically focus on the role of miR-25 in healthy and diseased conditions. Many of miR-25 target mRNAs are involved in biological processes such as cell proliferation, differentiation, and migration, apoptosis, oxidative stress, inflammation, calcium handling, etc. Therefore, it is no surprise that miR-25 has been reported as a key regulator of common cancerous and non-cancerous diseases. MiR-25 plays an important role in the pathogenesis of acute myocardial infarction, left ventricular hypertrophy, heart failure, diabetes mellitus, diabetic nephropathy, tubulointerstitial nephropathy, asthma bronchiale, cerebral ischemia/reperfusion injury, neurodegenerative diseases, schizophrenia, multiple sclerosis, etc. MiR-25 is also a well-described oncogenic miRNA playing a crucial role in the development of many tumor types including brain tumors, lung, breast, ovarian, prostate, thyroid, oesophageal, gastric, colorectal, hepatocellular cancers, etc. In this review, our aim is to discuss the translational therapeutic role of miR-25 in common diseased conditions based on relevant basic research and clinical studies.
Collapse
Affiliation(s)
- Márta Sárközy
- Department of Biochemistry, Faculty of Medicine, University of Szeged, H-6720 Szeged, Hungary
| | - Zsuzsanna Kahán
- Department of Oncotherapy, Faculty of Medicine, University of Szeged, H-6720 Szeged, Hungary
| | - Tamás Csont
- Department of Biochemistry, Faculty of Medicine, University of Szeged, H-6720 Szeged, Hungary
| |
Collapse
|
13
|
Liu Z, Li J, Chen J, Shan Q, Dai H, Xie H, Zhou L, Xu X, Zheng S. MCM family in HCC: MCM6 indicates adverse tumor features and poor outcomes and promotes S/G2 cell cycle progression. BMC Cancer 2018; 18:200. [PMID: 29463213 PMCID: PMC5819696 DOI: 10.1186/s12885-018-4056-8] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 01/25/2018] [Indexed: 11/23/2022] Open
Abstract
Background Minichromosome Maintenance family (MCMs), as replication licensing factors, is involved in the pathogenesis of tumors. Here, we investigated the expression of MCMs and their values in hepatocellular carcinoma (HCC). Methods MCMs were analyzed in 105 samples including normal livers (n = 15), cirrhotic livers (n = 40), HCC (n = 50) using quantitative polymerase chain reaction (qPCR) (Cohort 1). Significantly up-regulated MCMs were verified in 102 HCC and matched peritumoral livers using PCR (Cohort 2), and the correlations with clinical features and outcomes were determined. In addition, the focused MCMs were analyzed in parallel immunohistochemistry of 345 samples on spectrum of hepatocarcinogenesis (Cohort 3) and queried for the potential specific role in cell cycle. Results MCM2–7, MCM8 and MCM10 was significantly up-regulated in HCC in Cohort 1. In Cohort 2, overexpression of MCM2–7, MCM8 and MCM10 was verified and significantly correlated with each other. Elevated MCM2, MCM6 and MCM7 were associated with adverse tumor features and poorer outcomes. In Cohort 3, MCM6 exhibited superior HCC diagnostic performance compared with MCM2 and MCM7 (AUC: 0.896 vs. 0.675 and 0.771, P < 0.01). Additionally, MCM6 other than MCM2 and MCM7 independently predicted poorer survival in 175 HCC patients. Furthermore, knockdown of MCM6 caused a delay in S/G2-phase progression as evidenced by down-regulation of CDK2, CDK4, CyclinA, CyclinB1, CyclinD1, and CyclinE in HCC cells. Conclusions We analyze MCMs mRNA and protein levels in tissue samples during hepatocarcinogenesis. MCM6 is identified as a driver of S/G2 cell cycle progression and a potential diagnostic and prognostic marker in HCC. Electronic supplementary material The online version of this article (10.1186/s12885-018-4056-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhikun Liu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Beijing, China
| | - Jie Li
- Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Beijing, China
| | - Jun Chen
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Beijing, China
| | - Qiaonan Shan
- Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Beijing, China
| | - Haojiang Dai
- Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Beijing, China
| | - Haiyang Xie
- Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Beijing, China
| | - Lin Zhou
- Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Beijing, China
| | - Xiao Xu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China. .,Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Beijing, China. .,Collaborative innovation center for diagnosis and treatment of infectious diseases, Hangzhou, China.
| | - Shusen Zheng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China. .,Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Beijing, China. .,Collaborative innovation center for diagnosis and treatment of infectious diseases, Hangzhou, China.
| |
Collapse
|