1
|
Li Z, Liu J, Feng L, Pan Y, Tang J, Li H, Cheng G, Li Z, Shi J, Xu Y, Liu W. Monolithic MOF-Based Metal-Insulator-Metal Resonator for Filtering and Sensing. NANO LETTERS 2023; 23:637-644. [PMID: 36622966 DOI: 10.1021/acs.nanolett.2c04428] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Metal-insulator-metal (MIM) configurations based on Fabry-Pérot resonators have advanced the development of color filtering through interactions between light and matter. However, dynamic color changes without breaking the structure of the MIM resonator upon environmental stimuli are still challenging. Here, we report monolithic metal-organic framework (MOF)-based MIM resonators with tunable bandwidth that can boost both dynamic optical filtering and active chemical sensing by laser-processing microwell arrays on the top metal layer. Programmable tuning of the reflection color of the MOF-based MIM resonator is achieved by controlling the MOF layer thicknesses, which is demonstrated by simulation of light-matter interactions on subwavelength scales. Laser-processed microwell arrays are used to boost sensing performance by extending the pathway for diffusion of external chemicals into nanopores of the MOFs. Both experiments and molecular dynamics simulations demonstrate that tailoring the period and height of the microwell array on the MIM resonator can advance the high detection sensitivity of chemicals.
Collapse
Affiliation(s)
- Zhihuan Li
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Jianxi Liu
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Li Feng
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Yan Pan
- Electronic Information College, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P. R. China
| | - Jiao Tang
- Electronic Information School, Wuhan University, Wuhan 430072, P. R. China
| | - Hang Li
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Guanghua Cheng
- Electronic Information College, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P. R. China
| | - Zhongyang Li
- Electronic Information School, Wuhan University, Wuhan 430072, P. R. China
| | - Junqin Shi
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Yadong Xu
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Weimin Liu
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| |
Collapse
|
2
|
Dual Responsive Dependent Background Color Based on Thermochromic 1D Photonic Crystal Multilayer Films. Polymers (Basel) 2022; 14:polym14235330. [PMID: 36501724 PMCID: PMC9735666 DOI: 10.3390/polym14235330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/02/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022] Open
Abstract
In this paper, we present dual responsive one-dimensional (1D) photonic crystal (PC) multilayer films that utilize a high-humidity environment and temperature. Dual responsive 1D PC multilayer films are fabricated on precoated thermochromic film by sequential alternate layer deposition of photo-crosslinkable poly(2-vinylnaphthalene-co-benzophenone acrylate) (P(2VN-co-BPA)) as a high refractive index polymer, and poly(4-vinylpyrollidone-co-benzophenone acrylate) P(4VP-co-BPA) as a low refractive index polymer. The thermochromic film shows a vivid color transition from black to white at 28 °C. Three different colors of thermochromic 1D PC multilayer films are prepared by thickness modulation of P(4VP-co-BPA) layers, and the films on a black background exhibit visible spectrum color only in a high-humidity environment (over 90% relative humidity (RH)). For the three films placed on a hands display, three different composite colors are synthesized by the reflection of light, including yellow, magenta, and cyan, due to the changing of backgrounds from black to white with temperature. Additionally, the films show remarkable color transitions with reliable reversibility. The films can be applied as anti-counterfeiting labels and can be used for smart decoration films. To the best of our knowledge, this is the first report of dual response colorimetric films that change color in various ways depending on temperature and humidity changes, and we believe that it can be applied to various applications.
Collapse
|
3
|
Li M, Lyu Q, Peng B, Chen X, Zhang L, Zhu J. Bioinspired Colloidal Photonic Composites: Fabrications and Emerging Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2110488. [PMID: 35263465 DOI: 10.1002/adma.202110488] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 03/05/2022] [Indexed: 06/14/2023]
Abstract
Organisms in nature have evolved unique structural colors and stimuli-responsive functions for camouflage, warning, and communication over millions of years, which are essential to their survival in harsh conditions. Inspired by these characteristics, colloidal photonic composites (CPCs) composed of colloidal photonic crystals embedded in the polymeric matrix are artificially prepared and show great promise in applications. This review focuses on the summary of building blocks, i.e., colloidal particles and polymeric matrices, and constructive strategies from the perspective of designing CPCs with robust performance and specific functionality. Furthermore, their state-of-the-art applications are also discussed, including colorful coatings, anti-counterfeiting, and regulation of photoluminescence, especially in the field of visualized sensing. Finally, current challenges and potential for future developments in this field are discussed. The purpose of this review is not only to clarify the design principle for artificial CPCs but also to serve as a roadmap for the exploration of next-generation photonic materials.
Collapse
Affiliation(s)
- Miaomiao Li
- State Key Laboratory of Materials Processing and Die and Mould Technology and Key Lab of Material Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Quanqian Lyu
- State Key Laboratory of Materials Processing and Die and Mould Technology and Key Lab of Material Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Bolun Peng
- State Key Laboratory of Materials Processing and Die and Mould Technology and Key Lab of Material Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Xiaodong Chen
- State Key Laboratory of Materials Processing and Die and Mould Technology and Key Lab of Material Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Lianbin Zhang
- State Key Laboratory of Materials Processing and Die and Mould Technology and Key Lab of Material Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Jintao Zhu
- State Key Laboratory of Materials Processing and Die and Mould Technology and Key Lab of Material Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| |
Collapse
|
4
|
Han F, Wang T, Liu G, Liu H, Xie X, Wei Z, Li J, Jiang C, He Y, Xu F. Materials with Tunable Optical Properties for Wearable Epidermal Sensing in Health Monitoring. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2109055. [PMID: 35258117 DOI: 10.1002/adma.202109055] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/26/2022] [Indexed: 06/14/2023]
Abstract
Advances in wearable epidermal sensors have revolutionized the way that physiological signals are captured and measured for health monitoring. One major challenge is to convert physiological signals to easily readable signals in a convenient way. One possibility for wearable epidermal sensors is based on visible readouts. There are a range of materials whose optical properties can be tuned by parameters such as temperature, pH, light, and electric fields. Herein, this review covers and highlights a set of materials with tunable optical properties and their integration into wearable epidermal sensors for health monitoring. Specifically, the recent progress, fabrication, and applications of these materials for wearable epidermal sensors are summarized and discussed. Finally, the challenges and perspectives for the next generation wearable devices are proposed.
Collapse
Affiliation(s)
- Fei Han
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Tiansong Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Guozhen Liu
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, 518172, P. R. China
| | - Hao Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Xueyong Xie
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Zhao Wei
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Jing Li
- Department of Burns and Plastic Surgery, Second Affiliated Hospital of Air Force Military Medical University, Xi'an, 710038, P. R. China
| | - Cheng Jiang
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, 518172, P. R. China
- Department of Chemistry, University of Oxford, Oxford, OX1 3QZ, UK
| | - Yuan He
- The Second Affiliated Hospital, Xi'an Medical University, Xi'an, 710038, P. R. China
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
5
|
Nanomaterials as Ultrasound Theragnostic Tools for Heart Disease Treatment/Diagnosis. Int J Mol Sci 2022; 23:ijms23031683. [PMID: 35163604 PMCID: PMC8835969 DOI: 10.3390/ijms23031683] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 01/27/2023] Open
Abstract
A variety of different nanomaterials (NMs) such as microbubbles (MBs), nanobubbles (NBs), nanodroplets (NDs), and silica hollow meso-structures have been tested as ultrasound contrast agents for the detection of heart diseases. The inner part of these NMs is made gaseous to yield an ultrasound contrast, which arises from the difference in acoustic impedance between the interior and exterior of such a structure. Furthermore, to specifically achieve a contrast in the diseased heart region (DHR), NMs can be designed to target this region in essentially three different ways (i.e., passively when NMs are small enough to diffuse through the holes of the vessels supplying the DHR, actively by being associated with a ligand that recognizes a receptor of the DHR, or magnetically by applying a magnetic field orientated in the direction of the DHR on a NM responding to such stimulus). The localization and resolution of ultrasound imaging can be further improved by applying ultrasounds in the DHR, by increasing the ultrasound frequency, or by using harmonic, sub-harmonic, or super-resolution imaging. Local imaging can be achieved with other non-gaseous NMs of metallic composition (i.e., essentially made of Au) by using photoacoustic imaging, thus widening the range of NMs usable for cardiac applications. These contrast agents may also have a therapeutic efficacy by carrying/activating/releasing a heart disease drug, by triggering ultrasound targeted microbubble destruction or enhanced cavitation in the DHR, for example, resulting in thrombolysis or helping to prevent heart transplant rejection.
Collapse
|
6
|
Arai Y, Yashiro N, Imura Y, Wang KH, Kawai T. Thermally Tunable Structural Coloration of Water/Surfactant/Oil Emulsions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:569-575. [PMID: 34933556 PMCID: PMC8757461 DOI: 10.1021/acs.langmuir.1c03020] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Stimuli-responsive structural color in nature has fascinated scientists, directing them to develop artificial coloration materials that adjust colors in response to external stimuli. Many stimuli-responsive structural color materials have been realized. However, only a few have reported on all-liquid-type materials, which have a particularly desirable feature because they impart their function to the device of any shape. We have previously reported the development of a consistent structural color within a narrow temperature range for all-liquid-type emulsions comprising a long-chain amidoamine derivative (C18AA) and tetraoctylammonium bromide (TOAB). In the present study, we demonstrate that introducing NaCl as an electrolyte affords a highly thermo-sensitive color-changing ability to the emulsions. The structural color of the emulsions can be controlled from red to blue by tuning the temperature. Furthermore, the C18AA and TOAB concentrations can independently regulate the color and coloring-temperature, respectively, realizing that the desired color can develop at a given temperature.
Collapse
Affiliation(s)
- Yuto Arai
- Department of Industrial Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Nayuta Yashiro
- Department of Industrial Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Yoshiro Imura
- Department of Industrial Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Ke-Hsuan Wang
- Department of Industrial Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Takeshi Kawai
- Department of Industrial Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| |
Collapse
|
7
|
Li J, Xin M, Ma Z, Shi Y, Pan L. Nanomaterials and their applications on bio-inspired wearable electronics. NANOTECHNOLOGY 2021; 32:472002. [PMID: 33592596 DOI: 10.1088/1361-6528/abe6c7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 02/16/2021] [Indexed: 06/12/2023]
Abstract
Wearable electronics featuring conformal attachment, sensitive perception and intellectual signal processing have made significant progress in recent years. However, when compared with living organisms, artificial sensory devices showed undeniable bulky shape, poor adaptability, and large energy consumption. To make up for the deficiencies, biological examples provide inspirations of novel designs and practical applications. In the field of biomimetics, nanomaterials from nanoparticles to layered two-dimensional materials are actively involved due to their outstanding physicochemical properties and nanoscale configurability. This review focuses on nanomaterials related to wearable electronics through bioinspired approaches on three different levels, interfacial packaging, sensory structure, and signal processing, which comprehensively guided recent progress of wearable devices in leveraging both nanomaterial superiorities and biorealistic functionalities. In addition, opinions on potential development trend are proposed aiming at implementing bioinspired electronics in multifunctional portable sensors, health monitoring, and intelligent prosthetics.
Collapse
Affiliation(s)
- Jiean Li
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, People's Republic of China
| | - Ming Xin
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, People's Republic of China
| | - Zhong Ma
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, People's Republic of China
| | - Yi Shi
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, People's Republic of China
| | - Lijia Pan
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, People's Republic of China
| |
Collapse
|
8
|
Zheng C, Zhu H, Xu Z, Sinha RK, Li Q, Ghosh P. High-efficient photoacoustic generation with an ultrathin metallic multilayer broadband absorber. OPTICS EXPRESS 2021; 29:8490-8497. [PMID: 33820295 DOI: 10.1364/oe.420138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 02/23/2021] [Indexed: 06/12/2023]
Abstract
Metal nanomaterials have been widely used to generate photoacoustic (PA) signals because of their high optical absorption characteristics. However, the PA conversion efficiency of metal nanomaterials is limited by the single-wavelength absorption at the resonant peak. To mitigate this issue, a three-layer ultrathin film containing a thin PDMS layer sandwiched between two ultrathin chromium films is proposed. This kind of film structure can attain high optical absorbance (>80%) through the visible light range (450-850 nm). The optical absorption characteristics can be easily modulated by varying the thickness of the PDMS layer. Under the same excitation condition, the PA signal generated by this film structure is twice that of an only Cr film and three times that of an only Au film. This film structure is easily fabricated and can operate with lasers having different central wavelengths or even white light sources, leading to its applications in many fields, including photoacoustic communications and audio transducers.
Collapse
|
9
|
Jung SH, Lee HT, Park MJ, Lim B, Park BC, Jung YJ, Kong H, Hwang DH, Lee HI, Park JM. Precisely Tunable Humidity Color Indicator Based on Photonic Polymer Films. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c01911] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Seo-Hyun Jung
- Center for Advanced Specialty Chemicals, Korea Research Institute of Chemical Technology, Ulsan 681-802, Republic of Korea
- Department of Chemistry, University of Ulsan, Ulsan 680-749, Republic of Korea
| | - Hyun Tae Lee
- Center for Advanced Specialty Chemicals, Korea Research Institute of Chemical Technology, Ulsan 681-802, Republic of Korea
- Department of Chemistry, and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Republic of Korea
| | - Min Ji Park
- Center for Advanced Specialty Chemicals, Korea Research Institute of Chemical Technology, Ulsan 681-802, Republic of Korea
- Department of Chemistry, and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Republic of Korea
| | - Bogyu Lim
- Center for Advanced Specialty Chemicals, Korea Research Institute of Chemical Technology, Ulsan 681-802, Republic of Korea
| | - Byong Chon Park
- Korea Research Institute of Standards and Science, Daejeon 305-340, Republic of Korea
| | - Yu Jin Jung
- Center for Advanced Specialty Chemicals, Korea Research Institute of Chemical Technology, Ulsan 681-802, Republic of Korea
| | - Hoyoul Kong
- Center for Advanced Specialty Chemicals, Korea Research Institute of Chemical Technology, Ulsan 681-802, Republic of Korea
| | - Do-Hoon Hwang
- Department of Chemistry, and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Republic of Korea
| | - Hyung-il Lee
- Department of Chemistry, University of Ulsan, Ulsan 680-749, Republic of Korea
| | - Jong Mok Park
- Center for Advanced Specialty Chemicals, Korea Research Institute of Chemical Technology, Ulsan 681-802, Republic of Korea
| |
Collapse
|
10
|
Ding T, Baumberg JJ. Thermo-responsive plasmonic systems: old materials with new applications. NANOSCALE ADVANCES 2020; 2:1410-1416. [PMID: 36132316 PMCID: PMC9418901 DOI: 10.1039/c9na00800d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 03/11/2020] [Indexed: 05/12/2023]
Abstract
Thermo-responsive plasmonic systems of gold and poly(N-isopropylacrylamide) have been actively studied for several decades but this system keeps reinventing itself, with new concepts and applications which seed new fields. In this minireview, we show the latest few years development and applications of this intriguing system. We start from the basic working principles of this puzzling system which shows different plasmon shifts for even slightly different chemistries. We then present its applications to colloidal actuation, plasmon/meta-film tuning, and bioimaging and sensing. Finally we briefly summarize and propose several promising applications of the ongoing effort in this field.
Collapse
Affiliation(s)
- Tao Ding
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education of China, School of Physics and Technology, Wuhan University Wuhan 430072 China
| | - Jeremy J Baumberg
- NanoPhotonics Centre, Cavendish Laboratory, University of Cambridge Cambridge CB3 0HE UK
| |
Collapse
|
11
|
Calais T, Valdivia y Alvarado P. Advanced functional materials for soft robotics: tuning physicochemical properties beyond rigidity control. ACTA ACUST UNITED AC 2019. [DOI: 10.1088/2399-7532/ab4f9d] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
12
|
Gupta S, Singh A, Matsumi N. Controlled Phase Behavior of Thermally Sensitive Poly( N-isopropylacrylamide/ionic liquid) with Embedded Au Nanoparticles. ACS OMEGA 2019; 4:20923-20930. [PMID: 31867482 PMCID: PMC6921266 DOI: 10.1021/acsomega.9b01826] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 10/08/2019] [Indexed: 06/02/2023]
Abstract
We have synthesized a series of poly(N-isopropylacrylamide/ionic liquid) with deposited Au nanoparticles. The size of the nanoparticle range was varied from 10 to 35 nm, and these were characterized by transmission electron microscopy analysis. Ionic liquids (IL) were chosen by varying the polymerizable unit to be both in cationic (allyl) and anionic (acrylate) moiety. One-pot polymerization was done with N-isopropylacrylamide and IL using ammonium persulphate as the initiator, to which were added already prepared Au NPs. These thermally sensitive composites formed, possessed reversible swelling/deswelling abilities in water, and demonstrated a reversible visible phase transition, which was detected by differential scanning calorimetric measurements. The lower critical solution temperature (LCST) showed dependency on the size of nanoparticles and the IL independently. It was seen that the LCST of PNIPAM-based composite films can be tuned from 32 °C to a range of 23-67 °C by choosing the desired Au NP size, its concentration and kind of IL.
Collapse
|
13
|
Chen D, Wang T, Song G, Du Y, Lv J, Zhang X, Li Y, Zhang L, Hu J, Fu Y, Jordan R. Dynamic Tunable Color Display Based on Metal-Insulator-Metal Resonator with Polymer Brush Insulator Layer as Signal Transducer. ACS APPLIED MATERIALS & INTERFACES 2019; 11:41668-41675. [PMID: 31623430 DOI: 10.1021/acsami.9b14125] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Dynamic color-changing nanomaterials have been widely investigated for applications in fields like optical sensors, wearable activity monitors, smart electronic devices, and anticounterfeiting materials due to the excellent ability to change their optical properties with external variation. Here, a simple metal-insulator-metal (MIM) trilayer Fabry-Perot resonance cavity with a poly(N-isopropylacrylamide) (PNIPAm) brush layer as a responsive element is reported as a thermal-induced colorimetric response platform. The dynamic changes of conformation and physical properties of PNIPAm brush layer in response to external signals give rise to a significant color change of the MIM Fabry-Perot resonance cavity. This MIM Fabry-Perot resonance cavity shows the advantages of dynamic color change, rapid response, good repeatability, and simple construction. Additionally, the as-prepared MIM cavity shows great potential in various applications such as color printing, multicolor indicator, and information anticounterfeiting.
Collapse
Affiliation(s)
- Dan Chen
- College of Sciences , Northeastern University , Shenyang 110819 , P. R. China
| | - Tieqiang Wang
- College of Sciences , Northeastern University , Shenyang 110819 , P. R. China
- Chair of Macromolecular Chemistry, School of Science , Technische Universität Dresden , Dresden 01069 , Germany
| | - Guoshuai Song
- College of Sciences , Northeastern University , Shenyang 110819 , P. R. China
| | - Yunhao Du
- Chair of Macromolecular Chemistry, School of Science , Technische Universität Dresden , Dresden 01069 , Germany
| | - Jinqiu Lv
- College of Sciences , Northeastern University , Shenyang 110819 , P. R. China
| | - Xuemin Zhang
- College of Sciences , Northeastern University , Shenyang 110819 , P. R. China
| | - Yunong Li
- College of Sciences , Northeastern University , Shenyang 110819 , P. R. China
| | - Liying Zhang
- College of Sciences , Northeastern University , Shenyang 110819 , P. R. China
| | - Jianshe Hu
- College of Sciences , Northeastern University , Shenyang 110819 , P. R. China
| | - Yu Fu
- College of Sciences , Northeastern University , Shenyang 110819 , P. R. China
| | - Rainer Jordan
- Chair of Macromolecular Chemistry, School of Science , Technische Universität Dresden , Dresden 01069 , Germany
| |
Collapse
|
14
|
Fu Q, Zhu R, Song J, Yang H, Chen X. Photoacoustic Imaging: Contrast Agents and Their Biomedical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1805875. [PMID: 30556205 DOI: 10.1002/adma.201805875] [Citation(s) in RCA: 271] [Impact Index Per Article: 54.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 10/10/2018] [Indexed: 05/20/2023]
Abstract
Photoacoustic (PA) imaging as a fast-developing imaging technique has great potential in biomedical and clinical applications. It is a noninvasive imaging modality that depends on the light-absorption coefficient of the imaged tissue and the injected PA-imaging contrast agents. Furthermore, PA imaging provides superb contrast, super spatial resolution, and high penetrability and sensitivity to tissue functional characteristics by detecting the acoustic wave to construct PA images. In recent years, a series of PA-imaging contrast agents are developed to improve the PA-imaging performance in biomedical applications. Here, recent progress of PA contrast agents and their biomedical applications are outlined. PA contrast agents are classified according to their components and function, and gold nanocrystals, gold-nanocrystal assembly, transition-metal chalcogenides/MXene-based nanomaterials, carbon-based nanomaterials, other inorganic imaging agents, small organic molecules, semiconducting polymer nanoparticles, and nonlinear PA-imaging contrast agents are discussed. The applications of PA contrast agents as biosensors (in the sensing of metal ions, pH, enzymes, temperature, hypoxia, reactive oxygen species, and reactive nitrogen species) and in bioimaging (lymph nodes, vasculature, tumors, and brain tissue) are discussed in detail. Finally, an outlook on the future research and investigation of PA-imaging contrast agents and their significance in biomedical research is presented.
Collapse
Affiliation(s)
- Qinrui Fu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Rong Zhu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Jibin Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| |
Collapse
|
15
|
Effect of entanglements on temperature response of gel immobilized microgel photonic crystals. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2018.09.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
16
|
Sánchez-Moreno P, de Vicente J, Nardecchia S, Marchal JA, Boulaiz H. Thermo-Sensitive Nanomaterials: Recent Advance in Synthesis and Biomedical Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E935. [PMID: 30428608 PMCID: PMC6266697 DOI: 10.3390/nano8110935] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 11/06/2018] [Accepted: 11/09/2018] [Indexed: 12/22/2022]
Abstract
Progress in nanotechnology has enabled us to open many new fronts in biomedical research by exploiting the peculiar properties of materials at the nanoscale. The thermal sensitivity of certain materials is a highly valuable property because it can be exploited in many promising applications, such as thermo-sensitive drug or gene delivery systems, thermotherapy, thermal biosensors, imaging, and diagnosis. This review focuses on recent advances in thermo-sensitive nanomaterials of interest in biomedical applications. We provide an overview of the different kinds of thermoresponsive nanomaterials, discussing their potential and the physical mechanisms behind their thermal response. We thoroughly review their applications in biomedicine and finally discuss the current challenges and future perspectives of thermal therapies.
Collapse
Affiliation(s)
- Paola Sánchez-Moreno
- Nanobiointeractions & Nanodiagnostics, Istituto Italiano di Tecnologia, Via Morego, 30, 16163 Genova, Italy.
| | - Juan de Vicente
- Department of Applied Physics, Faculty of Sciences, University of Granada, C/Fuentenueva s/n, 18071 Granada, Spain.
- Excellence Research Unit "Modeling Nature" (MNat), University of Granada, 18016 Granada, Spain.
| | - Stefania Nardecchia
- Department of Applied Physics, Faculty of Sciences, University of Granada, C/Fuentenueva s/n, 18071 Granada, Spain.
- Excellence Research Unit "Modeling Nature" (MNat), University of Granada, 18016 Granada, Spain.
| | - Juan A Marchal
- Excellence Research Unit "Modeling Nature" (MNat), University of Granada, 18016 Granada, Spain.
- Department of Human Anatomy and Embryology, University of Granada, 18016 Granada, Spain.
- Biopathology and Medicine Regenerative Institute (IBIMER), University of Granada, 18016 Granada, Spain.
- Biosanitary Institute of Granada (ibs.GRANADA), SAS-Universidad de Granada, 18016 Granada, Spain.
| | - Houria Boulaiz
- Excellence Research Unit "Modeling Nature" (MNat), University of Granada, 18016 Granada, Spain.
- Department of Human Anatomy and Embryology, University of Granada, 18016 Granada, Spain.
- Biopathology and Medicine Regenerative Institute (IBIMER), University of Granada, 18016 Granada, Spain.
- Biosanitary Institute of Granada (ibs.GRANADA), SAS-Universidad de Granada, 18016 Granada, Spain.
| |
Collapse
|
17
|
Zheng R, Wang Y, Jia C, Wan Z, Luo J, Malik HA, Weng X, Xie J, Deng L. Intelligent Biomimetic Chameleon Skin with Excellent Self-Healing and Electrochromic Properties. ACS APPLIED MATERIALS & INTERFACES 2018; 10:35533-35538. [PMID: 30226978 DOI: 10.1021/acsami.8b13249] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Animals such as chameleons possess a natural ability to adjust their skin color as a preventive measure to deter any potential threat and to self-heal damaged skin tissues. Inspired by this, we present here a copolymer film possessing biomimetic properties that simultaneously integrates electrochromic triphenylamine and self-healing Diels-Alder groups. The flexible and stretchable copolymer film acts like natural chameleon skin, which exhibits significant color variation and also possesses excellent self-healing properties. These remarkable features make it a promising material for overcoming the crack-generation issue inherited by conventional biomimetic chameleon skin. Moreover, a flexible and wearable skin device based on the copolymer film with silver fabric as a electrode has also been fabricated. The electrochromic and self-healing properties were verified for the copolymer film, and it has been elucidated that the intelligent biomimetic "chameleon skin" was a new step toward the development of highly advanced biomimetic materials and devices.
Collapse
Affiliation(s)
- Rongzong Zheng
- State Key Laboratory of Electronic Thin Films and Integrated Devices, National Engineering Research Center of Electromagnetic Radiation Control Materials, School of Electronic Science and Engineering , University of Electronic Science and Technology of China , Chengdu 610054 , PR China
| | - Yi Wang
- State Key Laboratory of Electronic Thin Films and Integrated Devices, National Engineering Research Center of Electromagnetic Radiation Control Materials, School of Electronic Science and Engineering , University of Electronic Science and Technology of China , Chengdu 610054 , PR China
| | - Chunyang Jia
- State Key Laboratory of Electronic Thin Films and Integrated Devices, National Engineering Research Center of Electromagnetic Radiation Control Materials, School of Electronic Science and Engineering , University of Electronic Science and Technology of China , Chengdu 610054 , PR China
| | - Zhongquan Wan
- State Key Laboratory of Electronic Thin Films and Integrated Devices, National Engineering Research Center of Electromagnetic Radiation Control Materials, School of Electronic Science and Engineering , University of Electronic Science and Technology of China , Chengdu 610054 , PR China
| | - Junsheng Luo
- State Key Laboratory of Electronic Thin Films and Integrated Devices, National Engineering Research Center of Electromagnetic Radiation Control Materials, School of Electronic Science and Engineering , University of Electronic Science and Technology of China , Chengdu 610054 , PR China
| | - Haseeb Ashraf Malik
- State Key Laboratory of Electronic Thin Films and Integrated Devices, National Engineering Research Center of Electromagnetic Radiation Control Materials, School of Electronic Science and Engineering , University of Electronic Science and Technology of China , Chengdu 610054 , PR China
| | - Xiaolong Weng
- State Key Laboratory of Electronic Thin Films and Integrated Devices, National Engineering Research Center of Electromagnetic Radiation Control Materials, School of Electronic Science and Engineering , University of Electronic Science and Technology of China , Chengdu 610054 , PR China
| | - Jianliang Xie
- State Key Laboratory of Electronic Thin Films and Integrated Devices, National Engineering Research Center of Electromagnetic Radiation Control Materials, School of Electronic Science and Engineering , University of Electronic Science and Technology of China , Chengdu 610054 , PR China
| | - Longjiang Deng
- State Key Laboratory of Electronic Thin Films and Integrated Devices, National Engineering Research Center of Electromagnetic Radiation Control Materials, School of Electronic Science and Engineering , University of Electronic Science and Technology of China , Chengdu 610054 , PR China
| |
Collapse
|
18
|
Culver HR, Wechsler ME, Peppas NA. Label-Free Detection of Tear Biomarkers Using Hydrogel-Coated Gold Nanoshells in a Localized Surface Plasmon Resonance-Based Biosensor. ACS NANO 2018; 12:9342-9354. [PMID: 30204412 PMCID: PMC6156935 DOI: 10.1021/acsnano.8b04348] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The dependence of the localized surface plasmon resonance (LSPR) of noble-metal nanomaterials on refractive index makes LSPR a useful, label-free signal transduction strategy for biosensing. In particular, by decorating gold nanomaterials with molecular recognition agents, analytes of interest can be trapped near the surface, resulting in an increased refractive index surrounding the nanomaterial, and, consequently, a red shift in the LSPR wavelength. Ionic poly( N-isopropylacrylamide- co-methacrylic acid) (PNM) hydrogels were used as protein receptors because PNM nanogels exhibit a large increase in refractive index upon protein binding. Specifically, PNM hydrogels were synthesized on the surface of silica gold nanoshells (AuNSs). This composite material (AuNS@PNM) was used to detect changes in the concentration of two protein biomarkers of chronic dry eye: lysozyme and lactoferrin. Both of these proteins have high isoelectric points, resulting in electrostatic attraction between the negatively charged PNM hydrogels and positively charged proteins. Upon binding lysozyme or lactoferrin, AuNS@PNM exhibits large, concentration-dependent red shifts in LSPR wavelength, which enabled the detection of clinically relevant concentration changes of both biomarkers in human tears. The LSPR-based biosensor described herein has potential utility as an affordable screening tool for chronic dry eye and associated conditions.
Collapse
Affiliation(s)
- Heidi R. Culver
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine
- Department of Biomedical Engineering
| | - Marissa E. Wechsler
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine
- Department of Biomedical Engineering
| | - Nicholas A. Peppas
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine
- Department of Biomedical Engineering
- McKetta Department of Chemical Engineering
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy
- Department of Surgery and Perioperative Care, Dell Medical School, The University of Texas at Austin, Austin, TX, 78712, United States
| |
Collapse
|
19
|
Isapour G, Lattuada M. Bioinspired Stimuli-Responsive Color-Changing Systems. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1707069. [PMID: 29700857 DOI: 10.1002/adma.201707069] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 01/16/2018] [Indexed: 06/08/2023]
Abstract
Stimuli-responsive colors are a unique characteristic of certain animals, evolved as either a method to hide from enemies and prey or to communicate their presence to rivals or mates. From a material science perspective, the solutions developed by Mother Nature to achieve these effects are a source of inspiration to scientists for decades. Here, an updated overview of the literature on bioinspired stimuli-responsive color-changing systems is provided. Starting from natural systems, which are the source of inspiration, a classification of the different solutions proposed is given, based on the stimuli used to trigger the color-changing effect.
Collapse
Affiliation(s)
- Golnaz Isapour
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, CH-1700, Fribourg, Switzerland
| | - Marco Lattuada
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, CH-1700, Fribourg, Switzerland
| |
Collapse
|
20
|
Yang B, Li L, Du K, Fan B, Long Y, Song K. Photo-responsive photonic crystals for broad wavelength shifts. Chem Commun (Camb) 2018. [DOI: 10.1039/c7cc09736k] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Benefiting from a photobase, an inverse opal photonic film affords a wavelength shift of more than 200 nm under irradiation.
Collapse
Affiliation(s)
- Bingquan Yang
- School of Materials Science and Engineering
- Zhengzhou University
- Henan 450001
- China
- Laboratory of Bio-Inspired Smart Interface Sciences
| | - Lu Li
- Shaanxi Collaborative Innovation Center of Industrial Auxiliary Chemistry and Technology
- Shaanxi University of Science and Technology
- Xi’ an 710021
- China
| | - Kuishan Du
- Laboratory of Bio-Inspired Smart Interface Sciences
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- China
| | - Bingbing Fan
- School of Materials Science and Engineering
- Zhengzhou University
- Henan 450001
- China
| | - Yue Long
- Laboratory of Bio-Inspired Smart Interface Sciences
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- China
| | - Kai Song
- Laboratory of Bio-Inspired Smart Interface Sciences
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- China
| |
Collapse
|
21
|
Laser-assisted triggered-drug release from silver nanoparticles-grafted dual-responsive polymer. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 76:536-542. [DOI: 10.1016/j.msec.2017.03.089] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 03/04/2017] [Accepted: 03/12/2017] [Indexed: 11/23/2022]
|
22
|
Switchable on/off drug release from gold nanoparticles-grafted dual light- and temperature-responsive hydrogel for controlled drug delivery. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 76:242-248. [DOI: 10.1016/j.msec.2017.03.038] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 01/04/2017] [Accepted: 03/04/2017] [Indexed: 01/16/2023]
|