1
|
Zu H, Zhang J, Bai W, Kuai P, Cheng J, Lu J, Lou Y, Li R. Jasmonate-mediated polyamine oxidase 6 drives herbivore-induced polyamine catabolism in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:2000-2013. [PMID: 39432737 DOI: 10.1111/tpj.17094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/16/2024] [Accepted: 10/07/2024] [Indexed: 10/23/2024]
Abstract
Polyamines (PAs) along with their conjugated forms, are important mediators of plant defense mechanisms against both biotic and abiotic stresses. Flavin-containing polyamine oxidases (PAOs) regulate PA levels through terminal oxidation. To date, the role of PAOs in plant-herbivore interaction remains poorly understood. We discovered that infestation by the brown planthopper (BPH) disrupts PA homeostasis within the leaf sheaths of rice plants, which co-occurs with the upregulation of OsPAO6, a tissue-specific inducible, apoplast-localized enzyme that regulates the terminal catabolism of spermidine (Spd) and spermine. Functional analysis using CRISPR-Cas9 genome-edited plants revealed that pao6 mutants accumulated significantly higher levels of Spd and phenylpropanoid-conjugated Spd in response to BPH infestation compared to wild-type controls. In addition, BPH feeding on pao6 mutants led to increased honeydew excretion and plant damage by female adults, consistent with in vitro experiments in which Spd enhanced BPH feeding. Furthermore, OsPAO6 transcription is regulated by jasmonate (JA) signaling, and it is dependent on MYC2, which directly binds to the G-box-like motif in the OsPAO6 promoter. Our findings reveal an important role of OsPAO6 in regulating polyamine catabolism in JA-induced responses triggered by herbivore attacks in rice.
Collapse
Affiliation(s)
- Hongyue Zu
- State Key Laboratory of Rice Biology and Breeding, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jing Zhang
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, 310057, China
| | - Weiwei Bai
- State Key Laboratory of Rice Biology and Breeding, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
- Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, China
| | - Peng Kuai
- State Key Laboratory of Rice Biology and Breeding, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jingli Cheng
- Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, 310058, China
| | - Jing Lu
- State Key Laboratory of Rice Biology and Breeding, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yonggen Lou
- State Key Laboratory of Rice Biology and Breeding, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ran Li
- State Key Laboratory of Rice Biology and Breeding, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
2
|
Liu T, Qu J, Fang Y, Yang H, Lai W, Pan L, Liu JH. Polyamines: The valuable bio-stimulants and endogenous signaling molecules for plant development and stress response. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024. [PMID: 39601632 DOI: 10.1111/jipb.13796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/04/2024] [Accepted: 09/10/2024] [Indexed: 11/29/2024]
Abstract
Polyamines (PAs) are nitrogenous and polycationic compounds containing more than two amine residues. Numerous investigations have demonstrated that cellular PA homeostasis plays a key role in various developmental and physiological processes. The PA balance, which may be affected by many environmental factors, is finely maintained by the pathways of PA biosynthesis and degradation (catabolism). In this review, the advances in PA transport and distribution and their roles in plants were summarized and discussed. In addition, the interplay between PAs and phytohormones, NO, and H2O2 were detailed during plant growth, senescence, fruit repining, as well as response to biotic and abiotic stresses. Moreover, it was elucidated how environmental signals such as light, temperature, and humidity modulate PA accumulation during plant development. Notably, PA has been shown to exert a potential role in shaping the domestication of rice. The present review comprehensively summarizes these latest advances, highlighting the importance of PAs as endogenous signaling molecules in plants, and as well proposes future perspectives on PA research.
Collapse
Affiliation(s)
- Taibo Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory for the Development Biology and Environmental Adaptation of Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Jing Qu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yinyin Fang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory for the Development Biology and Environmental Adaptation of Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Haishan Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory for the Development Biology and Environmental Adaptation of Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Wenting Lai
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory for the Development Biology and Environmental Adaptation of Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Luyi Pan
- Instrumental Analysis and Research Center, South China Agricultural University, Guangzhou, 510642, China
| | - Ji-Hong Liu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| |
Collapse
|
3
|
Yang H, Fang Y, Liang Z, Qin T, Liu J, Liu T. Polyamines: pleiotropic molecules regulating plant development and enhancing crop yield and quality. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:3194-3201. [PMID: 39024414 PMCID: PMC11500986 DOI: 10.1111/pbi.14440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/04/2024] [Accepted: 07/11/2024] [Indexed: 07/20/2024]
Abstract
Polyamines (PAs) are pleiotropic bioorganic molecules. Cellular PA contents are determined by a balance between PA synthesis and degradation. PAs have been extensively demonstrated to play vital roles in the modulation of plant developmental processes and adaptation to various environmental stresses. In this review, the latest advances on the diverse roles of PAs in a range of developmental processes, such as morphogenesis, organogenesis, growth and development, and fruit ripening, are summarized and discussed. Besides, the crosstalk between PAs and phytohormones or other signalling molecules, including H2O2 and NO, involved in these processes is dwelled on. In addition, the attempts made to improve the yield and quality of grain and vegetable crops through altering the PA catabolism are enumerated. Finally, several other vital questions that remain unanswered are proposed and discussed. These include the mechanisms underlying the cooperative regulation of developmental processes by PAs and their interplaying partners like phytohormones, H2O2 and NO; PA transport for maintaining homeostasis; and utilization of PA anabolism/catabolism for generating high-yield and good-quality crops. This review aims to gain new insights into the pleiotropic role of PAs in the modulation of plant growth and development, which provides an alternative approach for manipulating and engineering valuable crop varieties that can be used in the future.
Collapse
Affiliation(s)
- Haishan Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesSouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory for the Development Biology and Environmental Adaptation of Agricultural Organisms, College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhouChina
| | - Yinyin Fang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesSouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory for the Development Biology and Environmental Adaptation of Agricultural Organisms, College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhouChina
| | - Zhiman Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesSouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory for the Development Biology and Environmental Adaptation of Agricultural Organisms, College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhouChina
| | - Tian Qin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesSouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory for the Development Biology and Environmental Adaptation of Agricultural Organisms, College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhouChina
| | - Ji‐Hong Liu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanChina
- Hubei Hongshan LaboratoryWuhanChina
| | - Taibo Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesSouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory for the Development Biology and Environmental Adaptation of Agricultural Organisms, College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhouChina
| |
Collapse
|
4
|
D'Incà R, Mattioli R, Tomasella M, Tavazza R, Macone A, Incocciati A, Martignago D, Polticelli F, Fraudentali I, Cona A, Angelini R, Tavazza M, Nardini A, Tavladoraki P. A Solanum lycopersicum polyamine oxidase contributes to the control of plant growth, xylem differentiation, and drought stress tolerance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:960-981. [PMID: 38761363 DOI: 10.1111/tpj.16809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 04/26/2024] [Accepted: 05/03/2024] [Indexed: 05/20/2024]
Abstract
Polyamines are involved in several plant physiological processes. In Arabidopsis thaliana, five FAD-dependent polyamine oxidases (AtPAO1 to AtPAO5) contribute to polyamine homeostasis. AtPAO5 catalyzes the back-conversion of thermospermine (T-Spm) to spermidine and plays a role in plant development, xylem differentiation, and abiotic stress tolerance. In the present study, to verify whether T-Spm metabolism can be exploited as a new route to improve stress tolerance in crops and to investigate the underlying mechanisms, tomato (Solanum lycopersicum) AtPAO5 homologs were identified (SlPAO2, SlPAO3, and SlPAO4) and CRISPR/Cas9-mediated loss-of-function slpao3 mutants were obtained. Morphological, molecular, and physiological analyses showed that slpao3 mutants display increased T-Spm levels and exhibit changes in growth parameters, number and size of xylem elements, and expression levels of auxin- and gibberellin-related genes compared to wild-type plants. The slpao3 mutants are also characterized by improved tolerance to drought stress, which can be attributed to a diminished xylem hydraulic conductivity that limits water loss, as well as to a reduced vulnerability to embolism. Altogether, this study evidences conservation, though with some significant variations, of the T-Spm-mediated regulatory mechanisms controlling plant growth and differentiation across different plant species and highlights the T-Spm role in improving stress tolerance while not constraining growth.
Collapse
Affiliation(s)
- Riccardo D'Incà
- Department of Science, University Roma Tre, 00146, Rome, Italy
| | | | - Martina Tomasella
- Dipartimento di Scienze della Vita, Università di Trieste, Trieste, Italy
| | - Raffaela Tavazza
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), BIOAG-BIOTEC C.R. Casaccia, Rome, Italy
| | - Alberto Macone
- Department of Biochemical Sciences 'A. Rossi Fanelli', Sapienza University of Rome, Rome, Italy
| | - Alessio Incocciati
- Department of Biochemical Sciences 'A. Rossi Fanelli', Sapienza University of Rome, Rome, Italy
| | | | - Fabio Polticelli
- Department of Science, University Roma Tre, 00146, Rome, Italy
- National Institute of Nuclear Physics, Roma Tre Section, 00146, Rome, Italy
| | | | - Alessandra Cona
- Department of Science, University Roma Tre, 00146, Rome, Italy
- Istituto Nazionale Biostrutture e Biosistemi (INBB), Rome, Italy
| | - Riccardo Angelini
- Department of Science, University Roma Tre, 00146, Rome, Italy
- Istituto Nazionale Biostrutture e Biosistemi (INBB), Rome, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
| | - Mario Tavazza
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), BIOAG-BIOTEC C.R. Casaccia, Rome, Italy
| | - Andrea Nardini
- Dipartimento di Scienze della Vita, Università di Trieste, Trieste, Italy
| | - Paraskevi Tavladoraki
- Department of Science, University Roma Tre, 00146, Rome, Italy
- Istituto Nazionale Biostrutture e Biosistemi (INBB), Rome, Italy
| |
Collapse
|
5
|
Mai H, Qin T, Wei H, Yu Z, Pang G, Liang Z, Ni J, Yang H, Tang H, Xiao L, Liu H, Liu T. Overexpression of OsACL5 triggers environmentally-dependent leaf rolling and reduces grain size in rice. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:833-847. [PMID: 37965680 PMCID: PMC10955489 DOI: 10.1111/pbi.14227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/21/2023] [Accepted: 10/26/2023] [Indexed: 11/16/2023]
Abstract
Major polyamines include putrescine, spermidine, spermine and thermospermine, which play vital roles in growth and adaptation against environmental changes in plants. Thermospermine (T-Spm) is synthetised by ACL5. The function of ACL5 in rice is still unknown. In this study, we used a reverse genetic strategy to investigate the biological function of OsACL5. We generated several knockout mutants by pYLCRISPR/Cas9 system and overexpressing (OE) lines of OsACL5. Interestingly, the OE plants exhibited environmentally-dependent leaf rolling, smaller grains, lighter 1000-grain weight and reduction in yield per plot. The area of metaxylem vessels of roots and leaves of OE plants were significantly smaller than those of WT, which possibly caused reduction in leaf water potential, resulting in leaf rolling with rise in the environmental temperature and light intensity and decrease in humidity. Additionally, the T-Spm contents were markedly increased by over ninefold whereas the ethylene evolution was reduced in OE plants, suggesting that T-Spm signalling pathway interacts with ethylene pathway to regulate multiple agronomic characters. Moreover, the osacl5 exhibited an increase in grain length, 1000-grain weight, and yield per plot. OsACL5 may affect grain size via mediating the expression of OsDEP1, OsGS3 and OsGW2. Furthermore, haplotypes analysis indicated that OsACL5 plays a conserved function on regulating T-Spm levels during the domestication of rice. Our data demonstrated that identification of OsACL5 provides a theoretical basis for understanding the physiological mechanism of T-Spm which may play roles in triggering environmentally dependent leaf rolling; OsACL5 will be an important gene resource for molecular breeding for higher yield.
Collapse
Affiliation(s)
- Huafu Mai
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesSouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhouChina
| | - Tian Qin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesSouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhouChina
| | - Huan Wei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesSouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhouChina
| | - Zhen Yu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesSouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhouChina
| | - Gang Pang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesSouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhouChina
| | - Zhiman Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesSouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhouChina
| | - Jiansheng Ni
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesSouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhouChina
| | - Haishan Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesSouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhouChina
| | - Haiying Tang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
| | - Lisi Xiao
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
| | - Huili Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesSouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhouChina
| | - Taibo Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesSouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhouChina
| |
Collapse
|
6
|
Zhan Z, Wang N, Chen Z, Zhang Y, Geng K, Li D, Wang Z. Effects of water stress on endogenous hormones and free polyamines in different tissues of grapevines ( Vitis vinifera L. cv. 'Merlot'). FUNCTIONAL PLANT BIOLOGY : FPB 2023; 50:993-1009. [PMID: 37788830 DOI: 10.1071/fp22225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 08/30/2023] [Indexed: 10/05/2023]
Abstract
Water stress can affect plant ecological distribution, crop growth and carbohydrate distribution, impacting berry quality. However, previous studies mainly focused on short-term water stress or osmotic stress and few studies paid attention to the responses of grape to long-term water stresses. Grapevines were subjected to no water stress (CK), mild water stress (T1) and moderate water stress (T2). Hundred-berry weight and malic acid content were reduced under T1 and T2; however, glucose and fructose content showed the opposite trend. Endogenous hormones and polyamines (PAs) can regulate plant growth and development as well as physiological metabolic processes. T1 and T2 could increase abscisic acid content, however, indole-3-acetic acid, jasmonate, gibberellins 3 and 4, cytokinin and trans -zeatin contents were slightly decreased. Three species of PAs (putrescine, spermidine and spermine) were detected, presenting obvious tissue specificity. Furthermore, there was a statistically positive correlation relating spermidine content in the pulp with glucose and fructose contents of grape berries; and a negative correlation with organic acid. In summary, water stress had a profound influence on hormonally-driven changes in physiology and berry quality, indicating that endogenous hormones and the PAs play a critical role in the development and ripening of grape berries under water stress.
Collapse
Affiliation(s)
- Zhennan Zhan
- School of Life Science, Ningxia University, Yinchuan, Ningxia 750021, People's Republic of China
| | - Ning Wang
- School of Agriculture, Ningxia University, Yinchuan, Ningxia 750021, People's Republic of China
| | - Zumin Chen
- School of Agriculture, Ningxia University, Yinchuan, Ningxia 750021, People's Republic of China
| | - Yanxia Zhang
- School of Life Science, Ningxia University, Yinchuan, Ningxia 750021, People's Republic of China
| | - Kangqi Geng
- School of Life Science, Ningxia University, Yinchuan, Ningxia 750021, People's Republic of China
| | - Dongmei Li
- School of Agriculture, Ningxia University, Yinchuan, Ningxia 750021, People's Republic of China
| | - Zhenping Wang
- School of Life Science, Ningxia University, Yinchuan, Ningxia 750021, People's Republic of China; and School of Agriculture, Ningxia University, Yinchuan, Ningxia 750021, People's Republic of China
| |
Collapse
|
7
|
Benkő P, Kaszler N, Gémes K, Fehér A. Subfunctionalization of Parental Polyamine Oxidase (PAO) Genes in the Allopolyploid Tobacco Nicotiana tabacum (L.). Genes (Basel) 2023; 14:2025. [PMID: 38002968 PMCID: PMC10671180 DOI: 10.3390/genes14112025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
Polyamines play an important role in developmental and environmental stress responses in plants. Polyamine oxidases (PAOs) are flavin-adenine-dinucleotide-dependent enzymes associated with polyamine catabolism. In this study, 14 genes were identified in the tobacco genome that code for PAO proteins being named based on their sequence homology with Arabidopsis PAOs (AtPAO1-5): NtPAO1A-B; NtPAO2A-C, NtPAO4A-D, and NtPAO5A-E. Sequence analysis confirmed that the PAO gene family of the allopolyploid hybrid Nicotiana tabacum is not an exact combination of the PAO genes of the maternal Nicotiana sylvestris and paternal Nicotiana tomentosiformis ones. The loss of the N. sylvestris homeolog of NtPAO5E and the gain of an extra NtPAO2 copy, likely of Nicotiana othophora origin, was revealed. The latter adds to the few pieces of evidence suggesting that the paternal parent of N. tabacum was an introgressed hybrid of N. tomentosiformis and N. othophora. Gene expression analysis indicated that all 14 PAO genes kept their expression following the formation of the hybrid species. The homeologous gene pairs showed similar or opposite regulation depending on the investigated organ, applied stress, or hormone treatment. The data indicate that the expression pattern of the homeologous genes is diversifying in a process of subfunctionalization.
Collapse
Affiliation(s)
- Péter Benkő
- Institute of Plant Biology, HUN-REN Biological Research Centre, 62. Temesvári Krt., H-6726 Szeged, Hungary; (P.B.) (N.K.); (K.G.)
- Doctoral School of Biology, University of Szeged, 52. Közép Fasor, H-6726 Szeged, Hungary
- Department of Plant Biology, University of Szeged, 52. Közép Fasor, H-6726 Szeged, Hungary
| | - Nikolett Kaszler
- Institute of Plant Biology, HUN-REN Biological Research Centre, 62. Temesvári Krt., H-6726 Szeged, Hungary; (P.B.) (N.K.); (K.G.)
- Doctoral School of Biology, University of Szeged, 52. Közép Fasor, H-6726 Szeged, Hungary
- Department of Plant Biology, University of Szeged, 52. Közép Fasor, H-6726 Szeged, Hungary
| | - Katalin Gémes
- Institute of Plant Biology, HUN-REN Biological Research Centre, 62. Temesvári Krt., H-6726 Szeged, Hungary; (P.B.) (N.K.); (K.G.)
- Department of Plant Biology, University of Szeged, 52. Közép Fasor, H-6726 Szeged, Hungary
| | - Attila Fehér
- Institute of Plant Biology, HUN-REN Biological Research Centre, 62. Temesvári Krt., H-6726 Szeged, Hungary; (P.B.) (N.K.); (K.G.)
- Department of Plant Biology, University of Szeged, 52. Közép Fasor, H-6726 Szeged, Hungary
| |
Collapse
|
8
|
Samanta I, Roy PC, Das E, Mishra S, Chowdhary G. Plant Peroxisomal Polyamine Oxidase: A Ubiquitous Enzyme Involved in Abiotic Stress Tolerance. PLANTS (BASEL, SWITZERLAND) 2023; 12:652. [PMID: 36771734 PMCID: PMC9919379 DOI: 10.3390/plants12030652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/26/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Polyamines (PAs) are positively charged amines that are present in all organisms. In addition to their functions specific to growth and development, they are involved in responding to various biotic and abiotic stress tolerance functions. The appropriate concentration of PA in the cell is maintained by a delicate balance between the catabolism and anabolism of PAs, which is primarily driven by two enzymes, namely diamine oxidase and polyamine oxidase (PAO). PAOs have been found to be localized in multiple subcellular locations, including peroxisomes. This paper presents a holistic account of peroxisomal PAOs. PAOs are flavin adenine dinucleotide-dependent enzymes with varying degrees of substrate specificity. They are expressed differentially upon various abiotic stress conditions, namely heat, cold, salinity, and dehydration. It has also been observed that in a particular species, the various PAO isoforms are expressed differentially with a spatial and temporal distinction. PAOs are targeted to peroxisome via a peroxisomal targeting signal (PTS) type 1. We conducted an extensive bioinformatics analysis of PTS1s present in various peroxisomal PAOs and present a consensus peroxisome targeting signal present in PAOs. Furthermore, we also propose an evolutionary perspective of peroxisomal PAOs. PAOs localized in plant peroxisomes are of potential importance in abiotic stress tolerance since peroxisomes are one of the nodal centers of reactive oxygen species (ROS) homeostasis and an increase in ROS is a major indicator of the plant being in stress conditions; hence, in the future, PAO enzymes could be used as a key candidate for generating abiotic stress tolerant crops.
Collapse
Affiliation(s)
- Ishita Samanta
- Plant Molecular Biology Laboratory, School of Biotechnology, KIIT, Bhubaneswar 751024, India
| | - Pamela Chanda Roy
- Plant Molecular Biology Laboratory, School of Biotechnology, KIIT, Bhubaneswar 751024, India
| | - Eshani Das
- Plant Molecular Biology Laboratory, School of Biotechnology, KIIT, Bhubaneswar 751024, India
| | - Sasmita Mishra
- Department of Biology, Kean University, 1000 Morris Avenue, Union, NJ 07083, USA
| | - Gopal Chowdhary
- Plant Molecular Biology Laboratory, School of Biotechnology, KIIT, Bhubaneswar 751024, India
| |
Collapse
|
9
|
Polyamine Oxidase-Generated Reactive Oxygen Species in Plant Development and Adaptation: The Polyamine Oxidase-NADPH Oxidase Nexus. Antioxidants (Basel) 2022; 11:antiox11122488. [PMID: 36552696 PMCID: PMC9774701 DOI: 10.3390/antiox11122488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/09/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Metabolism and regulation of cellular polyamine levels are crucial for living cells to maintain their homeostasis and function. Polyamine oxidases (PAOs) terminally catabolize polyamines or catalyse the back-conversion reactions when spermine is converted to spermidine and Spd to putrescine. Hydrogen peroxide (H2O2) is a by-product of both the catabolic and back-conversion processes. Pharmacological and genetic approaches have started to uncover the roles of PAO-generated H2O2 in various plant developmental and adaptation processes such as cell differentiation, senescence, programmed cell death, and abiotic and biotic stress responses. Many of these studies have revealed that the superoxide-generating Respiratory Burst Oxidase Homolog (RBOH) NADPH oxidases control the same processes either upstream or downstream of PAO action. Therefore, it is reasonable to suppose that the two enzymes co-ordinately control the cellular homeostasis of reactive oxygen species. The intricate relationship between PAOs and RBOHs is also discussed, posing the hypothesis that these enzymes indirectly control each other's abundance/function via H2O2.
Collapse
|
10
|
Wu J, Zhu M, Liu W, Jahan MS, Gu Q, Shu S, Sun J, Guo S. CsPAO2 Improves Salt Tolerance of Cucumber through the Interaction with CsPSA3 by Affecting Photosynthesis and Polyamine Conversion. Int J Mol Sci 2022; 23:12413. [PMID: 36293280 PMCID: PMC9604536 DOI: 10.3390/ijms232012413] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/03/2022] [Accepted: 10/07/2022] [Indexed: 08/15/2023] Open
Abstract
Polyamine oxidases (PAOs) are key enzymes in polyamine metabolism and are related to the tolerance of plants to abiotic stresses. In this study, overexpression of cucumber (Cucumis sativus L.) PAO2 (CsPAO2) in Arabidopsis resulted in increased activity of the antioxidant enzyme and accelerated conversion from Put to Spd and Spm, while malondialdehyde content (MDA) and electrolyte leakage (EL) was decreased when compared with wild type, leading to enhanced plant growth under salt stress. Photosystem Ⅰ assembly 3 in cucumber (CsPSA3) was revealed as an interacting protein of CsPAO2 by screening yeast two-hybrid library combined with in vitro and in vivo methods. Then, CsPAO2 and CsPSA3 were silenced in cucumber via virus-mediated gene silencing (VIGS) with pV190 as the empty vector. Under salt stress, net photosynthetic rate (Pn) and transpiration rate (Tr) of CsPAO2-silencing plants were lower than pV190-silencing plants, and EL in root was higher than pV190-silencing plants, indicating that CsPAO2-silencing plants suffered more serious salt stress damage. However, photosynthetic parameters of CsPSA3-silencing plants were all higher than those of CsPAO2 and pV190-silencing plants, thereby enhancing the photosynthesis process. Moreover, CsPSA3 silencing reduced the EL in both leaves and roots when compared with CsPAO2-silencing plants, but the EL only in leaves was significantly lower than the other two gene-silencing plants, and conversion from Put to Spd and Spm in leaf was also promoted, suggesting that CsPSA3 interacts with CsPAO2 in leaves to participate in the regulation of salt tolerance through photosynthesis and polyamine conversion.
Collapse
Affiliation(s)
- Jianqiang Wu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Mengliang Zhu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Weikang Liu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Mohammad Shah Jahan
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Department of Horticulture, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh
| | - Qinsheng Gu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Sheng Shu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jin Sun
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Shirong Guo
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
11
|
Zhang J, Liang L, Xiao J, Xie Y, Zhu L, Xue X, Xu L, Zhou P, Ran J, Huang Z, Sun G, Lai Y, Sun B, Tang Y, Li H. Genome-Wide Identification of Polyamine Oxidase (PAO) Family Genes: Roles of CaPAO2 and CaPAO4 in the Cold Tolerance of Pepper ( Capsicum annuum L.). Int J Mol Sci 2022; 23:ijms23179999. [PMID: 36077395 PMCID: PMC9456136 DOI: 10.3390/ijms23179999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/16/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
Polyamine oxidases (PAOs), which are flavin adenine dinucleotide-dependent enzymes, catalyze polyamine (PA) catabolism, producing hydrogen peroxide (H2O2). Several PAO family members have been identified in plants, but their expression in pepper plants remains unclear. Here, six PAO genes were identified in the ‘Zunla-1’ pepper genome (named CaPAO1–CaPAO6 according to their chromosomal positions). The PAO proteins were divided into four subfamilies according to phylogenetics: CaPAO1 belongs to subfamily I; CaPAO3 and CaPAO5 belong to subfamily III; and CaPAO2, CaPAO4, and CaPAO6 belong to subfamily IV (none belong to subfamily II). CaPAO2, CaPAO4, and CaPAO6 were ubiquitously and highly expressed in all tissues, CaPAO1 was mainly expressed in flowers, whereas CaPAO3 and CaPAO5 were expressed at very low levels in all tissues. RNA-seq analysis revealed that CaPAO2 and CaPAO4 were notably upregulated by cold stress. CaPAO2 and CaPAO4 were localized in the peroxisome, and spermine was the preferred substrate for PA catabolism. CaPAO2 and CaPAO4 overexpression in Arabidopsis thaliana significantly enhanced freezing-stress tolerance by increasing antioxidant enzyme activity and decreasing malondialdehyde, H2O2, and superoxide accumulation, accompanied by the upregulation of cold-responsive genes (AtCOR15A, AtRD29A, AtCOR47, and AtKIN1). Thus, we identified candidate PAO genes for breeding cold-stress-tolerant transgenic pepper cultivars.
Collapse
Affiliation(s)
- Jianwei Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Le Liang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Jiachang Xiao
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yongdong Xie
- Institute for Processing and Storage of Agricultural Products, Chengdu Academy of Agricultural and Forest Sciences, Chengdu 611130, China
| | - Li Zhu
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Xinru Xue
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Linyu Xu
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Peihan Zhou
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Jianzhao Ran
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhi Huang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Guochao Sun
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yunsong Lai
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Bo Sun
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yi Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Huanxiu Li
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, China
- Correspondence:
| |
Collapse
|
12
|
Xi Y, Hu W, Zhou Y, Liu X, Qian Y. Genome-Wide Identification and Functional Analysis of Polyamine Oxidase Genes in Maize Reveal Essential Roles in Abiotic Stress Tolerance. FRONTIERS IN PLANT SCIENCE 2022; 13:950064. [PMID: 35991458 PMCID: PMC9386529 DOI: 10.3389/fpls.2022.950064] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
Polyamines (PAs) play a critical role in growth and developmental processes and stress responses in plants. Polyamine oxidase (PAO) is a flavin adenine dinucleotide (FAD)-dependent enzyme that plays a major role in PA catabolism. Here, for the first time, PAO genes in maize were screened for the whole genome-wide and nine ZmPAO genes were identified in this study, named as ZmPAO1-9. Based on structural characteristics and a comparison of phylogenetic relationships of PAO gene families from seven representative species, all nine PAO proteins in maize were categorized into three distinct subfamilies. Further, chromosome location and schematic structure revealed an unevenly distribution on chromosomes and evolutionarily conserved structure features of ZmPAO genes in maize, respectively. Furthermore, transcriptome analysis demonstrated that ZmPAO genes showed differential expression patterns at diverse developmental stages of maize, suggesting that these genes may play functional developmental roles in multiple tissues. Further, through qRT-PCR validation, these genes were confirmed to be responsive to heat, drought and salinity stress treatments in three various tissues, indicating their potential roles in abiotic stress responses. Eventually, to verify the biological function of ZmPAO genes, the transgenic Arabidopsis plants overexpressing ZmPAO6 gene were constructed as a typical representative to explore functional roles in plants. The results demonstrated that overexpression of ZmPAO6 can confer enhanced heat tolerance through mediating polyamine catabolism in transgenic Arabidopsis, which might result in reduced H2O2 and MDA accumulation and alleviated chlorophyll degradation under heat stress treatment, indicating that ZmPAO6 may play a crucial role in enhancing heat tolerance of transgenic Arabidopsis through the involvement in various physiological processes. Further, the expression analysis of related genes of antioxidant enzymes including glutathione peroxidase (GPX) and ascorbate peroxidase (APX) demonstrated that ZmPAO6 can enhance heat resistance in transgenic Arabidopsis through modulating heat-induced H2O2 accumulation in polyamine catabolism. Taken together, our results are the first to report the ZmPAO6 gene response to heat stress in plants and will serve to present an important theoretical basis for further unraveling the function and regulatory mechanism of ZmPAO genes in growth, development and adaptation to abiotic stresses in maize.
Collapse
|
13
|
Wang F, Liu HW, Zhang L, Liu ST, Zhang JR, Zhou X, Wang PY, Yang S. Discovery of novel rost-4-ene derivatives as potential plant activators for preventing phytopathogenic bacterial infection: Design, synthesis and biological studies. PEST MANAGEMENT SCIENCE 2022; 78:3404-3415. [PMID: 35527698 DOI: 10.1002/ps.6981] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 05/01/2022] [Accepted: 05/09/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Gradually aggravated disease caused by phytopathogenic bacteria severely restricts food security and crop yield, and few pesticides can relieve this severe situation. Thus, development and excavation of new agrochemicals with high bioactivity and novel action mechanism may be a feasible strategy to control intractable bacterial diseases. As a privileged molecular framework, steroid molecules exhibit diversiform bioactivities. Herein, a series of novel androst-4-ene derivatives were designed, synthesised and investigated for their antibacterial behaviour to excavate novel agrochemicals on the base of steroid molecules. RESULTS Bioassay results indicated that target compounds displayed high bioactivities toward three destructive phytopathogenic bacteria, including Xanthomonas oryzae pv. oryzae (Xoo), Xanthomonas axonopodis pv. citri (Xac) and Pseudomonas syringae pv. actinidiae (Psa). Compound III19 displayed excellent in vitro antibacterial profiling (EC50 = 2.37 mg L-1 towards Xoo, EC50 = 2.10 mg L-1 towards Xac, EC50 = 9.50 mg L-1 towards Psa). Furthermore, compound III19 showed outstanding in vivo protective activities, with values of 81.81% and 58.75% towards kiwifruit bacterial canker and rice bacterial leaf blight, respectively. Analysis of the antibacterial mechanism disclosed that compound III19 enhanced host defence enzyme activities superoxide dismutase (SOD), peroxidase (POD), phenylalanine ammonia lyase (PAL), polyphenol oxidase (PPO), and catalase (CAT) and increased the salicylate synthase content to induce host resistance. In addition, compound III19 increased the membrane permeability, destroyed the cell membrane and killed the bacteria. CONCLUSION Given these profiles of target compounds, we highlight a new strategy for controlling intractable plant bacterial diseases by inducing plant resistance and targeting the bacterial cell membrane. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Fang Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Hong-Wu Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Ling Zhang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Shi-Tao Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Jun-Rong Zhang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Xiang Zhou
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Pei-Yi Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Song Yang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| |
Collapse
|
14
|
Lee S, Jeon D, Choi S, Kang Y, Seo S, Kwon S, Lyu J, Ahn J, Seo J, Kim C. Expression Profile of Sorghum Genes and Cis-Regulatory Elements under Salt-Stress Conditions. PLANTS 2022; 11:plants11070869. [PMID: 35406848 PMCID: PMC9003456 DOI: 10.3390/plants11070869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/14/2022] [Accepted: 03/21/2022] [Indexed: 11/18/2022]
Abstract
Salinity stress is one of the most important abiotic stresses that causes great losses in crop production worldwide. Identifying the molecular mechanisms of salt resistance in sorghum will help develop salt-tolerant crops with high yields. Sorghum (Sorghum bicolor (L.) Moench) is one of the world’s four major grains and is known as a plant with excellent adaptability to salt stress. Among the various genotypes of sorghum, a Korean cultivar Nampungchal is also highly tolerant to salt. However, little is known about how Nampungchal responds to salt stress. In this study, we measured various physiological parameters, including Na+ and K+ contents, in leaves grown under saline conditions and investigated the expression patterns of differentially expressed genes (DEGs) using QuantSeq analysis. These DEG analyses revealed that genes up-regulated in a 150 mM NaCl treatment have various functions related to abiotic stresses, such as ERF and DREB. In addition, transcription factors such as ABA, WRKY, MYB, and bZip bind to the CREs region of sorghum and are involved in the regulation of various abiotic stress-responsive transcriptions, including salt stress. These findings may deepen our understanding of the mechanisms of salt tolerance in sorghum and other crops.
Collapse
Affiliation(s)
- Solji Lee
- Department of Crop Science, Chungnam National University, Daejeon 34134, Korea; (S.L.); (S.C.); (Y.K.)
| | - Donghyun Jeon
- Department of Smart Agriculture Systems, Chungnam National University, Daejeon 34134, Korea; (D.J.); (S.S.)
| | - Sehyun Choi
- Department of Crop Science, Chungnam National University, Daejeon 34134, Korea; (S.L.); (S.C.); (Y.K.)
| | - Yuna Kang
- Department of Crop Science, Chungnam National University, Daejeon 34134, Korea; (S.L.); (S.C.); (Y.K.)
| | - Sumin Seo
- Department of Smart Agriculture Systems, Chungnam National University, Daejeon 34134, Korea; (D.J.); (S.S.)
| | - Soonjae Kwon
- Korea Atomic Energy Research Institute (Advanced Radiation Technology Institute), Jeongeup 56212, Korea; (S.K.); (J.L.); (J.A.); (J.S.)
| | - Jaeil Lyu
- Korea Atomic Energy Research Institute (Advanced Radiation Technology Institute), Jeongeup 56212, Korea; (S.K.); (J.L.); (J.A.); (J.S.)
- Department of Horticulture, College of Industrial Sciences, Kongju National University, Yesan 32439, Korea
| | - Joonwoo Ahn
- Korea Atomic Energy Research Institute (Advanced Radiation Technology Institute), Jeongeup 56212, Korea; (S.K.); (J.L.); (J.A.); (J.S.)
| | - Jisu Seo
- Korea Atomic Energy Research Institute (Advanced Radiation Technology Institute), Jeongeup 56212, Korea; (S.K.); (J.L.); (J.A.); (J.S.)
| | - Changsoo Kim
- Department of Crop Science, Chungnam National University, Daejeon 34134, Korea; (S.L.); (S.C.); (Y.K.)
- Department of Smart Agriculture Systems, Chungnam National University, Daejeon 34134, Korea; (D.J.); (S.S.)
- Correspondence:
| |
Collapse
|
15
|
Kamiab F, Tavassolian I, Hosseinifarahi M. Biologia futura: the role of polyamine in plant science. Biol Futur 2021; 71:183-194. [PMID: 34554509 DOI: 10.1007/s42977-020-00027-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 06/10/2020] [Indexed: 12/27/2022]
Abstract
Polyamines (PAs) are positively charged amines such as putrescine, spermidine and spermine that ubiquitously exist in all organisms. They have been considered as a new type of plant biostimulants, with pivotal roles in many physiological processes. Polyamine levels are controlled by intricate regulatory feedback mechanisms. PAs are directly or indirectly regulated through interaction with signaling metabolites (H202, NO), aminobutyric acid (GABA), phytohormones (abscisic acid, gibberellins, ethylene, cytokinins, auxin, jasmonic acid and brassinosteroids) and nitrogen metabolism (maintaining the balance of C:N in plants). Exogenous applications of PAs enhance the stress resistance, flowering and fruit set, synthesis of bioactive compounds and extension of agricultural crops shelf life. Up-regulation of PAs biosynthesis by genetic manipulation can be a novel strategy to increase the productivity of agricultural crops. Recently, the role of PAs in symbiosis relationships between plants and beneficial microorganisms has been confirmed. PA metabolism has also been targeted to design new harmless fungicides.
Collapse
Affiliation(s)
- Fereshteh Kamiab
- Department of Horticulture, Faculty of Agriculture, Rafsanjan Branch, Islamic Azad University, Rafsanjan, Iran.
| | - Iraj Tavassolian
- Research and Technology Institute of Plant Production, Shahid Bahonar University of Kerman, Kerman, Iran.,Department of Horticulture, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Mehdi Hosseinifarahi
- Department of Horticultural Science, Yasooj Branch, Islamic Azad University, Yasooj, Iran
| |
Collapse
|
16
|
Li M, Lu J, Tao M, Li M, Yang H, Xia EH, Chen Q, Wan X. Genome-Wide Identification of Seven Polyamine Oxidase Genes in Camellia sinensis (L.) and Their Expression Patterns Under Various Abiotic Stresses. FRONTIERS IN PLANT SCIENCE 2020; 11:544933. [PMID: 33013966 PMCID: PMC7500180 DOI: 10.3389/fpls.2020.544933] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 08/13/2020] [Indexed: 05/26/2023]
Abstract
Polyamines (PAs) in plant play a critical role in growth and development and in response to environmental stress. Polyamine oxidase (PAO) is a flavin adenine dinucleotide dependent enzyme that plays a major role in PA catabolism. For the first time, PAO genes in tea plant were screened for the whole genome-wide and seven CsPAO genes were identified, which were named CsPAO1-7. Phylogenetic tree analysis revealed seven CsPAO protein sequences classed into three groups, including clade I, III, and IV. Compared with other plants, the tea plant lacked clade II members. Genetic structure and tissue specific expression analysis showed that there were significant differences among members of the CsPAO gene family. Among members of the CsPAOs family, CsPAO4 and CsPAO5 contain more introns and are highly expressed in various organizations. CsPAO1, CsPAO4, and CsPAO5 genes were cloned and expressed heterologously to verify theirs function. Heat map showed high response of CsPAO5 to drought stress, while CsPAO1 and CsPAO2 were sensitive to changes in nitrogen nutrition. Furthermore, exogenous abscisic acid (ABA) treatment indicated that the expression of most CsPAO genes in roots and leaves was significantly induced. In the root, Spm content increased significantly, while Put and Spd content decreased, suggesting that ABA has great influence on the biosynthesis of PAs. Anaerobic treatment of picked tea leaves showed that the decomposition of PAs was promoted to a certain extent. The above data help to clarify the role of CsPAO in response abiotic and nitrogen nutritional stresses in tea plants, and provide a reference perspective for the potential influence of PAs on the tea processing quality.
Collapse
Affiliation(s)
- Mengshuang Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Jing Lu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Mingmin Tao
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Mengru Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Hua Yang
- College of Science, Anhui Agricultural University, Hefei, China
| | - En-hua Xia
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Qi Chen
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
- Key Laboratory of Food Nutrition and Safety, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei, China
| | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| |
Collapse
|
17
|
Nehela Y, Killiny N. The unknown soldier in citrus plants: polyamines-based defensive mechanisms against biotic and abiotic stresses and their relationship with other stress-associated metabolites. PLANT SIGNALING & BEHAVIOR 2020; 15:1761080. [PMID: 32408848 PMCID: PMC8570725 DOI: 10.1080/15592324.2020.1761080] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 05/07/2023]
Abstract
Citrus plants are challenged by a broad diversity of abiotic and biotic stresses, which definitely alter their growth, development, and productivity. In order to survive the various stressful conditions, citrus plants relay on multi-layered adaptive strategies, among which is the accumulation of stress-associated metabolites that play vital and complex roles in citrus defensive responses. These metabolites included amino acids, organic acids, fatty acids, phytohormones, polyamines (PAs), and other secondary metabolites. However, the contribution of PAs pathways in citrus defense responses is poorly understood. In this review article, we will discuss the recent metabolic, genetic, and molecular evidence illustrating the potential roles of PAs in citrus defensive responses against biotic and abiotic stressors. We believe that PAs-based defensive role, against biotic and abiotic stress in citrus, is involving the interaction with other stress-associated metabolites, particularly phytohormones. The knowledge gained so far about PAs-based defensive responses in citrus underpins our need for further genetic manipulation of PAs biosynthetic genes to produce transgenic citrus plants with modulated PAs content that may enhance the tolerance of citrus plants against stressful conditions. In addition, it provides valuable information for the potential use of PAs or their synthetic analogs and their emergence as a promising approach to practical applications in citriculture to enhance stress tolerance in citrus plants.
Collapse
Affiliation(s)
- Yasser Nehela
- Citrus Research and Education Center and Department of Plant Pathology, IFAS, University of Florida, Lake Alfred, FL, USA
| | - Nabil Killiny
- Citrus Research and Education Center and Department of Plant Pathology, IFAS, University of Florida, Lake Alfred, FL, USA
| |
Collapse
|
18
|
Mo A, Xu T, Bai Q, Shen Y, Gao F, Guo J. FaPAO5 regulates Spm/Spd levels as a signaling during strawberry fruit ripening. PLANT DIRECT 2020; 4:e00217. [PMID: 32355906 PMCID: PMC7189608 DOI: 10.1002/pld3.217] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/17/2020] [Accepted: 03/26/2020] [Indexed: 05/24/2023]
Abstract
Polyamines are important for non-climacteric fruit ripening according to an analysis of the model plant strawberry. However, the molecular mechanism underlying the polyamine accumulation during ripening has not been fully elucidated. In this study, an examination of our proteome data related to strawberry fruit ripening revealed a putative polyamine oxidase 5, FaPAO5, which was localized in the cytoplasm and nucleus. Additionally, FaPAO5 expression levels as well as the abundance of the encoded protein continually decreased during ripening. Inhibiting FaPAO5 expression by RNAi promoted Spd, Spm, and ABA accumulation while inhibited H2O2 production, which ultimately enhanced ripening as evidenced by the ripening-related events and corresponding gene expression changes. The opposite effects were observed in FaPAO5-overexpressing transgenic fruits. Analyses of the binding affinity and enzymatic activity of FaPAO5 with Spm, Spd, and Put uncovered a special role for FaPAO5 in the terminal catabolism of Spm and Spd, with a K d of 0.21 and 0.29 µM, respectively. Moreover, FaPAO5 expression was inhibited by ABA and promoted by Spd and Spm. Furthermore, the RNA-seq analysis of RNAi and control fruits via differentially expressed genes (DEGs) indicated the six most enriched pathways among the differentially expressed genes were related to sugar, abscisic acid, ethylene, auxin, gibberellin, and Ca2+. Among four putative PAO genes in the strawberry genome, only FaPAO5 was confirmed to influence fruit ripening. In conclusion, FaPAO5 is a negative regulator of strawberry fruit ripening and modulates Spm/Spd levels as a signaling event, in which ABA plays a central role.
Collapse
Affiliation(s)
- Aowai Mo
- Beijing Collaborative Innovation Center for Eco‐Environmental Improvement with Forestry and Fruit TreesBeijing University of AgricultureBeijingChina
| | - Tian Xu
- Beijing Collaborative Innovation Center for Eco‐Environmental Improvement with Forestry and Fruit TreesBeijing University of AgricultureBeijingChina
| | - Qian Bai
- Beijing Collaborative Innovation Center for Eco‐Environmental Improvement with Forestry and Fruit TreesBeijing University of AgricultureBeijingChina
- Bei Jing Bei Nong Enterprise Management Co., LtdBeijingChina
| | - Yaunyue Shen
- Beijing Collaborative Innovation Center for Eco‐Environmental Improvement with Forestry and Fruit TreesBeijing University of AgricultureBeijingChina
| | - Fan Gao
- Beijing Collaborative Innovation Center for Eco‐Environmental Improvement with Forestry and Fruit TreesBeijing University of AgricultureBeijingChina
| | - Jiaxuan Guo
- Beijing Collaborative Innovation Center for Eco‐Environmental Improvement with Forestry and Fruit TreesBeijing University of AgricultureBeijingChina
| |
Collapse
|
19
|
Killiny N, Nehela Y. Citrus Polyamines: Structure, Biosynthesis, and Physiological Functions. PLANTS 2020; 9:plants9040426. [PMID: 32244406 PMCID: PMC7238152 DOI: 10.3390/plants9040426] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/17/2020] [Accepted: 03/24/2020] [Indexed: 01/10/2023]
Abstract
Polyamines (PAs) are ubiquitous biogenic amines found in all living organisms from bacteria to Archaea, and Eukaryotes including plants and animals. Since the first description of putrescine conjugate, feruloyl-putrescine (originally called subaphylline), from grapefruit leaves and juice, many research studies have highlighted the importance of PAs in growth, development, and other physiological processes in citrus plants. PAs appear to be involved in a wide range of physiological processes in citrus plants; however, their exact roles are not fully understood. Accordingly, in the present review, we discuss the biosynthesis of PAs in citrus plants, with an emphasis on the recent advances in identifying and characterizing PAs-biosynthetic genes and other upstream regulatory genes involved in transcriptional regulation of PAs metabolism. In addition, we will discuss the recent metabolic, genetic, and molecular evidence illustrating the roles of PAs metabolism in citrus physiology including somatic embryogenesis; root system formation, morphology, and architecture; plant growth and shoot system architecture; inflorescence, flowering, and flowering-associated events; fruit set, development, and quality; stomatal closure and gas-exchange; and chlorophyll fluorescence and photosynthesis. We believe that the molecular and biochemical understanding of PAs metabolism and their physiological roles in citrus plants will help citrus breeding programs to enhance tolerance to biotic and abiotic stresses and provide bases for further research into potential applications.
Collapse
Affiliation(s)
- Nabil Killiny
- Citrus Research and Education Center and Department of Plant Pathology, IFAS, University of Florida, Lake Alfred, FL 33850, USA;
- Correspondence: ; Tel.: +1-863-956-8833
| | - Yasser Nehela
- Citrus Research and Education Center and Department of Plant Pathology, IFAS, University of Florida, Lake Alfred, FL 33850, USA;
- Department of Agricultural Botany, Faculty of Agriculture, Tanta University, Tanta 31527, Egypt
| |
Collapse
|
20
|
Geng J, Wei T, Wang Y, Huang X, Liu JH. Overexpression of PtrbHLH, a basic helix-loop-helix transcription factor from Poncirus trifoliata, confers enhanced cold tolerance in pummelo (Citrus grandis) by modulation of H2O2 level via regulating a CAT gene. TREE PHYSIOLOGY 2019; 39:2045-2054. [PMID: 31330032 DOI: 10.1093/treephys/tpz081] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 05/31/2019] [Accepted: 07/02/2019] [Indexed: 05/17/2023]
Abstract
The basic helix-loop-helix (bHLH) family of transcription factors (TFs) plays a crucial role in regulating plant response to abiotic stress by targeting a large spectrum of stress-responsive genes. However, the physiological mechanisms underlying the TF-mediated stress response are still poorly understood for most of the bHLH genes. In this study, transgenic pummelo (Citrus grandis) plants overexpressing PtrbHLH, a TF previously identified from Poncirus trifoliata, were generated via Agrobacterium-mediated transformation. In comparison with the wild-type plants, the transgenic lines exhibited significantly lower electrolyte leakage and malondialdehyde content after cold treatment, thereby resulting in a more tolerant phenotype. Meanwhile, the transgenic lines accumulated dramatically lower reactive oxygen species (ROS) levels, consistent with elevated activity and expression levels of antioxidant enzymes (genes), including catalase (CAT), peroxidase and superoxide dismutase. In addition, PtrbHLH was shown to specifically bind to and activate the promoter of PtrCAT gene. Taken together, these results demonstrated that overexpression of PtrbHLH leads to enhanced cold tolerance in transgenic pummelo, which may be due, at least partly, to modulation of ROS levels by regulating the CAT gene.
Collapse
Affiliation(s)
- Jingjing Geng
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
- Mountainous Areas Research Institute, Hebei Agricultural University, Baoding 071001, China
| | - Tonglu Wei
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Yue Wang
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaosan Huang
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Ji-Hong Liu
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
21
|
The Interplay among Polyamines and Nitrogen in Plant Stress Responses. PLANTS 2019; 8:plants8090315. [PMID: 31480342 PMCID: PMC6784213 DOI: 10.3390/plants8090315] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 08/27/2019] [Accepted: 08/28/2019] [Indexed: 12/27/2022]
Abstract
The interplay between polyamines (PAs) and nitrogen (N) is emerging as a key factor in plant response to abiotic and biotic stresses. The PA/N interplay in plants connects N metabolism, carbon (C) fixation, and secondary metabolism pathways. Glutamate, a pivotal N-containing molecule, is responsible for the biosynthesis of proline (Pro), arginine (Arg) and ornithine (Orn) and constitutes a main common pathway for PAs and C/N assimilation/incorporation implicated in various stresses. PAs and their derivatives are important signaling molecules, as they act largely by protecting and preserving the function/structure of cells in response to stresses. Use of different research approaches, such as generation of transgenic plants with modified intracellular N and PA homeostasis, has helped to elucidate a plethora of PA roles, underpinning their function as a major player in plant stress responses. In this context, a range of transgenic plants over-or under-expressing N/PA metabolic genes has been developed in an effort to decipher their implication in stress signaling. The current review describes how N and PAs regulate plant growth and facilitate crop acclimatization to adverse environments in an attempt to further elucidate the N-PAs interplay against abiotic and biotic stresses, as well as the mechanisms controlling N-PA genes/enzymes and metabolites.
Collapse
|
22
|
He MW, Wang Y, Wu JQ, Shu S, Sun J, Guo SR. Isolation and characterization of S-Adenosylmethionine synthase gene from cucumber and responsive to abiotic stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 141:431-445. [PMID: 31238253 DOI: 10.1016/j.plaphy.2019.06.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 05/12/2019] [Accepted: 06/06/2019] [Indexed: 05/20/2023]
Abstract
S-adenosylmethionine synthetase (SAMS) catalyzes methionine and ATP to generate S-adenosyl-L-methionine (SAM). In plants, accumulating SAMS genes have been characterized and the majority of them are reported to participate in development and stress response. In this study, two putative SAMS genes (CsSAMS1 and CsSAMS2) were identified in cucumber (Cucumis Sativus L.). They displayed 95% similarity and had a high identity with their homologous of Arabidopsis thaliana and Nicotiana tabacum. The qRT-PCR test showed that CsSAMS1 was predominantly expressed in stem, male flower, and young fruit, whereas CsSAMS2 was preferentially accumulated in stem and female flower. And they displayed differential expression profiles under stimuli, including NaCl, ABA, SA, MeJA, drought and low temperature. To elucidate the function of cucumber SAMS, the full-length CDS of CsSAMS1 was cloned, and prokaryotic expression system and transgenic materials were constructed. Expressing CsSAMS1 in Escherichia coli BL21 (DE3) improved the growth of the engineered strain under salt stress. Overexpression of CsSAMS1 significantly increased MDA content, H2O2 content, and POD activity in transgenic lines under non-stress condition. Under salt stress, however, the MDA content of transgenic lines was lower than that of the wild type, the H2O2 content remained high, the polyamine and ACC synthesis in transgenic lines exhibited a CsSAMS1-expressed dependent way. Taken together, our results suggested that both CsSAMS1 and CsSAMS2 were involved in plant development and stress response, and a proper increase of expression level of CsSAMS1 in plants is benificial to improving salt tolerance.
Collapse
Affiliation(s)
- Mei-Wen He
- Key Laboratory of Southern Vegetable Crop Genetic Improvement, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yu Wang
- Key Laboratory of Southern Vegetable Crop Genetic Improvement, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jian-Qiang Wu
- Key Laboratory of Southern Vegetable Crop Genetic Improvement, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Sheng Shu
- Key Laboratory of Southern Vegetable Crop Genetic Improvement, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China; Suqian Academy of Protected Horticulture, Nanjing Agricultural University, Suqian, 223800, China
| | - Jin Sun
- Key Laboratory of Southern Vegetable Crop Genetic Improvement, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China; Suqian Academy of Protected Horticulture, Nanjing Agricultural University, Suqian, 223800, China
| | - Shi-Rong Guo
- Key Laboratory of Southern Vegetable Crop Genetic Improvement, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China; Suqian Academy of Protected Horticulture, Nanjing Agricultural University, Suqian, 223800, China.
| |
Collapse
|
23
|
Yu Z, Jia D, Liu T. Polyamine Oxidases Play Various Roles in Plant Development and Abiotic Stress Tolerance. PLANTS (BASEL, SWITZERLAND) 2019; 8:E184. [PMID: 31234345 PMCID: PMC6632040 DOI: 10.3390/plants8060184] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/19/2019] [Accepted: 06/20/2019] [Indexed: 02/06/2023]
Abstract
Polyamines not only play roles in plant growth and development, but also adapt to environmental stresses. Polyamines can be oxidized by copper-containing diamine oxidases (CuAOs) and flavin-containing polyamine oxidases (PAOs). Two types of PAOs exist in the plant kingdom; one type catalyzes the back conversion (BC-type) pathway and the other catalyzes the terminal catabolism (TC-type) pathway. The catabolic features and biological functions of plant PAOs have been investigated in various plants in the past years. In this review, we focus on the advance of PAO studies in rice, Arabidopsis, and tomato, and other plant species.
Collapse
Affiliation(s)
- Zhen Yu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China.
| | - Dongyu Jia
- Department of Biology, Georgia Southern University, Statesboro, GA 30460-8042, USA.
| | - Taibo Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
24
|
Wang W, Paschalidis K, Feng JC, Song J, Liu JH. Polyamine Catabolism in Plants: A Universal Process With Diverse Functions. FRONTIERS IN PLANT SCIENCE 2019; 10:561. [PMID: 31134113 PMCID: PMC6513885 DOI: 10.3389/fpls.2019.00561] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 04/12/2019] [Indexed: 05/18/2023]
Abstract
Polyamine (PA) catabolic processes are performed by copper-containing amine oxidases (CuAOs) and flavin-containing PA oxidases (PAOs). So far, several CuAOs and PAOs have been identified in many plant species. These enzymes exhibit different subcellular localization, substrate specificity, and functional diversity. Since PAs are involved in numerous physiological processes, considerable efforts have been made to explore the functions of plant CuAOs and PAOs during the recent decades. The stress signal transduction pathways usually lead to increase of the intracellular PA levels, which are apoplastically secreted and oxidized by CuAOs and PAOs, with parallel production of hydrogen peroxide (H2O2). Depending on the levels of the generated H2O2, high or low, respectively, either programmed cell death (PCD) occurs or H2O2 is efficiently scavenged by enzymatic/nonenzymatic antioxidant factors that help plants coping with abiotic stress, recruiting different defense mechanisms, as compared to biotic stress. Amine and PA oxidases act further as PA back-converters in peroxisomes, also generating H2O2, possibly by activating Ca2+ permeable channels. Here, the new research data are discussed on the interconnection of PA catabolism with the derived H2O2, together with their signaling roles in developmental processes, such as fruit ripening, senescence, and biotic/abiotic stress reactions, in an effort to elucidate the mechanisms involved in crop adaptation/survival to adverse environmental conditions and to pathogenic infections.
Collapse
Affiliation(s)
- Wei Wang
- College of Horticulture, Henan Agricultural University, Zhengzhou, China
| | - Konstantinos Paschalidis
- Department of Agriculture, School of Agricultural Sciences, Hellenic Mediterranean University, Heraklion, Greece
| | - Jian-Can Feng
- College of Horticulture, Henan Agricultural University, Zhengzhou, China
| | - Jie Song
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Ji-Hong Liu
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
25
|
Bordenave CD, Granados Mendoza C, Jiménez Bremont JF, Gárriz A, Rodríguez AA. Defining novel plant polyamine oxidase subfamilies through molecular modeling and sequence analysis. BMC Evol Biol 2019; 19:28. [PMID: 30665356 PMCID: PMC6341606 DOI: 10.1186/s12862-019-1361-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 01/14/2019] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND The polyamine oxidases (PAOs) catabolize the oxidative deamination of the polyamines (PAs) spermine (Spm) and spermidine (Spd). Most of the phylogenetic studies performed to analyze the plant PAO family took into account only a limited number and/or taxonomic representation of plant PAOs sequences. RESULTS Here, we constructed a plant PAO protein sequence database and identified four subfamilies. Subfamily PAO back conversion 1 (PAObc1) was present on every lineage included in these analyses, suggesting that BC-type PAOs might play an important role in plants, despite its precise function is unknown. Subfamily PAObc2 was exclusively present in vascular plants, suggesting that t-Spm oxidase activity might play an important role in the development of the vascular system. The only terminal catabolism (TC) PAO subfamily (subfamily PAOtc) was lost in Superasterids but it was present in all other land plants. This indicated that the TC-type reactions are fundamental for land plants and that their function could being taken over by other enzymes in Superasterids. Subfamily PAObc3 was the result of a gene duplication event preceding Angiosperm diversification, followed by a gene extinction in Monocots. Differential conserved protein motifs were found for each subfamily of plant PAOs. The automatic assignment using these motifs was found to be comparable to the assignment by rough clustering performed on this work. CONCLUSIONS The results presented in this work revealed that plant PAO family is bigger than previously conceived. Also, they delineate important background information for future specific structure-function and evolutionary investigations and lay a foundation for the deeper characterization of each plant PAO subfamily.
Collapse
Affiliation(s)
- Cesar Daniel Bordenave
- Laboratorio de Fisiología de Estrés Abiótico en Plantas, Unidad de Biotecnología, INTECH - CONICET - UNSAM, Intendente Marino KM 8.2 - B7130IWA Chascomús, Buenos Aires, Argentina
| | - Carolina Granados Mendoza
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, Apartado Postal 70-367, Coyoacán, 04510, México City, Mexico
| | - Juan Francisco Jiménez Bremont
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica (IPICYT), San Luis Potosí, Mexico
| | - Andrés Gárriz
- Laboratorio de Fisiología de Estrés Abiótico en Plantas, Unidad de Biotecnología, INTECH - CONICET - UNSAM, Intendente Marino KM 8.2 - B7130IWA Chascomús, Buenos Aires, Argentina
| | - Andrés Alberto Rodríguez
- Laboratorio de Fisiología de Estrés Abiótico en Plantas, Unidad de Biotecnología, INTECH - CONICET - UNSAM, Intendente Marino KM 8.2 - B7130IWA Chascomús, Buenos Aires, Argentina.
| |
Collapse
|
26
|
Ana Isabel CM, Francisco Ignacio JR, Margarita RK, Gill SS, Alicia BF, Juan Francisco JB. Down-regulation of arginine decarboxylase gene-expression results in reactive oxygen species accumulation in Arabidopsis. Biochem Biophys Res Commun 2018; 506:1071-1077. [PMID: 30409429 DOI: 10.1016/j.bbrc.2018.10.165] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 10/26/2018] [Indexed: 01/07/2023]
Abstract
Arabidopsis amiR:ADC-L2 is a non-lethal line with several developmental defects, it is characterized by a drastic reduction in free polyamine content. Herein, we found that catalase application had growth-promoting effects in amiR:ADC-L2 and parental Ws seedlings. Differences in ROS content between amiR:ADC-L2 and Ws seedlings were detected. Increased H2O2 levels were found in the amiR:ADC-L2, as well as low AtCAT2 gene expression and reduced catalase activity. Estimation of polyamine oxidase activity in amiR:ADC-L2 line indicated that the over-accumulation of H2O2 is independent of polyamine catabolism. However, increments in NADPH oxidase activity and O2•- content could be associated to the higher H2O2 levels in the amiR:ADC-L2 line. Our data suggest that low polyamine levels in Arabidopsis seedlings are responsible for the accumulation of ROS, by altering the activities of enzymes involved in ROS production and detoxification.
Collapse
Affiliation(s)
- Chávez-Martínez Ana Isabel
- IPICYT/División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, Camino a La Presa de San José 2055, Lomas 4ta, San Luis Potosí, Mexico
| | - Jasso-Robles Francisco Ignacio
- Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, Av. Salvador Nava s/n, Zona Universitaria, 78290, San Luis Potosí, Mexico
| | - Rodríguez-Kessler Margarita
- Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, Av. Salvador Nava s/n, Zona Universitaria, 78290, San Luis Potosí, Mexico
| | - Sarvajeet S Gill
- Stress Physiology & Molecular Biology Laboratory, Centre for Biotechnology, Maharshi Dayanand University, Rohtak, 124 001, Haryana, India
| | - Becerra-Flora Alicia
- IPICYT/División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, Camino a La Presa de San José 2055, Lomas 4ta, San Luis Potosí, Mexico
| | - Jiménez-Bremont Juan Francisco
- IPICYT/División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, Camino a La Presa de San José 2055, Lomas 4ta, San Luis Potosí, Mexico.
| |
Collapse
|
27
|
Fortes AM, Agudelo-Romero P. Polyamine Metabolism in Climacteric and Non-Climacteric Fruit Ripening. Methods Mol Biol 2018; 1694:433-447. [PMID: 29080186 DOI: 10.1007/978-1-4939-7398-9_36] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Polyamines are small aliphatic amines that are found in both prokaryotic and eukaryotic organisms. These growth regulators have been implicated in abiotic and biotic stresses as well as plant development and morphogenesis. Several studies have also suggested a key role of polyamines during fruit set and early development. Polyamines have also been linked to fruit ripening and in the regulation of fruit quality-related traits.Recent studies indicate that during ripening of both climacteric and non-climacteric fruits, a decline in total polyamine contents is observed together with an increased catabolism of these growth regulators.In this review, we explore the current knowledge on polyamine biosynthesis and catabolism during fruit set and ripening. The study of the role of polyamine metabolism in fruit ripening indicates the possible application of these natural polycations to control ripening and postharvest decay as well as to improve fruit quality traits.
Collapse
Affiliation(s)
- Ana Margarida Fortes
- Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisbon, Portugal.
| | - Patricia Agudelo-Romero
- Australian Research Council (ARC) Centre of Excellence in Plant Energy Biology, The University of Western Australia, Perth, WA, 6009, Australia
| |
Collapse
|
28
|
Kusano T, Sagor GHM, Berberich T. Molecules for Sensing Polyamines and Transducing Their Action in Plants. Methods Mol Biol 2018; 1694:25-35. [PMID: 29080152 DOI: 10.1007/978-1-4939-7398-9_2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Polyamines play important roles in growth, development, and adaptive responses to various stresses. In the past two decades, progress in plant polyamine research has accelerated, and the key molecules and components involved in many biological events have been identified. Recently, polyamine sensors used to detect polyamine-enriched foods and polyamines derived from degrading flesh were identified in fly and zebrafish, respectively. Work has begun to identify such molecules in plants as well. Here, we summarize the current knowledge about polyamines in plants. Furthermore, we discuss the roles of key molecules, such as calcium ions, reactive oxygen species, nitric oxide, γ-aminobutyric acid, polyamine transporters, and the mitogen-activated protein kinase cascade, from the viewpoint of polyamine action.
Collapse
Affiliation(s)
- Tomonobu Kusano
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba, Sendai, Miyagi, 980-8577, Japan.
| | - G H M Sagor
- Department of Genetics & Plant Breeding, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Thomas Berberich
- Laboratory Center, Senckenberg Biodiversity and Climate Research Centre (BiK-F), George-Voigt-Str. 14-16, 60325, Frankfurt am Main, Germany
| |
Collapse
|