1
|
Martín-Signes M, Rodríguez-San Esteban P, Narganes-Pineda C, Caracuel A, Mata JL, Martín-Arévalo E, Chica AB. The role of white matter variability in TMS neuromodulatory effects. Brain Stimul 2024; 17:1265-1276. [PMID: 39532240 DOI: 10.1016/j.brs.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/23/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Transcranial Magnetic Stimulation (TMS) is a widely used tool to explore the causal role of focal brain regions in cognitive processing. TMS effects over attentional processes are consistent and replicable, while at the same time subjected to individual variability. This individual variability needs to be understood to better comprehend TMS effects, and most importantly, its clinical applications. OBJECTIVE This study aimed to explore the role of white matter variability in TMS neuromodulatory effects on behavior in healthy participants (N = 50). METHODS Participants completed an attentional task in which orienting and alerting cues preceded near-threshold targets. Continuous Theta Burst Stimulation (cTBS) was applied over the left frontal eye field (FEF) or an active vertex condition. White matter was explored with diffusion-weighted imaging tractography and Tract-Based Spatial Statistics (TBSS). RESULTS Behaviorally, TMS over the left FEF slowed down reaction times (especially in the alerting task), impaired accuracy in the objective task, and reduced the proportion of seen targets (as compared to the vertex condition). Attentional effects increased, overall, when TMS was applied to the left FEF as compared to the vertex condition. Correlations between white matter and TMS effects showed i) reduced TMS effects associated with the microstructural properties of long-range white matter pathways such as the superior longitudinal fasciculus (SLF), and interhemispheric fibers of the corpus callosum (CC), and ii) increased TMS effects in participants with high integrity of the CC connecting the stimulated region with the opposite hemisphere. Additionally, variability in attentional effects was also related to white matter, showing iii) increased alerting effects in participants with low integrity of association, commissural, and projection fibers, and iv) increased orienting effects in participants with high integrity of the right SLF III. CONCLUSION All these observations highlight the importance of taking into account individual variability in white matter for the understanding of cognitive processing and brain neuromodulation effects.
Collapse
Affiliation(s)
- Mar Martín-Signes
- Mind, Brain and Behavior Research Center (CIMCYC), University of Granada, Spain; Department of Experimental Psychology, Faculty of Psychology, University of Granada, Spain.
| | - Pablo Rodríguez-San Esteban
- Mind, Brain and Behavior Research Center (CIMCYC), University of Granada, Spain; Department of Experimental Psychology, Faculty of Psychology, University of Granada, Spain
| | - Cristina Narganes-Pineda
- Mind, Brain and Behavior Research Center (CIMCYC), University of Granada, Spain; Department of Experimental Psychology, Faculty of Psychology, University of Granada, Spain
| | - Alfonso Caracuel
- Mind, Brain and Behavior Research Center (CIMCYC), University of Granada, Spain; Department of Developmental and Educational Psychology, Faculty of Psychology, University of Granada, Spain
| | - José Luís Mata
- Mind, Brain and Behavior Research Center (CIMCYC), University of Granada, Spain; Department of Personality, Evaluation and Psychological Treatment, Faculty of Psychology, University of Granada, Spain
| | - Elisa Martín-Arévalo
- Mind, Brain and Behavior Research Center (CIMCYC), University of Granada, Spain; Department of Experimental Psychology, Faculty of Psychology, University of Granada, Spain
| | - Ana B Chica
- Mind, Brain and Behavior Research Center (CIMCYC), University of Granada, Spain; Department of Experimental Psychology, Faculty of Psychology, University of Granada, Spain
| |
Collapse
|
2
|
Martín-Signes M, Paz-Alonso PM, Thiebaut de Schotten M, Chica AB. Integrating brain function and structure in the study of the human attentional networks: a functionnectome study. Brain Struct Funct 2024; 229:1665-1679. [PMID: 38969933 PMCID: PMC11374869 DOI: 10.1007/s00429-024-02824-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 06/16/2024] [Indexed: 07/07/2024]
Abstract
Attention is a heterogeneous function theoretically divided into different systems. While functional magnetic resonance imaging (fMRI) has extensively characterized their functioning, the role of white matter in cognitive function has gained recent interest due to diffusion-weighted imaging advancements. However, most evidence relies on correlations between white matter properties and behavioral or cognitive measures. This study used a new method that combines the signal from distant voxels of fMRI images using the probability of structural connection given by high-resolution normative tractography. We analyzed three fMRI datasets with a visual perceptual task and three attentional manipulations: phasic alerting, spatial orienting, and executive attention. The phasic alerting network engaged temporal areas and their communication with frontal and parietal regions, with left hemisphere dominance. The orienting network involved bilateral fronto-parietal and midline regions communicating by association tracts and interhemispheric fibers. The executive attention network engaged a broad set of brain regions and white matter tracts connecting them, with a particular involvement of frontal areas and their connections with the rest of the brain. These results partially confirm and extend previous knowledge on the neural substrates of the attentional system, offering a more comprehensive understanding through the integration of structure and function.
Collapse
Affiliation(s)
- Mar Martín-Signes
- Experimental Psychology Department, and Brain, Mind, and Behavior Research Centre (CIMCYC), University of Granada, Granada, 18071, Spain.
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives-UMR 5293, CNRS, CEA University of Bordeaux, Bordeaux, 33000, France.
| | - Pedro M Paz-Alonso
- BCBL. Basque Center on Cognition, Brain and Language, Donostia-San Sebastian, 20009, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, 48013, Spain
| | - Michel Thiebaut de Schotten
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives-UMR 5293, CNRS, CEA University of Bordeaux, Bordeaux, 33000, France
- Brain Connectivity and Behaviour Laboratory, Sorbonne Universities, Paris, France
| | - Ana B Chica
- Experimental Psychology Department, and Brain, Mind, and Behavior Research Centre (CIMCYC), University of Granada, Granada, 18071, Spain
| |
Collapse
|
3
|
Martín-Signes M, Chica AB, Bartolomeo P, Thiebaut de Schotten M. Streams of conscious visual experience. Commun Biol 2024; 7:908. [PMID: 39068236 PMCID: PMC11283449 DOI: 10.1038/s42003-024-06593-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 07/17/2024] [Indexed: 07/30/2024] Open
Abstract
Consciousness, a cornerstone of human cognition, is believed to arise from complex neural interactions. Traditional views have focused on localized fronto-parietal networks or broader inter-regional dynamics. In our study, we leverage advanced fMRI techniques, including the novel Functionnectome framework, to unravel the intricate relationship between brain circuits and functional activity shaping visual consciousness. Our findings underscore the importance of the superior longitudinal fasciculus within the fronto-parietal fibers, linking conscious perception with spatial neglect. Additionally, our data reveal the critical contribution of the temporo-parietal fibers and the splenium of the corpus callosum in connecting visual information with conscious representation and their verbalization. Central to these networks is the thalamus, posited as a conductor in synchronizing these interactive processes. Contrasting traditional fMRI analyses with the Functionnectome approach, our results emphasize the important explanatory power of interactive mechanisms over localized activations for visual consciousness. This research paves the way for a comprehensive understanding of consciousness, highlighting the complex network of neural connections that lead to awareness.
Collapse
Affiliation(s)
- Mar Martín-Signes
- Experimental Psychology Department, and Brain, Mind, and Behavior Research Center (CIMCYC-UGR), University of Granada, Granada, Spain.
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives-UMR 5293, CNRS, CEA University of Bordeaux, Bordeaux, France.
| | - Ana B Chica
- Experimental Psychology Department, and Brain, Mind, and Behavior Research Center (CIMCYC-UGR), University of Granada, Granada, Spain
| | - Paolo Bartolomeo
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, Inserm, CNRS, APHP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Michel Thiebaut de Schotten
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives-UMR 5293, CNRS, CEA University of Bordeaux, Bordeaux, France.
- Brain Connectivity and Behaviour Laboratory, Sorbonne Université, Paris, France.
| |
Collapse
|
4
|
Ciupińska K, Orłowska W, Zębrowski A, Łępa L, Koculak M, Bola M, Wierzchoń M. The influence of spatial and temporal attention on visual awareness-a behavioral and ERP study. Cereb Cortex 2024; 34:bhae241. [PMID: 38850216 DOI: 10.1093/cercor/bhae241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/14/2024] [Accepted: 05/22/2024] [Indexed: 06/10/2024] Open
Abstract
Whether attention is a prerequisite of perceptual awareness or an independent and dissociable process remains a matter of debate. Importantly, understanding the relation between attention and awareness is probably not possible without taking into account the fact that both are heterogeneous and multifaceted mechanisms. Therefore, the present study tested the impact on visual awareness of two attentional mechanisms proposed by the Posner model: temporal alerting and spatio-temporal orienting. Specifically, we evaluated the effects of attention on the perceptual level, by measuring objective and subjective awareness of a threshold-level stimulus; and on the neural level, by investigating how attention affects two postulated event-related potential correlates of awareness. We found that alerting and orienting mechanisms additively facilitate perceptual consciousness, with activation of the latter resulting in the most vivid awareness. Furthermore, we found that late positivity is unlikely to constitute a neural correlate of consciousness as its amplitude was modulated by both attentional mechanisms, but early visual awareness negativity was independent of the alerting and orienting mechanisms. In conclusion, our study reveals a nuanced relationship between attention and awareness; moreover, by investigating the effect of the alerting mechanism, this study provides insights into the role of temporal attention in perceptual consciousness.
Collapse
Affiliation(s)
- Kinga Ciupińska
- Consciousness Lab, Institute of Psychology, Jagiellonian University, 6 Ingardena Street, 30-060 Krakow, Poland
- Social Cognition in Human-Robot Interaction (S4HRI), Italian Institute of Technology, via Enrico Melen 83, 16152 Genova, Italy
| | - Wiktoria Orłowska
- Consciousness Lab, Institute of Psychology, Jagiellonian University, 6 Ingardena Street, 30-060 Krakow, Poland
- Doctoral School in the Social Sciences, Jagiellonian University, 34 Rynek Główny, 31-010 Krakow, Poland
| | - Aleksander Zębrowski
- Doctoral School in the Social Sciences, Jagiellonian University, 34 Rynek Główny, 31-010 Krakow, Poland
- Centre for Brain Research, Jagiellonian University, 50 Kopernika Street, 31-501 Krakow, Poland
| | - Laura Łępa
- Consciousness Lab, Institute of Psychology, Jagiellonian University, 6 Ingardena Street, 30-060 Krakow, Poland
| | - Marcin Koculak
- Consciousness Lab, Institute of Psychology, Jagiellonian University, 6 Ingardena Street, 30-060 Krakow, Poland
| | - Michał Bola
- Centre for Brain Research, Jagiellonian University, 50 Kopernika Street, 31-501 Krakow, Poland
| | - Michał Wierzchoń
- Consciousness Lab, Institute of Psychology, Jagiellonian University, 6 Ingardena Street, 30-060 Krakow, Poland
- Centre for Brain Research, Jagiellonian University, 50 Kopernika Street, 31-501 Krakow, Poland
| |
Collapse
|
5
|
Toba MN, Malkinson TS, Howells H, Mackie MA, Spagna A. Same, Same but Different? A Multi-Method Review of the Processes Underlying Executive Control. Neuropsychol Rev 2024; 34:418-454. [PMID: 36967445 DOI: 10.1007/s11065-023-09577-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 09/26/2022] [Indexed: 03/29/2023]
Abstract
Attention, working memory, and executive control are commonly considered distinct cognitive functions with important reciprocal interactions. Yet, longstanding evidence from lesion studies has demonstrated both overlap and dissociation in their behavioural expression and anatomical underpinnings, suggesting that a lower dimensional framework could be employed to further identify processes supporting goal-directed behaviour. Here, we describe the anatomical and functional correspondence between attention, working memory, and executive control by providing an overview of cognitive models, as well as recent data from lesion studies, invasive and non-invasive multimodal neuroimaging and brain stimulation. We emphasize the benefits of considering converging evidence from multiple methodologies centred on the identification of brain mechanisms supporting goal-driven behaviour. We propose that expanding on this approach should enable the construction of a comprehensive anatomo-functional framework with testable new hypotheses, and aid clinical neuroscience to intervene on impairments of executive functions.
Collapse
Affiliation(s)
- Monica N Toba
- Laboratory of Functional Neurosciences (UR UPJV 4559), University Hospital of Amiens and University of Picardie Jules Verne, Amiens, France.
- CHU Amiens Picardie - Site Sud, Centre Universitaire de Recherche en Santé, Avenue René Laënnec, 80054, Amiens Cedex 1, France.
| | - Tal Seidel Malkinson
- Paris Brain Institute, ICM, Hôpital de La Pitié-Salpêtrière, Sorbonne Université, Inserm U 1127, CNRS UMR 7225, 75013, Paris, France
- Université de Lorraine, CRAN, F-54000, Nancy, France
| | - Henrietta Howells
- Laboratory of Motor Control, Department of Medical Biotechnologies and Translational Medicine, Humanitas Research Hospital, IRCCS, Università Degli Studi Di Milano, Milan, Italy
| | - Melissa-Ann Mackie
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Alfredo Spagna
- Department of Psychology, Columbia University, New York, NY, 10025, USA.
| |
Collapse
|
6
|
Wang K, Fang Y, Guo Q, Shen L, Chen Q. Superior Attentional Efficiency of Auditory Cue via the Ventral Auditory-thalamic Pathway. J Cogn Neurosci 2024; 36:303-326. [PMID: 38010315 DOI: 10.1162/jocn_a_02090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Auditory commands are often executed more efficiently than visual commands. However, empirical evidence on the underlying behavioral and neural mechanisms remains scarce. In two experiments, we manipulated the delivery modality of informative cues and the prediction violation effect and found consistently enhanced RT benefits for the matched auditory cues compared with the matched visual cues. At the neural level, when the bottom-up perceptual input matched the prior prediction induced by the auditory cue, the auditory-thalamic pathway was significantly activated. Moreover, the stronger the auditory-thalamic connectivity, the higher the behavioral benefits of the matched auditory cue. When the bottom-up input violated the prior prediction induced by the auditory cue, the ventral auditory pathway was specifically involved. Moreover, the stronger the ventral auditory-prefrontal connectivity, the larger the behavioral costs caused by the violation of the auditory cue. In addition, the dorsal frontoparietal network showed a supramodal function in reacting to the violation of informative cues irrespective of the delivery modality of the cue. Taken together, the results reveal novel behavioral and neural evidence that the superior efficiency of the auditory cue is twofold: The auditory-thalamic pathway is associated with improvements in task performance when the bottom-up input matches the auditory cue, whereas the ventral auditory-prefrontal pathway is involved when the auditory cue is violated.
Collapse
Affiliation(s)
- Ke Wang
- South China Normal University, Guangzhou, China
| | - Ying Fang
- South China Normal University, Guangzhou, China
| | - Qiang Guo
- Guangdong Sanjiu Brain Hospital, Guangzhou, China
| | - Lu Shen
- South China Normal University, Guangzhou, China
| | - Qi Chen
- South China Normal University, Guangzhou, China
| |
Collapse
|
7
|
Huang JY, Xue XJ, Wang ZX, Li ZF, Rui-Su, Wang NN, Huang XY, Li H, Ma HL, Liu M, Zhang DL. The relationship between attention networks and individual differences in visual mental imagery vividness - An EEG study. Neuropsychologia 2023; 191:108736. [PMID: 37995903 DOI: 10.1016/j.neuropsychologia.2023.108736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 11/05/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023]
Abstract
Previous research has established a strong link between attention and visual mental imagery, but it's remained uncertain whether attention networks influence individual differences in the vividness of visual mental imagery. In our study, we examined 140 participants, assessing the vividness of imagery using the Vividness of Visual Imagery Questionnaire in both eyes-open and eyes-closed conditions. We employed the Attention Network Test, coupled with EEG recording, to characterize three attention sub-networks: alerting, orienting, and executive control. To pinpoint the specific attentional networks associated with the vividness of visual mental imagery, we utilized latent profile analysis to categorize participants into distinct subgroups. Additionally, we constructed a regression mixture model to explore how attention networks predict different latent categories of visual imagery vividness. Our findings revealed that the efficiency of the alerting network, as indicated by the N1 component, demonstrated a positive correlation with the vividness of visual imagery. This electrophysiological evidence underscores the role of the alerting network in shaping individual differences in the vividness of visual mental imagery.
Collapse
Affiliation(s)
- Jing-Ya Huang
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, China; School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, China
| | - Xiao-Juan Xue
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, China; School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, China
| | - Zhi-Xin Wang
- Plateau Brain Science Research Center, Tibet University/South China Normal University, Lhasa 850000, Guangzhou, 510631, China; Department of Psychology, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014, Shandong Province, China
| | - Ze-Feng Li
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, China; School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, China
| | - Rui-Su
- Plateau Brain Science Research Center, Tibet University/South China Normal University, Lhasa 850000, Guangzhou, 510631, China
| | - Nian-Nian Wang
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, China; School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, China; Plateau Brain Science Research Center, Tibet University/South China Normal University, Lhasa 850000, Guangzhou, 510631, China
| | - Xiao-Yan Huang
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, China; School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, China
| | - Hao Li
- Plateau Brain Science Research Center, Tibet University/South China Normal University, Lhasa 850000, Guangzhou, 510631, China
| | - Hai-Lin Ma
- Plateau Brain Science Research Center, Tibet University/South China Normal University, Lhasa 850000, Guangzhou, 510631, China.
| | - Ming Liu
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, China; School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, China; Plateau Brain Science Research Center, Tibet University/South China Normal University, Lhasa 850000, Guangzhou, 510631, China
| | - De-Long Zhang
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, China; School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, China; Plateau Brain Science Research Center, Tibet University/South China Normal University, Lhasa 850000, Guangzhou, 510631, China.
| |
Collapse
|
8
|
Jang SH, Lee SJ, Cho MJ. Relationship between consciousness and the thalamocortical tract in patients with intracerebral hemorrhage. Medicine (Baltimore) 2023; 102:e35510. [PMID: 37832068 PMCID: PMC10578689 DOI: 10.1097/md.0000000000035510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/14/2023] [Indexed: 10/15/2023] Open
Abstract
In patients with intracerebral hemorrhage (ICH), the relationship between consciousness and the thalamocortical tract (TCT), which links the thalamic intralaminar nuclei (ILN) and the cerebral cortex, was investigated. Forty-one patients with ICH were assigned to 1 of 2 groups according to their preservation of consciousness as determined by their Glasgow coma scale (GCS) score. Patient group A had impaired consciousness (GCS < 15, 21 patients), and patient group B had intact consciousness (GCS = 15, 20 patients). The control group included 20 age- and sex-matched healthy subjects. For all groups, the TCTs from the thalamic ILN of both sides were reconstructed using a probabilistic tractography method based on a multifiber model. In addition, tract volume (TV) values were determined. The TV values for the ipsilateral TCT from the thalamic ILN of the all-patient groups and those for contralateral TCT of the patient group B showed no significant differences between ICH and contra-ICH sides (P > .05). The TV results for the ipsilateral and contralateral TCTs from the thalamic ILN of the ICH and contra-ICH sides were significantly different among the 3 groups (P < .05). Among the patients, there were moderate positive correlations between GCS scores and TV values of the ipsilateral TCT on the ICH and contra-ICH sides (R = 0.477, P < .05; R = 0.426, P < .05). The TV of the ipsilateral TCT from the thalamic ILN on the ICH and contra-ICH sides was significantly correlated with the consciousness level in patients with ICH. Our results could be helpful when developing therapeutic strategies for ICH patients with disorders of consciousness.
Collapse
Affiliation(s)
- Sung Ho Jang
- Department of Physical Medicine and Rehabilitation, College of Medicine, Yeungnam University, Namku, Taegu, Republic of Korea
| | - Sung Jun Lee
- Department of Physical Therapy, College of Health Sciences, Dankook University, Dongnamgu, Cheonan, Republic of Korea
| | - Min Jye Cho
- Department of Physical Medicine and Rehabilitation, College of Medicine, Yeungnam University, Namku, Taegu, Republic of Korea
| |
Collapse
|
9
|
MacLean MW, Hadid V, Spreng RN, Lepore F. Revealing robust neural correlates of conscious and unconscious visual processing: activation likelihood estimation meta-analyses. Neuroimage 2023; 273:120088. [PMID: 37030413 DOI: 10.1016/j.neuroimage.2023.120088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 03/30/2023] [Accepted: 04/03/2023] [Indexed: 04/09/2023] Open
Abstract
Our ability to consciously perceive information from the visual scene relies on a myriad of intrinsic neural mechanisms. Functional neuroimaging studies have sought to identify the neural correlates of conscious visual processing and to further dissociate from those pertaining to preconscious and unconscious visual processing. However, delineating what core brain regions are involved in eliciting a conscious percept remains a challenge, particularly regarding the role of prefrontal-parietal regions. We performed a systematic search of the literature that yielded a total of 54 functional neuroimaging studies. We conducted two quantitative meta-analyses using activation likelihood estimation to identify reliable patterns of activation engaged by i. conscious (n = 45 studies, comprising 704 participants) and ii. unconscious (n = 16 studies, comprising 262 participants) visual processing during various task performances. Results of the meta-analysis specific to conscious percepts quantitatively revealed reliable activations across a constellation of regions comprising the bilateral inferior frontal junction, intraparietal sulcus, dorsal anterior cingulate, angular gyrus, temporo-occipital cortex and anterior insula. Neurosynth reverse inference revealed conscious visual processing to be intertwined with cognitive terms related to attention, cognitive control and working memory. Results of the meta-analysis on unconscious percepts revealed consistent activations in the lateral occipital complex, intraparietal sulcus and precuneus. These findings highlight the notion that conscious visual processing readily engages higher-level regions including the inferior frontal junction and unconscious processing reliably recruits posterior regions, mainly the lateral occipital complex.
Collapse
|
10
|
Spagna A, Bayle DJ, Romeo Z, Seidel-Malkinson T, Liu J, Yahia-Cherif L, Chica AB, Bartolomeo P. The cost of attentional reorienting on conscious visual perception: an MEG study. Cereb Cortex 2023; 33:2048-2060. [PMID: 35609335 DOI: 10.1093/cercor/bhac192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/18/2022] [Accepted: 04/20/2022] [Indexed: 11/13/2022] Open
Abstract
How do attentional networks influence conscious perception? To answer this question, we used magnetoencephalography in human participants and assessed the effects of spatially nonpredictive or predictive supra-threshold peripheral cues on the conscious perception of near-threshold Gabors. Three main results emerged. (i) As compared with invalid cues, both nonpredictive and predictive valid cues increased conscious detection. Yet, only predictive cues shifted the response criterion toward a more liberal decision (i.e. willingness to report the presence of a target under conditions of greater perceptual uncertainty) and affected target contrast leading to 50% detections. (ii) Conscious perception following valid predictive cues was associated to enhanced activity in frontoparietal networks. These responses were lateralized to the left hemisphere during attentional orienting and to the right hemisphere during target processing. The involvement of frontoparietal networks occurred earlier in valid than in invalid trials, a possible neural marker of the cost of re-orienting attention. (iii) When detected targets were preceded by invalid predictive cues, and thus reorienting to the target was required, neural responses occurred in left hemisphere temporo-occipital regions during attentional orienting, and in right hemisphere anterior insular and temporo-occipital regions during target processing. These results confirm and specify the role of frontoparietal networks in modulating conscious processing and detail how invalid orienting of spatial attention disrupts conscious processing.
Collapse
Affiliation(s)
- Alfredo Spagna
- Department of Psychology, Columbia University in the City of New York, New York, NY 10027, USA.,Sorbonne Université, Inserm U 1127, CNRS UMR 7225, Paris Brain Institute, ICM, Hôpital de la Pitié-Salpêtrière, 75013 Paris, France
| | - Dimitri J Bayle
- Licae Lab, Université Paris Nanterre, 92001 Nanterre, France
| | - Zaira Romeo
- Department of General Psychology, University of Padova, 35131 Padova, Italy
| | - Tal Seidel-Malkinson
- Sorbonne Université, Inserm U 1127, CNRS UMR 7225, Paris Brain Institute, ICM, Hôpital de la Pitié-Salpêtrière, 75013 Paris, France
| | - Jianghao Liu
- Sorbonne Université, Inserm U 1127, CNRS UMR 7225, Paris Brain Institute, ICM, Hôpital de la Pitié-Salpêtrière, 75013 Paris, France
| | - Lydia Yahia-Cherif
- Sorbonne Université, Inserm U 1127, CNRS UMR 7225, Paris Brain Institute, ICM, Hôpital de la Pitié-Salpêtrière, 75013 Paris, France
| | - Ana B Chica
- Department of Experimental Psychology; Mind, Brain, and Behavior Research Center (CIMCYC), University of Granada, 18071 Granada, Spain
| | - Paolo Bartolomeo
- Sorbonne Université, Inserm U 1127, CNRS UMR 7225, Paris Brain Institute, ICM, Hôpital de la Pitié-Salpêtrière, 75013 Paris, France
| |
Collapse
|
11
|
Abstract
Consciousness is a fascinating field of neuroscience research where questions often outnumber the answers. We advocate an open and optimistic approach where converging mechanisms in neuroscience may eventually provide a satisfactory understanding of consciousness. We first review several characteristics of conscious neural activity, including the involvement of dedicated systems for content and levels of consciousness, the distinction and overlap of mechanisms contributing to conscious states and conscious awareness of transient events, nonlinear transitions and involvement of large-scale networks, and finally the temporal nexus where conscious awareness of discrete events occurs when mechanisms of attention and memory meet. These considerations and recent new experimental findings lead us to propose an inclusive hypothesis involving four phases initiated shortly after an external sensory stimulus: (1) Detect-primary and higher cortical and subcortical circuits detect the stimulus and select it for conscious perception. (2) Pulse-a transient and massive neuromodulatory surge in subcortical-cortical arousal and salience networks amplifies signals enabling conscious perception to proceed. (3) Switch-networks that may interfere with conscious processing are switched off. (4) Wave-sequential processing through hierarchical lower to higher cortical regions produces a fully formed percept, encoded in frontoparietal working memory and medial temporal episodic memory systems for subsequent report of experience. The framework hypothesized here is intended to be nonexclusive and encourages the addition of other mechanisms with further progress. Ultimately, just as many mechanisms in biology together distinguish living from nonliving things, many mechanisms in neuroscience synergistically may separate conscious from nonconscious neural activity.
Collapse
Affiliation(s)
- Hal Blumenfeld
- Departments of Neurology, Neuroscience, and Neurosurgery, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
12
|
Conscious interpretation: A distinct aspect for the neural markers of the contents of consciousness. Conscious Cogn 2023; 108:103471. [PMID: 36736210 DOI: 10.1016/j.concog.2023.103471] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 12/22/2022] [Accepted: 01/11/2023] [Indexed: 02/04/2023]
Abstract
Progress in the science of consciousness depends on the experimental paradigms and varieties of contrastive analysis available to researchers. Here we highlight paradigms where the object is represented in consciousness as a set of its features but the interpretation of this set alternates in consciousness. We group experimental paradigms with this property under the label "conscious interpretation". We compare the paradigms studying conscious interpretation of the already consciously perceived objects with other types of experimental paradigms. We review previous and recent studies investigating this interpretative aspect of consciousness and propose future directions. We put forward the hypothesis that there are types of stimuli with a hierarchy of interpretations for which the rule applies: conscious experience is drawn towards higher-level interpretation and reverting back to the lower level of interpretation is impossible. We discuss how theories of consciousness might incorporate knowledge and constraints arising from the characteristics of conscious interpretation.
Collapse
|
13
|
Yan J, Zeng J, Liu P. Phasic alertness boosts representational momentum. Front Psychol 2022; 13:1003661. [DOI: 10.3389/fpsyg.2022.1003661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/24/2022] [Indexed: 12/03/2022] Open
Abstract
The final location of a moving object is always misremembered in the direction of the object’s motion; this occurrence is called representational momentum. Three experiments were conducted to investigate the effects of phasic alertness on representational momentum by presenting a visual or auditory warning cue. In experiment 1, the mouse pointer paradigm was used, and the results showed that external warning cues increased forward displacement. Experiment 2 indicated that the effects of phasic alertness and speed of motion on representational momentum were independent. In experiment 3, the probe paradigm was used, and the results showed that external warning cues increased forward displacement as well as participants’ sensitivity to the difference between the target and probe positions. These findings prove that phasic alertness boosts rather than reduces representational momentum. We propose that phasic alertness might influence representational momentum by modulating the process of executive control in the retention interval.
Collapse
|
14
|
Clarke S, Farron N, Crottaz-Herbette S. Choosing Sides: Impact of Prismatic Adaptation on the Lateralization of the Attentional System. Front Psychol 2022; 13:909686. [PMID: 35814089 PMCID: PMC9260393 DOI: 10.3389/fpsyg.2022.909686] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/01/2022] [Indexed: 11/13/2022] Open
Abstract
Seminal studies revealed differences between the effect of adaptation to left- vs. right-deviating prisms (L-PA, R-PA) in normal subjects. Whereas L-PA leads to neglect-like shift in attention, demonstrated in numerous visuo-spatial and cognitive tasks, R-PA has only minor effects in specific aspects of a few tasks. The paucity of R-PA effects in normal subjects contrasts with the striking alleviation of neglect symptoms in patients with right hemispheric lesions. Current evidence from activation studies in normal subjects highlights the contribution of regions involved in visuo-motor control during prism exposure and a reorganization of spatial representations within the ventral attentional network (VAN) after the adaptation. The latter depends on the orientation of prisms used. R-PA leads to enhancement of the ipsilateral visual and auditory space within the left inferior parietal lobule (IPL), switching thus the dominance of VAN from the right to the left hemisphere. L-PA leads to enhancement of the ipsilateral space in right IPL, emphasizing thus the right hemispheric dominance of VAN. Similar reshaping has been demonstrated in patients. We propose here a model, which offers a parsimonious explanation of the effect of L-PA and R-PA both in normal subjects and in patients with hemispheric lesions. The model posits that prismatic adaptation induces instability in the synaptic organization of the visuo-motor system, which spreads to the VAN. The effect is lateralized, depending on the side of prism deviation. Successful pointing with prisms implies reaching into the space contralateral, and not ipsilateral, to the direction of prism deviation. Thus, in the hemisphere contralateral to prism deviation, reach-related neural activity decreases, leading to instability of the synaptic organization, which induces a reshuffling of spatial representations in IPL. Although reshuffled spatial representations in IPL may be functionally relevant, they are most likely less efficient than regular representations and may thus cause partial dysfunction. The former explains, e.g., the alleviation of neglect symptoms after R-PA in patients with right hemispheric lesions, the latter the occurrence of neglect-like symptoms in normal subjects after L-PA. Thus, opting for R- vs. L-PA means choosing the side of major IPL reshuffling, which leads to its partial dysfunction in normal subjects and to recruitment of alternative or enhanced spatial representations in patients with hemispheric lesions.
Collapse
Affiliation(s)
- Stephanie Clarke
- Neuropsychology and Neurorehabilitation Service, Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, Lausanne, Switzerland
| | | | | |
Collapse
|
15
|
Cobos MI, Chica AB. EXPRESS: Attention does not always help: the role of expectancy, divided, and spatial attention on illusory conjunctions. Q J Exp Psychol (Hove) 2022; 75:2087-2104. [PMID: 35274574 DOI: 10.1177/17470218221089625] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Humans have the subjective impression of a rich perceptual experience, but this perception is riddled with errors that might be produced by top-down expectancies or failures in feature integration. The role of attention in feature integration is still unclear. Some studies support the importance of attention in feature integration (Paul & Schyns, 2003), whereas others suggest that feature integration does not require attention (Humphreys, 2016). Understanding attention as a heterogeneous system, in this study we explored the role of divided (as opposed to focused - Experiment 1) attention, and endogenous-exogenous spatial orienting (Experiments 2 and 3) in feature integration. We also explored the role of feature expectancy, by presenting stimulus features that were completely unexpected to the participants. Results demonstrated that both endogenous and exogenous orienting improved feature integration while divided attention did not. Moreover, a strong and consistent feature expectancy effect was observed, demonstrating perceptual completion when an unexpected perceptual feature was presented in the scene. These results support the feature confirmation account (Humphreys, 2016), which proposes that attention is important for top-down matching of stable representations.
Collapse
Affiliation(s)
- María I Cobos
- Brain, Mind, and Behavior Research Center (CIMCYC) and Faculty of Psychology, University of Granada, Spain 16741
| | - Ana B Chica
- Brain, Mind, and Behavior Research Center (CIMCYC) and Faculty of Psychology, University of Granada, Spain 16741
| |
Collapse
|
16
|
Can music restore brain connectivity in post-stroke cognitive deficits? Med Hypotheses 2022. [DOI: 10.1016/j.mehy.2022.110761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
17
|
Bachmann T. Representational 'touch' and modulatory 'retouch'-two necessary neurobiological processes in thalamocortical interaction for conscious experience. Neurosci Conscious 2021; 2021:niab045. [PMID: 34925911 PMCID: PMC8672242 DOI: 10.1093/nc/niab045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 11/16/2021] [Accepted: 11/30/2021] [Indexed: 12/01/2022] Open
Abstract
Theories of consciousness using neurobiological data or being influenced by these data have been focused either on states of consciousness or contents of consciousness. These theories have occasionally used evidence from psychophysical phenomena where conscious experience is a dependent experimental variable. However, systematic catalog of many such relevant phenomena has not been offered in terms of these theories. In the perceptual retouch theory of thalamocortical interaction, recently developed to become a blend with the dendritic integration theory, consciousness states and contents of consciousness are explained by the same mechanism. This general-purpose mechanism has modulation of the cortical layer-5 pyramidal neurons that represent contents of consciousness as its core. As a surplus, many experimental psychophysical phenomena of conscious perception can be explained by the workings of this mechanism. Historical origins and current views inherent in this theory are presented and reviewed.
Collapse
Affiliation(s)
- Talis Bachmann
- Department of Penal Law, Laboratory of Cognitive Neuroscience, School of Law, University of Tartu (Tallinn Branch), Kaarli puiestee 3, Tallinn 10119, Estonia
| |
Collapse
|
18
|
Tyler CW. The Interstitial Pathways as the Substrate of Consciousness: A New Synthesis. ENTROPY 2021; 23:e23111443. [PMID: 34828141 PMCID: PMC8623371 DOI: 10.3390/e23111443] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 07/22/2021] [Accepted: 10/15/2021] [Indexed: 01/10/2023]
Abstract
This paper considers three classes of analyses of the nature of consciousness: abstract theories of the functional organization of consciousness, and concrete proposals as to the neural substrate of consciousness, while providing a rationale for contesting non-neural and transcendental conceptualizations of consciousness. It indicates that abstract theories of the dynamic core of consciousness have no force unless they are grounded in the physiology of the brain, since the organization of dynamic systems, such as the Sun, could equally well qualify as conscious under such theories. In reviewing the wealth of studies of human consciousness since the mid-20th century, it concludes that many proposals for the particular neural substrate of consciousness are insufficient in various respects, but that the results can be integrated into a novel scheme that consciousness extends through a subcortical network of interlaminar structures from the brainstem to the claustrum. This interstitial structure has both the specificity and the extended connectivity to account for the array of reportable conscious experiences.
Collapse
Affiliation(s)
- Christopher W. Tyler
- Smith-Kettlewell Eye Research Institute, San Francisco, CA 94115, USA;
- Division of Optometry and Vision Sciences, School of Health Sciences, City University of London, London EC1V 0HB, UK
| |
Collapse
|
19
|
Matuz A, van der Linden D, Zsidó A, Csathó Á. Visually guided movement with increasing time-on-task: Differential effects on movement preparation and movement execution. Q J Exp Psychol (Hove) 2021; 75:565-582. [PMID: 34507504 DOI: 10.1177/17470218211048001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Top-down cognitive control seems to be sensitive to the detrimental effects of fatigue induced by time-on-task (ToT). The planning and preparation of the motor responses may be especially vulnerable to ToT. Yet, effects of ToT specific to the different phases of movements have received little attention. Therefore, in three experiments, we assessed the effect of ToT on a mouse-pointing task. In Experiment 1, there were 16 possible target positions with variable movement directions. In Experiment 2, the layout of the targets was simplified. In Experiment 3, using cuing conditions, we examined whether the effects of ToT on movement preparation and execution were caused by an increased orientation deficit or decreased phasic alertness. In each experiment, initiation of movement (preparatory phase) became slower, movement execution became faster and overall response time remained constant with increasing ToT. There was, however, no significant within-person association between the preparatory and execution phases. In Experiments 1 and 2, we found a decreasing movement time/movement error ratio, suggesting a more impulsive execution of the pointing movement. In addition, ToT was also accompanied with imprecise movement execution as indicated by the increased errors, mainly in Experiment 2. The results of Experiment 3 indicated that ToT did not induce orientation and phasic alerting deficits but rather was accompanied by decreased tonic alertness.
Collapse
Affiliation(s)
- András Matuz
- Department of Behavioural Sciences, Medical School, University of Pécs, Pécs, Hungary
| | - Dimitri van der Linden
- Department of Psychology, Education, and Child Studies, Erasmus University Rotterdam, Rotterdam, The Netherlands
| | - András Zsidó
- Institute of Psychology, University of Pécs, Pécs, Hungary
| | - Árpád Csathó
- Department of Behavioural Sciences, Medical School, University of Pécs, Pécs, Hungary
| |
Collapse
|
20
|
Uemura JI, Hoshino A, Igarashi G, Matsui Y, Chishima M, Hoshiyama M. Pre-stimulus alpha oscillation and post-stimulus cortical activity differ in localization between consciously perceived and missed near-threshold somatosensory stimuli. Eur J Neurosci 2021; 54:5518-5530. [PMID: 34251060 PMCID: PMC8456933 DOI: 10.1111/ejn.15388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/08/2021] [Accepted: 07/08/2021] [Indexed: 12/04/2022]
Abstract
Conscious perception of a near‐threshold (NT) stimulus is characterized by the pre‐ and post‐stimulus brain state. However, the power of pre‐stimulus neural oscillations and strength of post‐stimulus cortical activity that lead to conscious perception have rarely been examined in individual cortical areas. This is because most previous electro‐ and magnetoencephalography (EEG and MEG, respectively) studies involved scalp‐ and sensor‐level analyses. Therefore, we recorded MEG during a continuous NT somatosensory stimulus detection task and applied the reconstructed source data in order to identify cortical areas where the post‐stimulus cortical activity and pre‐stimulus alpha oscillation predict the conscious perception of NT somatosensory stimuli. We found that the somatosensory hierarchical processing areas, prefrontal areas and cortical areas belonging to the default mode network showed stronger cortical activity for consciously perceived trials in the post‐stimulus period, but the cortical activity in primary somatosensory area (SI) is independent of conscious perception during the early stage of NT stimulus processing. In addition, we revealed that the pre‐stimulus alpha oscillation only in SI is predictive of conscious perception. These findings suggest that the bottom‐up stream of somatosensory information flow following SI and pre‐stimulus alpha activity fluctuation in SI as a top‐down modulation are crucial constituents of conscious perception.
Collapse
Affiliation(s)
- Jun-Ichi Uemura
- Department of Integrated Health Sciences, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Aiko Hoshino
- Department of Integrated Health Sciences, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Go Igarashi
- Department of Integrated Health Sciences, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Yusuke Matsui
- Department of Integrated Health Sciences, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Makoto Chishima
- Department of Integrated Health Sciences, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Minoru Hoshiyama
- Department of Integrated Health Sciences, Graduate School of Medicine, Nagoya University, Nagoya, Japan.,Brain and Mind Research Center, Nagoya University, Nagoya, Japan
| |
Collapse
|
21
|
Loo MR, Cheng SK. Dream Lucidity and the Attentional Network Task. Front Psychol 2021; 12:586808. [PMID: 33584468 PMCID: PMC7876060 DOI: 10.3389/fpsyg.2021.586808] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 01/08/2021] [Indexed: 11/13/2022] Open
Abstract
This study investigated the relationship between dream lucidity, i.e., a dreamer's insight to the ongoing dream, and attention by considering lucidity as a trait. We examined the ways in which lucidity correlates with the orienting, alerting, and conflict components of the attentional network. A total of 77 participants rated the lucidity of their dreams over 7 consecutive days with the LuCiD scale and then completed the attentional network task (ANT). A negative correlation between trait lucidity and the conflict score of the ANT was found for 49 participants whose responses were faster when an alerting signal was presented. This result suggested that, with a prerequisite that the presence of cues facilitates subsequent information processing, the greater a person's trait lucidity, the more efficiently he or she is capable of resolving conflicts.
Collapse
Affiliation(s)
- Moo-Rung Loo
- Institute of Cognitive Neuroscience, National Central University, Taoyuan, Taiwan
| | - Shih-Kuen Cheng
- Institute of Cognitive Neuroscience, National Central University, Taoyuan, Taiwan
| |
Collapse
|
22
|
Maier A, Tsuchiya N. Growing evidence for separate neural mechanisms for attention and consciousness. Atten Percept Psychophys 2021; 83:558-576. [PMID: 33034851 PMCID: PMC7886945 DOI: 10.3758/s13414-020-02146-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2020] [Indexed: 11/08/2022]
Abstract
Our conscious experience of the world seems to go in lockstep with our attentional focus: We tend to see, hear, taste, and feel what we attend to, and vice versa. This tight coupling between attention and consciousness has given rise to the idea that these two phenomena are indivisible. In the late 1950s, the honoree of this special issue, Charles Eriksen, was among a small group of early pioneers that sought to investigate whether a transient increase in overall level of attention (alertness) in response to a noxious stimulus can be decoupled from conscious perception using experimental techniques. Recent years saw a similar debate regarding whether attention and consciousness are two dissociable processes. Initial evidence that attention and consciousness are two separate processes primarily rested on behavioral data. However, the past couple of years witnessed an explosion of studies aimed at testing this conjecture using neuroscientific techniques. Here we provide an overview of these and related empirical studies on the distinction between the neuronal correlates of attention and consciousness, and detail how advancements in theory and technology can bring about a more detailed understanding of the two. We argue that the most promising approach will combine ever-evolving neurophysiological and interventionist tools with quantitative, empirically testable theories of consciousness that are grounded in a mathematically formalized understanding of phenomenology.
Collapse
Affiliation(s)
- Alexander Maier
- Department of Psychology, Vanderbilt University, Nashville, TN, USA.
| | - Naotsugu Tsuchiya
- Turner Institute for Brain and Mental Health & School of Psychological Sciences, Faculty of Medicine, Nursing, and Health Sciences, Monash University, Melbourne, VIC, Australia
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT), Suita, Osaka, 565-0871, Japan
- Advanced Telecommunications Research Computational Neuroscience Laboratories, 2-2-2 Hikaridai, Seika-cho, Soraku-gun, Kyoto, 619-0288, Japan
| |
Collapse
|
23
|
Pedersini CA, Lingnau A, Sanchez-Lopez J, Cardobi N, Savazzi S, Marzi CA. Visuo-spatial attention to the blind hemifield of hemianopic patients: Can it survive the impairment of visual awareness? Neuropsychologia 2020; 149:107673. [PMID: 33186572 DOI: 10.1016/j.neuropsychologia.2020.107673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 10/13/2020] [Accepted: 11/04/2020] [Indexed: 12/21/2022]
Abstract
The general aim of this study was to assess the effect produced by visuo-spatial attention on both behavioural performance and brain activation in hemianopic patients following visual stimulus presentation to the blind hemifield. To do that, we tested five hemianopic patients and six age-matched healthy controls in an MRI scanner during the execution of a Posner-like paradigm using a predictive central cue. Participants were instructed to covertly orient attention toward the blind or sighted hemifield in different blocks while discriminating the orientation of a visual grating. In patients, we found significantly faster reaction times (RT) in valid and neutral than invalid trials not only in the sighted but also in the blind hemifield, despite the impairment of consciousness and performance at chance. As to the fMRI signal, in valid trials we observed the activation of ipsilesional visual areas (mainly lingual gyrus - area 19) during the orientation of attention toward the blind hemifield. Importantly, this activation was similar in patients and controls. In order to assess the related functional network, we performed a psychophysiological interactions (PPI) analysis that revealed an increased functional connectivity (FC) in patients with respect to controls between the ipsilesional lingual gyrus and ipsilateral fronto-parietal as well as contralesional parietal regions. Moreover, the shift of attention from the blind to the sighted hemifield revealed stronger FC between the contralesional visual areas V3/V4 and ipsilateral parietal regions in patients than controls. These results indicate a higher cognitive effort in patients when paying attention to the blind hemifiled or when shifting attention from the blind to the sighted hemfield, possibly as an attempt to compensate for the visual loss. Taken together, these results show that hemianopic patients can covertly orient attention toward the blind hemifield with a top-down mechanism by activating a functional network mainly including fronto-parietal regions belonging to the dorsal attentional network.
Collapse
Affiliation(s)
- Caterina A Pedersini
- Physiology and Psychology Section, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy.
| | - Angelika Lingnau
- Faculty of Psychology, Education and Sport Science, Institute of Psychology, University of Regensburg, Germany; Centre For Mind/Brain Sciences (CIMeC), University of Trento, Italy
| | - Javier Sanchez-Lopez
- Physiology and Psychology Section, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Nicolo Cardobi
- Physiology and Psychology Section, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Silvia Savazzi
- Physiology and Psychology Section, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy; Perception and Awareness (PandA) Laboratory, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy; National Institute of Neuroscience, Verona, Italy
| | - Carlo A Marzi
- Physiology and Psychology Section, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy; National Institute of Neuroscience, Verona, Italy
| |
Collapse
|
24
|
Martín-Signes M, Cano-Melle C, Chica AB. Fronto-parietal networks underlie the interaction between executive control and conscious perception: Evidence from TMS and DWI. Cortex 2020; 134:1-15. [PMID: 33248337 DOI: 10.1016/j.cortex.2020.09.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 06/19/2020] [Accepted: 09/29/2020] [Indexed: 01/21/2023]
Abstract
The executive control network is involved in novel situations or those in which prepotent responses need to be overridden. Previous studies have demonstrated that when control is exerted, conscious perception is impaired, and this effect is related to the functional connectivity of fronto-parietal regions. In the present study, we explored the causal involvement of one of the nodes of this fronto-parietal network (the right Supplementary Motor Area, SMA) in the interaction between executive control and conscious perception. Participants performed a dual task in which they responded to a Stroop task while detecting the presence/absence of a near-threshold Gabor stimulus. Concurrently, transcranial magnetic stimulation (TMS) was applied over the right SMA or a control site (vertex; Experiment 1). As a further control, the right Frontal Eye Field (FEF) was stimulated in Experiment 2. Diffusion-weighted imaging (DWI) tractography was used to isolate the three branches of the superior longitudinal fasciculus (SLF I, II and III), and the frontal aslant tract (FAT), and to explore if TMS effects were related to their micro- and macrostructural characteristics. Results demonstrated reduced perceptual sensitivity on incongruent as compared to congruent Stroop trials. A causal role of the right SMA on the modulation of perceptual sensitivity by executive control was only demonstrated when the microstructure of the right SLF III or the left FAT were taken into account. The volume of the right SLF III was also related to the modulation of response criterion by executive control when the right FEF was stimulated. These results add evidence in favor of shared neural correlates for attention and conscious perception in fronto-parietal regions and highlight the role of white matter in TMS effects.
Collapse
Affiliation(s)
- Mar Martín-Signes
- Department of Experimental Psychology, and Mind, Brain, and Behavior Research Center (CIMCYC), University of Granada, Granada, Spain.
| | - Cristina Cano-Melle
- Department of Experimental Psychology, and Mind, Brain, and Behavior Research Center (CIMCYC), University of Granada, Granada, Spain
| | - Ana B Chica
- Department of Experimental Psychology, and Mind, Brain, and Behavior Research Center (CIMCYC), University of Granada, Granada, Spain
| |
Collapse
|
25
|
Martín-Signes M, Pérez-Serrano C, Chica AB. Causal Contributions of the SMA to Alertness and Consciousness Interactions. Cereb Cortex 2020; 29:648-656. [PMID: 29300881 DOI: 10.1093/cercor/bhx346] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 12/05/2017] [Indexed: 11/14/2022] Open
Abstract
Phasic alertness facilitates conscious perception through a fronto-striatal network, including the supplementary motor area (SMA). The functioning of the ventral attentional network has been related to the alerting system, overlapping with the ventral branch of the superior longitudinal fasciculus (SLF III). In this study, we use repetitive transcranial magnetic stimulation (rTMS) and a conscious detection task with near-threshold stimuli that could be preceded by an alerting tone to explore the causal implication of the SMA in the relationship between phasic alertness and conscious perception. Complementary to SMA stimulation, a sham and an active condition (left inferior parietal lobe; IPL) were included. Deterministic tractography was used to isolate the right and left SLF III. Behaviorally, the alerting tone enhanced conscious perception and confidence ratings. rTMS over the SMA reduced the alerting effect on the percentage of perceived stimuli while rTMS over the left IPL produced no modulations, demonstrating a region-specific effect. Additionally, a correlation between the rTMS effect and the integrity of the right SLF III was found. Our results highlight the causal implication of a frontal region, the SMA, in the relationship between phasic alertness and conscious perception, which is related to the white matter microstructure of the SLF III.
Collapse
Affiliation(s)
- Mar Martín-Signes
- Department of Experimental Psychology, and Mind, Brain, and Behavior Research Center (CIMCYC), University of Granada, Granada, Spain
| | - Carlos Pérez-Serrano
- Department of Experimental Psychology, and Mind, Brain, and Behavior Research Center (CIMCYC), University of Granada, Granada, Spain
| | - Ana B Chica
- Department of Experimental Psychology, and Mind, Brain, and Behavior Research Center (CIMCYC), University of Granada, Granada, Spain
| |
Collapse
|
26
|
Neuronal correlates of full and partial visual conscious perception. Conscious Cogn 2019; 78:102863. [PMID: 31887533 DOI: 10.1016/j.concog.2019.102863] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 12/17/2019] [Accepted: 12/18/2019] [Indexed: 11/20/2022]
Abstract
Stimuli may induce only partial consciousness-an intermediate between null and full consciousness-where the presence but not identity of an object can be reported. The differences in the neuronal basis of full and partial consciousness are poorly understood. We investigated if evoked and oscillatory activity could dissociate full from partial conscious perception. We recorded human cortical activity with magnetoencephalography (MEG) during a visual perception task in which stimulus could be either partially or fully perceived. Partial consciousness was associated with an early increase in evoked activity and theta/low-alpha-band oscillations while full consciousness was also associated with late evoked activity and beta-band oscillations. Full from partial consciousness was dissociated by stronger evoked activity and late increase in theta oscillations that were localized to higher-order visual regions and posterior parietal and prefrontal cortices. Our results reveal both evoked activity and theta oscillations dissociate partial and full consciousness.
Collapse
|
27
|
Martín-Signes M, Paz-Alonso PM, Chica AB. Connectivity of Frontoparietal Regions Reveals Executive Attention and Consciousness Interactions. Cereb Cortex 2019; 29:4539-4550. [PMID: 30590403 DOI: 10.1093/cercor/bhy332] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 11/22/2018] [Accepted: 11/29/2018] [Indexed: 11/13/2022] Open
Abstract
The executive control network is involved in the voluntary control of novel and complex situations. Solving conflict situations or detecting errors have demonstrated to impair conscious perception of near-threshold stimuli. The aim of this study was to explore the neural mechanisms underlying executive control and its interaction with conscious perception using functional magnetic resonance imaging and diffusion-weighted imaging. To this end, we used a dual-task paradigm involving Stroop and conscious detection tasks with near-threshold stimuli. A set of prefrontal and frontoparietal regions were more strongly engaged for incongruent than congruent trials while a distributed set of frontoparietal regions showed stronger activation for consciously than nonconsciously perceived trials. Functional connectivity analysis revealed an interaction between executive control and conscious perception in frontal and parietal nodes. The microstructural properties of the middle branch of the superior longitudinal fasciculus were associated with neural measures of the interaction between executive control and consciousness. These results demonstrate that conscious perception and executive control share neural resources in frontoparietal networks, as proposed by some influential models.
Collapse
Affiliation(s)
- Mar Martín-Signes
- Department of Experimental Psychology, and Mind, Brain, and Behavior Research Center (CIMCYC), University of Granada, Granada, Spain
| | | | - Ana B Chica
- Department of Experimental Psychology, and Mind, Brain, and Behavior Research Center (CIMCYC), University of Granada, Granada, Spain
| |
Collapse
|
28
|
de Dreu MJ, Schouwenaars IT, Rutten GJM, Ramsey NF, Jansma JM. Brain Activity Associated With Expected Task Difficulty. Front Hum Neurosci 2019; 13:286. [PMID: 31555110 PMCID: PMC6724610 DOI: 10.3389/fnhum.2019.00286] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 08/05/2019] [Indexed: 11/13/2022] Open
Abstract
Previous research shows that people can use a cue to mentally prepare for a cognitive challenge. The response to a cue has been defined as phasic alertness which is reflected in faster responses and increased activity in frontal, parietal, thalamic, and visual brain regions. We examine if and how phasic alertness can be tuned to the expected difficulty of an upcoming challenge. If people in general are able to tune their level of alertness, then an inability to tune may be linked to disease. Twenty-two healthy volunteers performed a cued visual perception task with two levels of task difficulty. Performance and brain activity were compared between these two levels. Performance was lower for difficult stimuli than for easy stimuli. For both cue types, participants showed activation in a network associated with central executive function and deactivation in regions of the default mode network (DMN) and visual cortex. Deactivation was significantly stronger for cues signaling difficult stimuli than for cues signaling easy stimuli. This effect was most prominent in medial prefrontal gyrus, visual, and temporal cortices. Activation did not differ between the cues. Our study shows that phasic alertness is represented by activated as well as deactivated brain regions. However only deactivated brain regions tuned their level of activity to the expected task difficulty. These results suggest that people, in general, are able to tune their level of alertness to an upcoming task. Cognition may be facilitated by a brain-state coupled to expectations about an upcoming cognitive challenge. Unique identifier = 8420030041.
Collapse
Affiliation(s)
- Miek J de Dreu
- Department of Neurosurgery, Elisabeth-TweeSteden Hospital, Tilburg, Netherlands.,Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, Netherlands
| | - Irena T Schouwenaars
- Department of Neurosurgery, Elisabeth-TweeSteden Hospital, Tilburg, Netherlands.,Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, Netherlands
| | - Geert-Jan M Rutten
- Department of Neurosurgery, Elisabeth-TweeSteden Hospital, Tilburg, Netherlands
| | - Nick F Ramsey
- Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, Netherlands
| | - Johan M Jansma
- Department of Neurosurgery, Elisabeth-TweeSteden Hospital, Tilburg, Netherlands.,Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
29
|
Correa LI, Cardenas K, Casanova‐Mollá J, Valls‐Solé J. Thermoalgesic stimuli induce prepulse inhibition of the blink reflex and affect conscious perception in healthy humans. Psychophysiology 2018; 56:e13310. [DOI: 10.1111/psyp.13310] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 11/02/2018] [Accepted: 11/05/2018] [Indexed: 01/10/2023]
Affiliation(s)
- Lilia I. Correa
- EMG Unit, Neurology Department, Hospital Clinic, Facultat de Medicina Universitat de Barcelona Barcelona Spain
| | - Karem Cardenas
- EMG Unit, Neurology Department, Hospital Clinic, Facultat de Medicina Universitat de Barcelona Barcelona Spain
| | - Jordi Casanova‐Mollá
- EMG Unit, Neurology Department, Hospital Clinic, Facultat de Medicina Universitat de Barcelona Barcelona Spain
| | - Josep Valls‐Solé
- EMG Unit, Neurology Department, Hospital Clinic, Facultat de Medicina Universitat de Barcelona Barcelona Spain
| |
Collapse
|
30
|
Cobos MI, Guerra PM, Vila J, Chica AB. Heart-rate modulations reveal attention and consciousness interactions. Psychophysiology 2018; 56:e13295. [DOI: 10.1111/psyp.13295] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 08/03/2018] [Accepted: 09/16/2018] [Indexed: 11/27/2022]
Affiliation(s)
- María I. Cobos
- Brain, Mind, and Behavior Research Center (CIMCYC); University of Granada; Granada Spain
- Department of Experimental Psychology; University of Granada; Granada Spain
| | - Pedro M. Guerra
- Brain, Mind, and Behavior Research Center (CIMCYC); University of Granada; Granada Spain
- Department of Clinical Psychology; University of Granada; Granada Spain
| | - Jaime Vila
- Brain, Mind, and Behavior Research Center (CIMCYC); University of Granada; Granada Spain
- Department of Clinical Psychology; University of Granada; Granada Spain
| | - Ana B. Chica
- Brain, Mind, and Behavior Research Center (CIMCYC); University of Granada; Granada Spain
- Department of Experimental Psychology; University of Granada; Granada Spain
| |
Collapse
|
31
|
Li Q, Liu P, Huang S, Huang X. The influence of phasic alerting on multisensory temporal precision. Exp Brain Res 2018; 236:3279-3296. [DOI: 10.1007/s00221-018-5372-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 08/29/2018] [Indexed: 11/29/2022]
|
32
|
Colás I, Capilla A, Chica AB. Neural modulations of interference control over conscious perception. Neuropsychologia 2018; 112:40-49. [DOI: 10.1016/j.neuropsychologia.2018.02.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 01/22/2018] [Accepted: 02/26/2018] [Indexed: 10/17/2022]
|
33
|
Bast N, Poustka L, Freitag CM. The locus coeruleus-norepinephrine system as pacemaker of attention - a developmental mechanism of derailed attentional function in autism spectrum disorder. Eur J Neurosci 2018; 47:115-125. [DOI: 10.1111/ejn.13795] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 12/04/2017] [Accepted: 12/07/2017] [Indexed: 12/31/2022]
Affiliation(s)
- Nico Bast
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy; University Hospital; Goethe University Frankfurt am Main; Deutschordenstraße 50 60528 Frankfurt am Main Germany
- Department of Child and Adolescent Psychiatry and Psychotherapy; Medical Faculty Mannheim; Central Institute of Mental Health; Heidelberg University; Heidelberg Germany
| | - Luise Poustka
- Department of Child and Adolescent Psychiatry and Psychotherapy; Medical Faculty Mannheim; Central Institute of Mental Health; Heidelberg University; Heidelberg Germany
- Department of Child and Adolescent Psychiatry/Psychotherapy; University Medical Center Göttingen; Medical University of Göttingen; Göttingen Germany
| | - Christine M. Freitag
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy; University Hospital; Goethe University Frankfurt am Main; Deutschordenstraße 50 60528 Frankfurt am Main Germany
| |
Collapse
|
34
|
White matter microstructure of attentional networks predicts attention and consciousness functional interactions. Brain Struct Funct 2017; 223:653-668. [PMID: 28905109 DOI: 10.1007/s00429-017-1511-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 09/06/2017] [Indexed: 10/18/2022]
Abstract
Attention is considered as one of the pre-requisites of conscious perception. Phasic alerting and exogenous orienting improve conscious perception of near-threshold information through segregated brain networks. Using a multimodal neuroimaging approach, combining data from functional MRI (fMRI) and diffusion-weighted imaging (DWI), we investigated the influence of white matter properties of the ventral branch of superior longitudinal fasciculus (SLF III) in functional interactions between attentional systems and conscious perception. Results revealed that (1) reduced integrity of the left hemisphere SLF III was predictive of the neural interactions observed between exogenous orienting and conscious perception, and (2) increased integrity of the left hemisphere SLF III was predictive of the neural interactions observed between phasic alerting and conscious perception. Our results combining fMRI and DWI data demonstrate that structural properties of the white matter organization determine attentional modulations over conscious perception.
Collapse
|
35
|
Juxtaposing the real-time unfolding of subjective experience and ERP neuromarker dynamics. Conscious Cogn 2017; 54:3-19. [DOI: 10.1016/j.concog.2017.05.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 05/10/2017] [Accepted: 05/11/2017] [Indexed: 01/08/2023]
|
36
|
Colás I, Triviño M, Chica AB. Interference Control Modulations Over Conscious Perception. Front Psychol 2017; 8:712. [PMID: 28539899 PMCID: PMC5424266 DOI: 10.3389/fpsyg.2017.00712] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 04/21/2017] [Indexed: 12/02/2022] Open
Abstract
The relation between attention and consciousness has been a controversial topic over the last decade. Although there seems to be an agreement on their distinction at the functional level, no consensus has been reached about attentional processes being or not necessary for conscious perception. Previous studies have explored the relation of alerting and orienting systems of attention and conscious perception, but the impact of the anterior executive attention system on conscious access remains unexplored. In the present study, we investigated the behavioral interaction between executive attention and conscious perception, testing control mechanisms both at stimulus-level representation and after error commission. We presented a classical Stroop task, manipulating the proportion of congruent and incongruent trials, and analyzed the effect of reactive and proactive control on the conscious perception of near-threshold stimuli. Reactive control elicited under high proportion congruent conditions influenced participants’ decision criterion, whereas proactive control elicited under low proportion congruent conditions was ineffective in modulating conscious perception. In addition, error commission affected both perceptual sensitivity to detect near-threshold information and response criterion. These results suggest that reactivation of task goals through reactive control strategies in conflict situations impacts decision stages of conscious processing, whereas interference control elicited by error commission impacts both perceptual sensitivity and decision stages of conscious processing. We discuss the implications of our results for the gateway hypothesis about attention and consciousness, as they showed that interference control (both at stimulus-level representation and after error commission) can modulate the conscious access of near-threshold stimuli.
Collapse
Affiliation(s)
- Itsaso Colás
- Laboratorio de Neurociencia Cognitiva, Departamento de Psicología Experimental, Centro de Investigación Mente Cerebro y Comportamiento, Universidad de GranadaGranada, Spain
| | - Mónica Triviño
- Laboratorio de Neurociencia Cognitiva, Departamento de Psicología Experimental, Centro de Investigación Mente Cerebro y Comportamiento, Universidad de GranadaGranada, Spain.,Servicio de Neuropsicología, Hospital Universitario San RafaelGranada, Spain
| | - Ana B Chica
- Laboratorio de Neurociencia Cognitiva, Departamento de Psicología Experimental, Centro de Investigación Mente Cerebro y Comportamiento, Universidad de GranadaGranada, Spain
| |
Collapse
|
37
|
Target bottom-up strength determines the extent of attentional modulations on conscious perception. Exp Brain Res 2017; 235:2109-2124. [DOI: 10.1007/s00221-017-4954-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 04/02/2017] [Indexed: 10/19/2022]
|
38
|
Contributions of the Ventral Striatum to Conscious Perception: An Intracranial EEG Study of the Attentional Blink. J Neurosci 2016; 37:1081-1089. [PMID: 27986925 DOI: 10.1523/jneurosci.2282-16.2016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 11/04/2016] [Accepted: 11/11/2016] [Indexed: 11/21/2022] Open
Abstract
The brain is limited in its capacity to consciously process information, necessitating gating of information. While conscious perception is robustly associated with sustained, recurrent interactions between widespread cortical regions, subcortical regions, including the striatum, influence cortical activity. Here, we examined whether the ventral striatum, given its ability to modulate cortical information flow, contributes to conscious perception. Using intracranial EEG, we recorded ventral striatum activity while 7 patients performed an attentional blink task in which they had to detect two targets (T1 and T2) in a stream of distractors. Typically, when T2 follows T1 within 100-500 ms, it is often not perceived (i.e., the attentional blink). We found that conscious T2 perception was influenced and signaled by ventral striatal activity. Specifically, the failure to perceive T2 was foreshadowed by a T1-induced increase in α and low β oscillatory activity as early as 80 ms after T1, indicating that the attentional blink to T2 may be due to very early T1-driven attentional capture. Moreover, only consciously perceived targets were associated with an increase in θ activity between 200 and 400 ms. These unique findings shed new light on the mechanisms that give rise to the attentional blink by revealing that conscious target perception may be determined by T1 processing at a much earlier processing stage than traditionally believed. More generally, they indicate that ventral striatum activity may contribute to conscious perception, presumably by gating cortical information flow. SIGNIFICANCE STATEMENT What determines whether we become aware of a piece of information or not? Conscious access has been robustly associated with activity within a distributed network of cortical regions. Using intracranial electrophysiological recordings during an attentional blink task, we tested the idea that the ventral striatum, because of its ability to modulate cortical information flow, may contribute to conscious perception. We find that conscious perception is influenced and signaled by ventral striatal activity. Short-latency (80-140 ms) striatal responses to a first target determined conscious perception of a second target. Moreover, conscious perception of the second target was signaled by longer-latency (200-400 ms) striatal activity. These results suggest that the ventral striatum may be part of a subcortical network that influences conscious experience.
Collapse
|