1
|
Silva FALS, Chang HP, Incorvia JAC, Oliveira MJ, Sarmento B, Santos SG, Magalhães FD, Pinto AM. 2D Nanomaterials and Their Drug Conjugates for Phototherapy and Magnetic Hyperthermia Therapy of Cancer and Infections. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2306137. [PMID: 37963826 DOI: 10.1002/smll.202306137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/26/2023] [Indexed: 11/16/2023]
Abstract
Photothermal therapy (PTT) and magnetic hyperthermia therapy (MHT) using 2D nanomaterials (2DnMat) have recently emerged as promising alternative treatments for cancer and bacterial infections, both important global health challenges. The present review intends to provide not only a comprehensive overview, but also an integrative approach of the state-of-the-art knowledge on 2DnMat for PTT and MHT of cancer and infections. High surface area, high extinction coefficient in near-infra-red (NIR) region, responsiveness to external stimuli like magnetic fields, and the endless possibilities of surface functionalization, make 2DnMat ideal platforms for PTT and MHT. Most of these materials are biocompatible with mammalian cells, presenting some cytotoxicity against bacteria. However, each material must be comprehensively characterized physiochemically and biologically, since small variations can have significant biological impact. Highly efficient and selective in vitro and in vivo PTTs for the treatment of cancer and infections are reported, using a wide range of 2DnMat concentrations and incubation times. MHT is described to be more effective against bacterial infections than against cancer therapy. Despite the promising results attained, some challenges remain, such as improving 2DnMat conjugation with drugs, understanding their in vivo biodegradation, and refining the evaluation criteria to measure PTT or MHT effects.
Collapse
Affiliation(s)
- Filipa A L S Silva
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculdade de Engenharia, Universidade do Porto, Porto, 4200-180, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculdade de Engenharia, Universidade do Porto, Porto, 4200-180, Portugal
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, Porto, 4200-180, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, Porto, 4200-180, Portugal
| | - Hui-Ping Chang
- Department of Electrical and Computer Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Jean Anne C Incorvia
- Department of Electrical and Computer Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Maria J Oliveira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, Porto, 4200-180, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, Porto, 4200-180, Portugal
| | - Bruno Sarmento
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, Porto, 4200-180, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, Porto, 4200-180, Portugal
- IUCS - CESPU, Rua Central de Gandra 1317, Gandra, 4585-116, Portugal
| | - Susana G Santos
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, Porto, 4200-180, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, Porto, 4200-180, Portugal
| | - Fernão D Magalhães
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculdade de Engenharia, Universidade do Porto, Porto, 4200-180, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculdade de Engenharia, Universidade do Porto, Porto, 4200-180, Portugal
| | - Artur M Pinto
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculdade de Engenharia, Universidade do Porto, Porto, 4200-180, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculdade de Engenharia, Universidade do Porto, Porto, 4200-180, Portugal
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, Porto, 4200-180, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, Porto, 4200-180, Portugal
| |
Collapse
|
2
|
Surface modification of pyrophyllite for optimizing properties of castor oil-based polyurethane composite and its application in controlled-release fertilizer. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
3
|
Huang J, Jacobsen J, Genina N, Larsen SW, Nielsen HM, Müllertz A, Mu H. Investigating the effect of graphene oxide in chitosan/alginate-based foams on the release and antifungal activity of clotrimazole in vitro. Eur J Pharm Sci 2022; 174:106204. [PMID: 35550171 DOI: 10.1016/j.ejps.2022.106204] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/03/2022] [Accepted: 05/08/2022] [Indexed: 12/14/2022]
Abstract
Polyelectrolyte complexes (PECs) have been used as the matrix of solid foams for drug delivery. This study aimed at investigating the effect of graphene oxide (GO) and the composition of excipients in chitosan/alginate-based buccal foams on the clotrimazole release and antifungal activities. The investigation has been focused on the interactions of the drug with excipients in the foams, and the changes of ionization degree upon exposure to various media are discussed. The solid foams were prepared by mixing the excipients and clotrimazole via probe sonication, followed by a freeze-drying method. The pH values of the formulations were measured during the foam preparation process to estimate the ionization degree of clotrimazole and the other excipients. The foam matrix was the PECs between the cationic chitosan and anionic alginate. The mechanical strength of clotrimazole-loaded foams was lower than that of drug-free foams due to the positively charged clotrimazole interacting with the anionic alginate and interfering the PECs between chitosan and alginate. Addition of GO in the clotrimazole-loaded matrix made the foams mechanically stronger and contributed to a faster release of clotrimazole from the buccal foams by disrupting the electrostatic interactions between alginate and clotrimazole. However, addition of 1 wt% GO in the formulations didn't affect the antifungal activity of clotrimazole-loaded foams significantly. A lower amount GO in the formulation may be required for enhancing the antifungal effect, which should be further investigated in future.
Collapse
Affiliation(s)
- J Huang
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2100, Denmark
| | - J Jacobsen
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2100, Denmark
| | - N Genina
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2100, Denmark
| | - S W Larsen
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2100, Denmark
| | - H M Nielsen
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2100, Denmark
| | - A Müllertz
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2100, Denmark
| | - H Mu
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2100, Denmark.
| |
Collapse
|
4
|
Tran VA, Vo GV, Tan MA, Park JS, An SSA, Lee SW. Dual Stimuli-Responsive Multifunctional Silicon Nanocarriers for Specifically Targeting Mitochondria in Human Cancer Cells. Pharmaceutics 2022; 14:pharmaceutics14040858. [PMID: 35456692 PMCID: PMC9028052 DOI: 10.3390/pharmaceutics14040858] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 03/30/2022] [Accepted: 04/11/2022] [Indexed: 01/16/2023] Open
Abstract
Specific targeting, selective stimuli-responsiveness, and controlled release of anticancer agents are requested for high therapeutic efficiency with a minimal adverse effect. Herein, we report the sophisticated synthesis and functionalization of fluorescent mesoporous silicon (FMPSi) nanoparticles decorated with graphene oxide (GO) nanosheets. GO-wrapped FMPSi (FMPSi@GO) was loaded with a cisplatin (Cis) anticancer agent, and Cis-loaded FMPSi@GO (FMPSi-Cis@GO) exhibited the dual stimuli (pH and NIR)-responsiveness of controlled drug release, i.e., the drug release rate was distinctly enhanced at acidic pH 5.5 than at neutral pH 7.0 and further enhanced under NIR irradiation at acidic pH condition. Notably, dequalinium-conjugated FMPSi-Cis@GO (FMPSi-Cis@GO@DQA) demonstrated an excellent specificity for mitochondrial targeting in cancer cells without noticeable toxicity to normal human cells. Our novel silicon nanocarriers demonstrated not only stimuli (pH and NIR)-responsive controlled drug release, but also selective accumulation in the mitochondria of cancer cells and destroying them.
Collapse
Affiliation(s)
- Vy Anh Tran
- Department of Chemical and Biological Engineering, Gachon University, 1342 Seongnam-daero, Sujung-gu, Seongnam-si 461-701, Gyeonggi-do, Korea;
| | - Giau Van Vo
- Department of Biomedical Engineering, School of Medicine, Vietnam National University Ho Chi Minh City (VNU-HCM), Ho Chi Minh City 700000, Vietnam;
- Vietnam National University Ho Chi Minh City (VNU-HCM), Ho Chi Minh City 700000, Vietnam
| | - Mario A. Tan
- College of Science and Research Center for the Natural and Applied Sciences, University of Santo Tomas, Manila 1015, Philippines;
| | - Joon-Seo Park
- Department of Chemistry, Eastern University, 1300 Eagle Road, St. Davids, PA 19087, USA;
| | - Seong Soo A. An
- Department of Bionano Technology, Bionano Research Institute, Gachon University, 1342 Seongnam-daero, Sujung-gu, Seongnam-si 461-701, Gyeonggi-do, Korea
- Correspondence: (S.S.A.A.); (S.-W.L.); Tel.: +82-31-750-8755 (S.S.A.A.); +82-31-750-5360 (S.-W.L.)
| | - Sang-Wha Lee
- Department of Chemical and Biological Engineering, Gachon University, 1342 Seongnam-daero, Sujung-gu, Seongnam-si 461-701, Gyeonggi-do, Korea;
- Correspondence: (S.S.A.A.); (S.-W.L.); Tel.: +82-31-750-8755 (S.S.A.A.); +82-31-750-5360 (S.-W.L.)
| |
Collapse
|
5
|
Wang H, Wang B, Wang S, Chen J, Zhi W, Guan Y, Cai B, Zhu Y, Jia Y, Huang S, Zhu X. Injectable in situ intelligent thermo-responsive hydrogel with glycyrrhetinic acid-conjugated nano graphene oxide for chemo-photothermal therapy of malignant hepatocellular tumor. J Biomater Appl 2022; 37:151-165. [PMID: 35343281 DOI: 10.1177/08853282221078107] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Malignant tumor is one of the major diseases with high morbidity and mortality. The purpose of this study is to prepare berberine hydrochloride (BH) in situ thermo-sensitive hydrogel based on glycyrrhetinic acid (GA) modified nano graphene oxide (NGO) (GA-BH-NGO-gel). NGO was taken as the photosensitizer, GA was taken as the target molecule, and BH was taken as the model drug. The physicochemical properties and anti-tumor activity in vivo and in vitro were also studied. This subject could provide a certain theoretical basis for the chemo-photothermal therapy combined treatment of malignant tumor. The release behavior of GA-BH-NGO-gel in vitro presented sustained and temperature-dependent drug release effect. The anti-tumor activity studies in vivo and in vitro had shown that GA-BH-NGO-gel had stronger anti-tumor activity, which could be targeting distributed to the tumor tissues. Moreover, the inhibitory effect of GA-BH-NGO-gel was enhanced when combined with 808 nm of laser irradiation. In this research, the chemo-photothermal combination therapy was applied into the tumor treatment, which may provide certain research ideas for the clinical treatment of malignant tumor.
Collapse
Affiliation(s)
- Huahua Wang
- School of Pharmacy, 232830Henan University of Chinese Medicine, Zhengzhou, China
| | - Baiyan Wang
- School of Pharmacy, 232830Henan University of Chinese Medicine, Zhengzhou, China
| | - Shasha Wang
- School of Pharmacy, 232830Henan University of Chinese Medicine, Zhengzhou, China
| | - Jiaqi Chen
- School of Pharmacy, 232830Henan University of Chinese Medicine, Zhengzhou, China
| | - Weiwei Zhi
- School of Pharmacy, 232830Henan University of Chinese Medicine, Zhengzhou, China
| | - Yanbin Guan
- School of Pharmacy, 232830Henan University of Chinese Medicine, Zhengzhou, China
| | - Bangrong Cai
- School of Pharmacy, 232830Henan University of Chinese Medicine, Zhengzhou, China
| | - Yanhui Zhu
- School of Pharmacy, 232830Henan University of Chinese Medicine, Zhengzhou, China
| | - Yongyan Jia
- School of Pharmacy, 232830Henan University of Chinese Medicine, Zhengzhou, China
| | - Shengnan Huang
- School of Pharmacy, 232830Henan University of Chinese Medicine, Zhengzhou, China
| | - Xiali Zhu
- School of Pharmacy, 232830Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
6
|
Mellati A, Hasanzadeh E, Gholipourmalekabadi M, Enderami SE. Injectable nanocomposite hydrogels as an emerging platform for biomedical applications: A review. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 131:112489. [PMID: 34857275 DOI: 10.1016/j.msec.2021.112489] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/07/2021] [Accepted: 10/10/2021] [Indexed: 12/13/2022]
Abstract
Hydrogels have attracted much attention for biomedical and pharmaceutical applications due to the similarity of their biomimetic structure to the extracellular matrix of natural living tissues, tunable soft porous microarchitecture, superb biomechanical properties, proper biocompatibility, etc. Injectable hydrogels are an exciting type of hydrogels that can be easily injected into the target sites using needles or catheters in a minimally invasive manner. The more comfortable use, less pain, faster recovery period, lower costs, and fewer side effects make injectable hydrogels more attractive to both patients and clinicians in comparison to non-injectable hydrogels. However, it is difficult to achieve an ideal injectable hydrogel using just a single material (i.e., polymer). This challenge can be overcome by incorporating nanofillers into the polymeric matrix to engineer injectable nanocomposite hydrogels with combined or synergistic properties gained from the constituents. This work aims to critically review injectable nanocomposite hydrogels, their preparation methods, properties, functionalities, and versatile biomedical and pharmaceutical applications such as tissue engineering, drug delivery, and cancer labeling and therapy. The most common natural and synthetic polymers as matrices together with the most popular nanomaterials as reinforcements, including nanoceramics, carbon-based nanostructures, metallic nanomaterials, and various nanosized polymeric materials, are highlighted in this review.
Collapse
Affiliation(s)
- Amir Mellati
- Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Department of Tissue Engineering & Regenerative Medicine, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Elham Hasanzadeh
- Department of Tissue Engineering & Regenerative Medicine, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mazaher Gholipourmalekabadi
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, Iran; Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Ehsan Enderami
- Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
7
|
Islam MS, Renner F, Foster K, Oderinde MS, Stefanski K, Mitra S. Hydrophilic and Functionalized Nanographene Oxide Incorporated Faster Dissolving Megestrol Acetate. Molecules 2021; 26:molecules26071972. [PMID: 33807401 PMCID: PMC8036621 DOI: 10.3390/molecules26071972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 03/26/2021] [Indexed: 11/16/2022] Open
Abstract
The aim of this work is to present an approach to enhance the dissolution of progestin medication, megestrol acetate (also known as MEGACE), for improving the dissolution rate and kinetic solubility by incorporating nano graphene oxide (nGO). An antisolvent precipitation process was investigated for nGO-drug composite preparation, where prepared composites showed crystalline properties that were similar to the pure drug but enhanced aqueous dispersibility and colloidal stability. To validate the efficient release profile of composite, in vitro dissolution testing was carried out using United States Pharmacopeia, USP-42 paddle method, with gastric pH (1.4) and intestinal pH (6.5) solutions to mimic in vivo conditions. Pure MA is practically insoluble (2 µg/mL at 37 °C). With the incorporation of nGO, it was possible to dissolve nearly 100% in the assay. With the incorporation of 1.0% of nGO, the time required to dissolve 50% and 80% of drug, namely T50 and T80, decreased from 138.0 min to 27.0 min, and the drug did not dissolve for 97.0 min in gastric media, respectively. Additionally, studies done in intestinal media have revealed T50 did not dissolve for 92.0 min. This work shows promise in incorporating functionalized nanoparticles into the crystal lattice of poorly soluble drugs to improve dissolution rate.
Collapse
Affiliation(s)
- Mohammad Saiful Islam
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ 07102, USA; (M.S.I.); (F.R.)
| | - Faradae Renner
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ 07102, USA; (M.S.I.); (F.R.)
- Bristol Myers Squibb Research and Early Development, Princeton, NJ 08543, USA; (K.F.); (M.S.O.); (K.S.)
| | - Kimberly Foster
- Bristol Myers Squibb Research and Early Development, Princeton, NJ 08543, USA; (K.F.); (M.S.O.); (K.S.)
| | - Martin S. Oderinde
- Bristol Myers Squibb Research and Early Development, Princeton, NJ 08543, USA; (K.F.); (M.S.O.); (K.S.)
| | - Kevin Stefanski
- Bristol Myers Squibb Research and Early Development, Princeton, NJ 08543, USA; (K.F.); (M.S.O.); (K.S.)
| | - Somenath Mitra
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ 07102, USA; (M.S.I.); (F.R.)
- Correspondence:
| |
Collapse
|
8
|
Critical analysis of various supporting mediums employed for the incapacitation of silver nanomaterial for aniline and phenolic pollutants: A review. KOREAN J CHEM ENG 2021. [DOI: 10.1007/s11814-017-0192-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Hasda AM, Vuppaladadium SSR, Qureshi D, Prasad G, Mohanty B, Banerjee I, Shaikh H, Anis A, Sarkar P, Pal K. Graphene oxide reinforced nanocomposite oleogels improves corneal permeation of drugs. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.102024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
10
|
Biodegradable Polylactide/TiO 2 Composite Fiber Scaffolds with Superhydrophobic and Superadhesive Porous Surfaces for Water Immobilization, Antibacterial Performance, and Deodorization. Polymers (Basel) 2019; 11:polym11111860. [PMID: 31718022 PMCID: PMC6918282 DOI: 10.3390/polym11111860] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/08/2019] [Accepted: 11/08/2019] [Indexed: 02/04/2023] Open
Abstract
In this short communication, TiO2-nanoparticle-functionalized biodegradable polylactide (PLA) nonwoven scaffolds with a superhydrophobic and superadhesive surface are reported regarding their water immobilization, antibacterial performance, and deodorization. With numerous regular oriented pores on their surface, the as-fabricated electrospun porous PLA/TiO2 composite fibers possessed diameters in the range from 5 µm down to 400 nm, and the lengths were even found to be up to the meters range. The PLA/TiO2 composite fiber surface was demonstrated to be both superhydrophobic and superadhesive. The size of the pores on the fiber surface was observed to have a length of 200 ± 100 nm and a width of 150 ± 50 nm using field-emission scanning electron microscopy and transmission electron microscopy. The powerful adhesive force of the PLA/TiO2 composite fibers toward water droplets was likely a result of van der Waals forces and accumulated negative pressure forces. Such a fascinating porous surface (functionalized with TiO2 nanoparticles) of the PLA/TiO2 composite fiber scaffold endowed it with multiple useful functions, including water immobilization, antibacterial performance, and deodorization.
Collapse
|
11
|
Huang GW, Li N, Liu Y, Qu CB, Feng QP, Xiao HM. Binder-Free Graphene/Silver Nanowire Gel-Like Composite with Tunable Properties and Multifunctional Applications. ACS APPLIED MATERIALS & INTERFACES 2019; 11:15028-15037. [PMID: 30945534 DOI: 10.1021/acsami.8b22053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
To realize macroscopic utilization of the excellent properties of graphene, various forms of graphene assemblies have been investigated. Among them, the gel form assemblies show great advantages because of their shapeable and self-healable properties and facile and simple manufacturing processes. For the conventional gel-formed graphene assemblies, a relatively large content of binders including hydrophilic polymers, celluloses, or/and amorphous inorganic materials is necessary in achieving the gelation. However, these binders are electrically nonconductive and electrochemically inactive, which would weaken the favorable functionalities of the composite, and the potential advantages of graphene cannot be fully utilized. Herein, a binder-free silver nanowire (Ag-NW)/reduced graphene oxide (rGO) gel-like composite is designed and successfully fabricated by employing the ultralong Ag-NWs to enhance the hierarchical synergistic effects. The fabrication technique is highly efficient and repeatable, and the obtained composite is flexible, stretchable, and self-healable. Furthermore, the overall properties of the composite can be easily adjusted in a wide range by controlling the mass ratio between Ag-NW and rGO, which makes it multipurpose and suitable in different applications. Several demonstrations have been carried out, and some special performances including linear strain sensing range and rapid transformation from wet to dry state are found in this unique composite. This binder-free structure could also be expanded to other material systems, which may offer a valuable inspiration for the development of functional devices based on the nanocomposite.
Collapse
Affiliation(s)
- Gui-Wen Huang
- Technical Institute of Physics and Chemistry , Chinese Academy of Sciences , No. 29 Zhongguancun East Road , Beijing 100190 , P. R. China
| | - Na Li
- Technical Institute of Physics and Chemistry , Chinese Academy of Sciences , No. 29 Zhongguancun East Road , Beijing 100190 , P. R. China
| | - Yu Liu
- Technical Institute of Physics and Chemistry , Chinese Academy of Sciences , No. 29 Zhongguancun East Road , Beijing 100190 , P. R. China
| | - Cheng-Bing Qu
- Technical Institute of Physics and Chemistry , Chinese Academy of Sciences , No. 29 Zhongguancun East Road , Beijing 100190 , P. R. China
| | - Qing-Ping Feng
- Technical Institute of Physics and Chemistry , Chinese Academy of Sciences , No. 29 Zhongguancun East Road , Beijing 100190 , P. R. China
| | - Hong-Mei Xiao
- Technical Institute of Physics and Chemistry , Chinese Academy of Sciences , No. 29 Zhongguancun East Road , Beijing 100190 , P. R. China
| |
Collapse
|
12
|
Liang W, Hu H, Zhong W, Zhang M, Ma Y, Guo P, Xin M, Yu M, Lin H. Functionalization of Molecularly Imprinted Polymer Microspheres for the Highly Selective Removal of Contaminants from Aqueous Solutions and the Analysis of Food-Grade Fish Samples. Polymers (Basel) 2018; 10:E1130. [PMID: 30961055 PMCID: PMC6403773 DOI: 10.3390/polym10101130] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 10/09/2018] [Accepted: 10/09/2018] [Indexed: 11/16/2022] Open
Abstract
The proliferation of pollution in aquatic environments has become a growing concernand calls for the development of novel adsorbents capable of selectively removing notorious andrecalcitrant pollutants from these ecosystems. Herein, a general strategy was developed for thesynthesis and functionalization of molecularly imprinted polymer microspheres (MIPs) that couldbe optimized to possess a significant adsorption selectivity to an organic pollutant in aqueousmedia, in addition to a high adsorption capacity. Considering that the molecular imprinting alonewas far from satisfactory to produce a high-performance MIPs-based adsorbent, further structuralengineering and surface functionalization were performed in this study. Although the more carboxylgroups on the surfaces of the MIPs enhanced the adsorption rate and capacity toward an organicpollutant through electrostatic interactions, they did not strengthen the adsorption selectivity in aproportional manner. Through a systematic study, the optimized sample exhibiting both impressiveselectivity and capacity for the adsorption of the organic pollutant was found to possess a smallparticle size, a high specific surface area, a large total pore volume, and an appropriate amount ofsurface carboxyl groups. While the pseudo-second-order kinetic model was found to better describethe process of the adsorption onto the surface of MIPs as compared to the pseudo-first-order kineticmodel, neither Langmuir nor Freundlich isothermal model could be used to well fit the isothermaladsorption data. Increased temperature facilitated the adsorption of the organic pollutant onto theMIPs, as an endothermic process. Furthermore, the optimized MIPs were also successfully employedas a stationary phase for the fabrication of a molecularly imprinted solid phase extraction column,with which purchased food-grade fish samples were effectively examined.
Collapse
Affiliation(s)
- Weixin Liang
- College of Materials Science and Energy Engineering, Foshan University, Foshan 528000, China.
- Guangdong Provincial Public Laboratory of Analysis and Testing Technology, China National Analytical Center (Guangzhou), Guangzhou 510070, China.
| | - Huawen Hu
- College of Materials Science and Energy Engineering, Foshan University, Foshan 528000, China.
| | - Wanting Zhong
- College of Materials Science and Energy Engineering, Foshan University, Foshan 528000, China.
| | - Min Zhang
- College of Materials Science and Energy Engineering, Foshan University, Foshan 528000, China.
| | - Yanfang Ma
- Guangdong Provincial Public Laboratory of Analysis and Testing Technology, China National Analytical Center (Guangzhou), Guangzhou 510070, China.
| | - Pengran Guo
- Guangdong Provincial Public Laboratory of Analysis and Testing Technology, China National Analytical Center (Guangzhou), Guangzhou 510070, China.
| | - Meiguo Xin
- College of Food Science and Engineering, Foshan University, Foshan 528000, China.
| | - Mingguang Yu
- College of Materials Science and Energy Engineering, Foshan University, Foshan 528000, China.
| | - Haisheng Lin
- College of Materials Science and Energy Engineering, Foshan University, Foshan 528000, China.
| |
Collapse
|
13
|
Hashemi M, Omidi M, Muralidharan B, Smyth H, Mohagheghi MA, Mohammadi J, Milner TE. Evaluation of the Photothermal Properties of a Reduced Graphene Oxide/Arginine Nanostructure for Near-Infrared Absorption. ACS APPLIED MATERIALS & INTERFACES 2017; 9:32607-32620. [PMID: 28841283 DOI: 10.1021/acsami.7b11291] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Strong near-infrared (NIR) absorption of reduced graphene oxide (rGO) make this material a candidate for photothermal therapy. The use of rGO has been limited by low stability in aqueous media due to the lack of surface hydrophilic groups. We report synthesis of a novel form of reduced graphene-arginine (rGO-Arg) as a nanoprobe. Introduction of Arg to the surface of rGO not only increases the stability in aqueous solutions but also increases cancer cell uptake. Atomic force microscopy (AFM) and transmission electron microscopy (TEM) images are recorded to characterize the morphology of rGO-Arg. Fourier transform infrared (FTIR), X-ray photoelectron spectra (XPS), Raman, and UV-vis spectroscopy are utilized to analyze the physiochemical properties of rGO-Arg. Interaction of rGO-Arg with 808 nm laser light has been evaluated by measuring the absorption cross section in response to periodically modulated intensity to minimize artifacts arising from lateral thermal diffusion with a material scattering matched to a low scattering optical standard. Cell toxicity and cellular uptake by MD-MB-231 cell lines provide supporting data for the potential application of rGO-Arg for photothermal therapy. Absorption cross-section results suggest rGO-Arg is an excellent NIR absorber that is 3.2 times stronger in comparison to GO.
Collapse
Affiliation(s)
- Mohadeseh Hashemi
- Biomedical Engineering Department, Faculty of New Sciences and Technologies, The University of Tehran , Tehran 14395-1561, Iran
- Biomedical Engineering Department, The University of Texas at Austin , Austin, Texas 78712, United States
- Division of Pharmaceutics, College of Pharmacy, The University of Texas at Austin , Austin, Texas 78712, United States
| | - Meisam Omidi
- Protein Research Centre, Shahid Beheshti University , GC, Velenjak, Tehran 1985717443, Iran
| | - Bharadwaj Muralidharan
- Biomedical Engineering Department, The University of Texas at Austin , Austin, Texas 78712, United States
- Department of Electrical and Computer Engineering, The University of Texas at Austin , Austin, Texas 78712, United States
| | - Hugh Smyth
- Division of Pharmaceutics, College of Pharmacy, The University of Texas at Austin , Austin, Texas 78712, United States
| | - Mohammad A Mohagheghi
- Cancer Research Center, Cancer Institute of Iran, Tehran University of Medical Sciences , Tehran 1419733141, Iran
| | - Javad Mohammadi
- Biomedical Engineering Department, Faculty of New Sciences and Technologies, The University of Tehran , Tehran 14395-1561, Iran
| | - Thomas E Milner
- Biomedical Engineering Department, The University of Texas at Austin , Austin, Texas 78712, United States
| |
Collapse
|
14
|
Liang W, Hu H, Guo P, Ma Y, Li P, Zheng W, Zhang M. Combining Pickering Emulsion Polymerization with Molecular Imprinting to Prepare Polymer Microspheres for Selective Solid-Phase Extraction of Malachite Green. Polymers (Basel) 2017; 9:E344. [PMID: 30971022 PMCID: PMC6418669 DOI: 10.3390/polym9080344] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 07/28/2017] [Accepted: 08/01/2017] [Indexed: 12/01/2022] Open
Abstract
Malachite green (MG) is currently posing a carcinogenic threat to the safety of human lives; therefore, it is highly desirable to develop an effective method for fast trace detection of MG. Herein, for the first time, this paper presents a systematic study on polymer microspheres, being prepared by combined Pickering emulsion polymerization and molecular imprinting, to detect and purify MG. The microspheres, molecularly imprinted with MG, show enhanced adsorption selectivity to MG, despite a somewhat lowered adsorption capacity, as compared to the counterpart without molecular imprinting. Structural features and adsorption performance of these microspheres are elucidated by different characterizations and kinetic and thermodynamic analyses. The surface of the molecularly imprinted polymer microspheres (M-PMs) exhibits regular pores of uniform pore size distribution, endowing M-PMs with impressive adsorption selectivity to MG. In contrast, the microspheres without molecular imprinting show a larger average particle diameter and an uneven porous surface (with roughness and a large pore size), causing a lower adsorption selectivity to MG despite a higher adsorption capacity. Various adsorption conditions are investigated, such as pH and initial concentration of the solution with MG, for optimizing the adsorption performance of M-PMs in selectively tackling MG. The adsorption kinetics and thermodynamics are deeply discussed and analyzed, so as to provide a full picture of the adsorption behaviors of the polymer microspheres with and without the molecular imprinting. Significantly, M-PMs show promising solid-phase extraction column applications for recovering MG in a continuous extraction manner.
Collapse
Affiliation(s)
- Weixin Liang
- College of Materials Science and Energy Engineering, Foshan University, Foshan 528000, China.
- Guangdong Provincial Public Laboratory of Analysis and Testing Technology, China National Analytical Center (Guangzhou), Guangzhou 510070, China.
| | - Huawen Hu
- College of Materials Science and Energy Engineering, Foshan University, Foshan 528000, China.
| | - Pengran Guo
- Guangdong Provincial Public Laboratory of Analysis and Testing Technology, China National Analytical Center (Guangzhou), Guangzhou 510070, China.
| | - Yanfang Ma
- Guangdong Provincial Public Laboratory of Analysis and Testing Technology, China National Analytical Center (Guangzhou), Guangzhou 510070, China.
| | - Peiying Li
- College of Materials Science and Energy Engineering, Foshan University, Foshan 528000, China.
| | - Wenrou Zheng
- College of Materials Science and Energy Engineering, Foshan University, Foshan 528000, China.
| | - Min Zhang
- College of Materials Science and Energy Engineering, Foshan University, Foshan 528000, China.
| |
Collapse
|
15
|
Dong F, Firkowska-Boden I, Arras MML, Jandt KD. Responsive copolymer–graphene oxide hybrid microspheres with enhanced drug release properties. RSC Adv 2017. [DOI: 10.1039/c6ra25353a] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Graphene oxide deposited on thermoresponsive copolymer microspheres enhances their barrier diffusion properties and drug release performance.
Collapse
Affiliation(s)
- Fuping Dong
- Chair of Materials Science
- Otto Schott Institute of Materials Research
- Faculty of Physics and Astronomy
- Friedrich Schiller University Jena
- 07743 Jena
| | - Izabela Firkowska-Boden
- Chair of Materials Science
- Otto Schott Institute of Materials Research
- Faculty of Physics and Astronomy
- Friedrich Schiller University Jena
- 07743 Jena
| | - Matthias M. L. Arras
- Chair of Materials Science
- Otto Schott Institute of Materials Research
- Faculty of Physics and Astronomy
- Friedrich Schiller University Jena
- 07743 Jena
| | - Klaus. D. Jandt
- Chair of Materials Science
- Otto Schott Institute of Materials Research
- Faculty of Physics and Astronomy
- Friedrich Schiller University Jena
- 07743 Jena
| |
Collapse
|