1
|
Mayer Y, Shibli JA, Saada HA, Melo M, Gabay E, Barak S, Ginesin O. Pulsed Electromagnetic Therapy: Literature Review and Current Update. Braz Dent J 2024; 35:e246109. [PMID: 39476109 PMCID: PMC11506130 DOI: 10.1590/0103-6440202406109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/06/2024] [Indexed: 11/03/2024] Open
Abstract
This manuscript provides a comprehensive review of Pulsed Electromagnetic Fields (PEMFs), highlighting their therapeutic potential and historical evolution. PEMFs, recognized for their non-invasive and safe therapeutic benefits, interact with biological systems to influence processes such as DNA synthesis, gene expression, and cell migration. Clinically, PEMFs are applied in diverse treatments, including pain relief, inflammation management, and enhancing bone and wound healing. The manuscript delves into the historical development of PEMF technology, tracing its origins to the 19th century and exploring significant advancements, such as the discovery of the piezoelectric effect in bones. It presents detailed in-vitro and in-vivo studies demonstrating PEMFs' impact on cellular activities and their modulation of key biological pathways. Additionally, the review emphasizes PEMFs' applications in general medicine and dentistry, showcasing their role in promoting tissue healing, osseointegration in dental implants, and antimicrobial effects. The introduction of the Miniaturized Electromagnetic Device (MED) in dental implantology marks a significant advancement, enhancing implant stability and reducing inflammatory responses. Overall, the manuscript underscores PEMFs' promising applications in advancing patient care and treatment methodologies across medical and dental fields.
Collapse
Affiliation(s)
- Yaniv Mayer
- Department of Periodontology, school of graduate dentistry, Rambam Health Care Campus (RHCC), Haifa, Israel
- Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Jamil Awad Shibli
- Department of Periodontology and Oral Implantology, University of Guarulhos, Guarulhos, Brazil
| | - Haia Abu Saada
- Department of Periodontology, school of graduate dentistry, Rambam Health Care Campus (RHCC), Haifa, Israel
| | - Marcelo Melo
- Department of Periodontology and Oral Implantology, University of Guarulhos, Guarulhos, Brazil
| | - Eran Gabay
- Department of Periodontology, school of graduate dentistry, Rambam Health Care Campus (RHCC), Haifa, Israel
- Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Shlomo Barak
- Department of Periodontology and Oral Implantology, University of Guarulhos, Guarulhos, Brazil
| | - Ofir Ginesin
- Department of Periodontology, school of graduate dentistry, Rambam Health Care Campus (RHCC), Haifa, Israel
- Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
2
|
Maulana H, Yueniwati Y, Permatasari N, Suyono H. Role of Pulsed Electromagnetic Field on Alveolar Bone Remodeling during Orthodontic Retention Phase in Rat Models. Dent J (Basel) 2024; 12:287. [PMID: 39329853 PMCID: PMC11431648 DOI: 10.3390/dj12090287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/29/2024] [Accepted: 09/05/2024] [Indexed: 09/28/2024] Open
Abstract
Alveolar bone remodeling during the retention phase is essential for successful orthodontic treatment. Pulsed electromagnetic field (PEMF) therapy is an adjunctive therapy for bone-related diseases that induces osteogenesis and prevents bone loss. This study aimed to examine the role of PEMF exposure during the retention phase of orthodontic treatment in alveolar bone remodeling. A total of 36 male Wistar rats were divided into control, PEMF 7, and PEMF 14 groups; a 50 g force nickel-titanium closed-coil spring was inserted to create mesial movement in the first molar for 21 d. Furthermore, the spring was removed, and the interdental space was filled with glass ionomer cement. Concurrently, rats were exposed to a PEMF at 15 Hz with a maximum intensity of 2.0 mT 2 h daily, for 7 and 14 days. Afterwards, the cements were removed and the rats were euthanized on days 1, 3, 7, and 14 to evaluate the expression of Wnt5a mRNA and the levels of RANKL, OPG, ALP, and Runx2 on the tension side. The data were analyzed with ANOVA and post hoc tests, with p < 0.05 declared statistically significant. PEMF exposure significantly upregulated Wnt5a mRNA expression, OPG and ALP levels, and Runx2 expression, and decreased RANKL levels in the PEMF 7 and 14 groups compared to the control group (p < 0.05). This study showed that PEMF exposure promotes alveolar bone remodeling during the orthodontic retention phase on the tension side by increasing alveolar bone formation and inhibiting resorption.
Collapse
Affiliation(s)
- Hafiedz Maulana
- Doctoral Program in Medical Science, Faculty of Medicine, Universitas Brawijaya, Malang 65145, Indonesia
- Department of Dentistry-Biomedical Sciences, Oral and Maxillofacial Pathology, Faculty of Dentistry, Universitas Jember, Jember 68121, Indonesia
| | - Yuyun Yueniwati
- Department of Radiology, Saiful Anwar General Hospital, Faculty of Medicine, Universitas Brawijaya, Malang 65145, Indonesia;
| | - Nur Permatasari
- Department of Pharmacology, Faculty of Medicine, Universitas Brawijaya, Malang 65145, Indonesia;
| | - Hadi Suyono
- Department of Electrical Engineering, Faculty of Engineering, Universitas Brawijaya, Malang 65145, Indonesia;
| |
Collapse
|
3
|
Friscia M, Abbate V, De Fazio GR, Sani L, Spinelli R, Troise S, Bonavolontà P, Committeri U, Califano L, Orabona GD. Pulsed electromagnetic fields (PEMF) as a valid tool in orthognathic surgery to reduce post-operative pain and swelling: a prospective study. Oral Maxillofac Surg 2024; 28:1287-1294. [PMID: 38698248 PMCID: PMC11330404 DOI: 10.1007/s10006-024-01256-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/28/2024] [Indexed: 05/05/2024]
Abstract
PURPOSE PEMF (pulsed electromagnetic fields) founds application in several medical fields to accelerate bone wounds healing and to reduce inflammation. The aim of our study was to evaluate the effectiveness of PEMF in reducing postoperative swelling and pain in patients undergoing orthognathic surgery. METHODS A prospective observational monocentric study was conducted on a sample of 30 patients undergone to orthognathic surgery in Maxillofacial Surgery Unit of University of Naples Federico II. The patients who followed these inclusion criteria were enrolled in the study: age ≥ 18 years, Class III malocclusion, Surgical procedure of Le Fort I osteotomy + Bilateral Sagittal Split Osteotomy (BSSO), Written informed consent. Patients were divided into two groups: Group SD) postoperative standard treatment with medical therapy and cryotherapy, Group SD + PEMF) postoperative standard therapy + PEMF. Each patient underwent a 3D facial scan, at one (1d) and four (4d) days after surgery to compare the swelling reduction. The pain score was assessed through VAS score and analgesics administration amount. RESULTS In SD + PEMF group, the facial volume reduction between 1d and 4d scan was on average 56.2 ml (6.23%), while in SD group, it was 23.6 ml (2.63%). The difference between the two groups was 3.6% (p = 0.0168). VAS pain values were significantly higher in SD group compared to SD + PEMF group in the second day after surgery (P = 0.021) and in the total 4 days (P = 0.008). CONCLUSIONS Our data suggest that PEMF is valid tool to promote faster postoperative swelling and pain reduction in patients undergoing orthognathic surgery.
Collapse
Affiliation(s)
- Marco Friscia
- Maxillofacial Surgery Unit, Department of Neurosciences, Reproductive and Odontostomatological Sciences, University Federico II, Via Pansini 5, Naples, 80131, Italy
| | - Vincenzo Abbate
- Maxillofacial Surgery Unit, Department of Neurosciences, Reproductive and Odontostomatological Sciences, University Federico II, Via Pansini 5, Naples, 80131, Italy
| | - Gianluca Renato De Fazio
- Maxillofacial Surgery Unit, Department of Neurosciences, Reproductive and Odontostomatological Sciences, University Federico II, Via Pansini 5, Naples, 80131, Italy
| | - Lorenzo Sani
- Maxillofacial Surgery Unit, Department of Neurosciences, Reproductive and Odontostomatological Sciences, University Federico II, Via Pansini 5, Naples, 80131, Italy
| | - Raffaele Spinelli
- Maxillofacial Surgery Unit, Department of Neurosciences, Reproductive and Odontostomatological Sciences, University Federico II, Via Pansini 5, Naples, 80131, Italy
| | - Stefania Troise
- Maxillofacial Surgery Unit, Department of Neurosciences, Reproductive and Odontostomatological Sciences, University Federico II, Via Pansini 5, Naples, 80131, Italy.
| | - Paola Bonavolontà
- Maxillofacial Surgery Unit, Department of Neurosciences, Reproductive and Odontostomatological Sciences, University Federico II, Via Pansini 5, Naples, 80131, Italy
| | - Umberto Committeri
- Maxillofacial Surgery Unit, Department of Neurosciences, Reproductive and Odontostomatological Sciences, University Federico II, Via Pansini 5, Naples, 80131, Italy
| | - Luigi Califano
- Maxillofacial Surgery Unit, Department of Neurosciences, Reproductive and Odontostomatological Sciences, University Federico II, Via Pansini 5, Naples, 80131, Italy
| | - Giovanni Dell'Aversana Orabona
- Maxillofacial Surgery Unit, Department of Neurosciences, Reproductive and Odontostomatological Sciences, University Federico II, Via Pansini 5, Naples, 80131, Italy
| |
Collapse
|
4
|
Lama SBC, Pérez-González LA, Kosoglu MA, Dennis R, Ortega-Quijano D. Physical Treatments and Therapies for Androgenetic Alopecia. J Clin Med 2024; 13:4534. [PMID: 39124800 PMCID: PMC11313483 DOI: 10.3390/jcm13154534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/25/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
Androgenetic alopecia, the most common cause of hair loss affecting both men and women, is typically treated using pharmaceutical options, such as minoxidil and finasteride. While these medications work for many individuals, they are not suitable options for all. To date, the only non-pharmaceutical option that the United States Food and Drug Administration has cleared as a treatment for androgenetic alopecia is low-level laser therapy (LLLT). Numerous clinical trials utilizing LLLT devices of various types are available. However, a myriad of other physical treatments for this form of hair loss have been reported in the literature. This review evaluated the effectiveness of microneedling, pulsed electromagnetic field (PEMF) therapy, low-level laser therapy (LLLT), fractional laser therapy, and nonablative laser therapy for the treatment of androgenetic alopecia (AGA). It also explores the potential of multimodal treatments combining these physical therapies. The majority of evidence in the literature supports LLLT as a physical therapy for androgenetic alopecia. However, other physical treatments, such as nonablative laser treatments, and multimodal approaches, such as PEMF-LLLT, seem to have the potential to be equally or more promising and merit further exploration.
Collapse
Affiliation(s)
| | | | | | - Robert Dennis
- Biomedical Engineering Departments, UNC Chapel Hill and NC State University, Raleigh, NC 27695, USA;
| | - Daniel Ortega-Quijano
- Dermatology Department, University Hospital Ramón y Cajal, 28034 Madrid, Spain; (L.A.P.-G.); (D.O.-Q.)
- Hair Disorders Unit, Grupo Pedro Jaén, 28006 Madrid, Spain
| |
Collapse
|
5
|
Wang A, Ma X, Bian J, Jiao Z, Zhu Q, Wang P, Zhao Y. Signalling pathways underlying pulsed electromagnetic fields in bone repair. Front Bioeng Biotechnol 2024; 12:1333566. [PMID: 38328443 PMCID: PMC10847561 DOI: 10.3389/fbioe.2024.1333566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 01/15/2024] [Indexed: 02/09/2024] Open
Abstract
Pulsed electromagnetic field (PEMF) stimulation is a prospective non-invasive and safe physical therapy strategy for accelerating bone repair. PEMFs can activate signalling pathways, modulate ion channels, and regulate the expression of bone-related genes to enhance osteoblast activity and promote the regeneration of neural and vascular tissues, thereby accelerating bone formation during bone repair. Although their mechanisms of action remain unclear, recent studies provide ample evidence of the effects of PEMF on bone repair. In this review, we present the progress of research exploring the effects of PEMF on bone repair and systematically elucidate the mechanisms involved in PEMF-induced bone repair. Additionally, the potential clinical significance of PEMF therapy in fracture healing is underscored. Thus, this review seeks to provide a sufficient theoretical basis for the application of PEMFs in bone repair.
Collapse
Affiliation(s)
- Aoao Wang
- Medical School of Chinese PLA, Beijing, China
| | - Xinbo Ma
- Department of Chemistry, Capital Normal University, Beijing, China
| | - Jiaqi Bian
- Senior Department of Orthopaedics, The Fourth Medical Center of PLA General Hospital, Beijing, China
| | | | - Qiuyi Zhu
- Medical School of Chinese PLA, Beijing, China
| | - Peng Wang
- Department of Neurosurgery, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yantao Zhao
- Senior Department of Orthopaedics, The Fourth Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
6
|
Ding Y, Yang Y, Xu F, Tan Z, Liu X, Shao X, Kang F, Yan Z, Luo E, Wang J, Luo Z, Cai J, Jing D. Early protection against bone stress injuries by mobilization of endogenous targeted bone remodeling. iScience 2023; 26:107605. [PMID: 37664634 PMCID: PMC10470328 DOI: 10.1016/j.isci.2023.107605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/29/2023] [Accepted: 08/08/2023] [Indexed: 09/05/2023] Open
Abstract
Bone stress injuries are common overuse injuries, especially in soldiers, athletes, and performers. In contrast to various post-injury treatments, early protection against bone stress injuries can provide greater benefit. This study explored the early protection strategies against bone stress injuries by mobilization of endogenous targeted bone remodeling. The effects of various pharmaceutical/biophysical approaches, individual or combinational, were investigated by giving intervention before fatigue loading. We optimized the dosage and administration parameters and found that early intervention with pulsed electromagnetic field and parathyroid hormone (i.e., PEMF+PTH) resulted in the most pronounced protective effects among all the approaches against the bone stress injuries. In addition, the mechanisms by which the strategy mobilizes targeted bone remodeling and enhances the self-repair capacity of bone were systematically investigated. This study proposes strategies to reduce the incidence of bone stress injuries in high-risk populations (e.g., soldiers and athletes), particularly for those before sudden increased physical training.
Collapse
Affiliation(s)
- Yuanjun Ding
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an, China
| | - Yongqing Yang
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an, China
| | - Fei Xu
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, China
| | - Zhifen Tan
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an, China
| | - Xiyu Liu
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an, China
| | - Xi Shao
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an, China
| | - Fei Kang
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zedong Yan
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an, China
| | - Erping Luo
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an, China
| | - Jing Wang
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhuojing Luo
- Institute of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jing Cai
- College of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Da Jing
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
7
|
Jiang P, Zhang Y, Hu R, Shi B, Zhang L, Huang Q, Yang Y, Tang P, Lin C. Advanced surface engineering of titanium materials for biomedical applications: From static modification to dynamic responsive regulation. Bioact Mater 2023; 27:15-57. [PMID: 37035422 PMCID: PMC10074421 DOI: 10.1016/j.bioactmat.2023.03.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 03/10/2023] [Accepted: 03/10/2023] [Indexed: 03/29/2023] Open
Abstract
Titanium (Ti) and its alloys have been widely used as orthopedic implants, because of their favorable mechanical properties, corrosion resistance and biocompatibility. Despite their significant success in various clinical applications, the probability of failure, degradation and revision is undesirably high, especially for the patients with low bone density, insufficient quantity of bone or osteoporosis, which renders the studies on surface modification of Ti still active to further improve clinical results. It is discerned that surface physicochemical properties directly influence and even control the dynamic interaction that subsequently determines the success or rejection of orthopedic implants. Therefore, it is crucial to endow bulk materials with specific surface properties of high bioactivity that can be performed by surface modification to realize the osseointegration. This article first reviews surface characteristics of Ti materials and various conventional surface modification techniques involving mechanical, physical and chemical treatments based on the formation mechanism of the modified coatings. Such conventional methods are able to improve bioactivity of Ti implants, but the surfaces with static state cannot respond to the dynamic biological cascades from the living cells and tissues. Hence, beyond traditional static design, dynamic responsive avenues are then emerging. The dynamic stimuli sources for surface functionalization can originate from environmental triggers or physiological triggers. In short, this review surveys recent developments in the surface engineering of Ti materials, with a specific emphasis on advances in static to dynamic functionality, which provides perspectives for improving bioactivity and biocompatibility of Ti implants.
Collapse
Affiliation(s)
- Pinliang Jiang
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, 510640, China
- State Key Lab of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Yanmei Zhang
- State Key Lab of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Ren Hu
- State Key Lab of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Bin Shi
- Department of Orthopaedics, General Hospital of Chinese PLA, Beijing, 100853, China
| | - Lihai Zhang
- Department of Orthopaedics, General Hospital of Chinese PLA, Beijing, 100853, China
| | - Qiaoling Huang
- Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, College of Physical Science and Technology, Xiamen University, Xiamen, 361005, China
| | - Yun Yang
- Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, College of Physical Science and Technology, Xiamen University, Xiamen, 361005, China
| | - Peifu Tang
- Department of Orthopaedics, General Hospital of Chinese PLA, Beijing, 100853, China
| | - Changjian Lin
- State Key Lab of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
8
|
Bordbar-Khiabani A, Kovrlija I, Locs J, Loca D, Gasik M. Octacalcium Phosphate-Laden Hydrogels on 3D-Printed Titanium Biomaterials Improve Corrosion Resistance in Simulated Biological Media. Int J Mol Sci 2023; 24:13135. [PMID: 37685942 PMCID: PMC10487990 DOI: 10.3390/ijms241713135] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023] Open
Abstract
The inflammatory-associated corrosion of metallic dental and orthopedic implants causes significant complications, which may result in the implant's failure. The corrosion resistance can be improved with coatings and surface treatments, but at the same time, it might affect the ability of metallic implants to undergo proper osteointegration. In this work, alginate hydrogels with and without octacalcium phosphate (OCP) were made on 3D-printed (patterned) titanium alloys (Ti Group 2 and Ti-Al-V Group 23) to enhance their anticorrosion properties in simulated normal, inflammatory, and severe inflammatory conditions in vitro. Alginate (Alg) and OCP-laden alginate (Alg/OCP) hydrogels were manufactured on the surface of 3D-printed Ti substrates and were characterized with wettability analysis, XRD, and FTIR. The electrochemical characterization of the samples was carried out with open circuit potential, potentiodynamic polarization, and electrochemical impedance spectroscopy (EIS). It was observed that the hydrophilicity of Alg/OCP coatings was higher than that of pure Alg and that OCP phase crystallinity was increased when samples were subjected to simulated biological media. The corrosion resistance of uncoated and coated samples was lower in inflammatory and severe inflammatory environments vs. normal media, but the hydrogel coatings on 3D-printed Ti layers moved the corrosion potential towards more nobler values, reducing the corrosion current density in all simulated solutions. These measurements revealed that OCP particles in the Alg hydrogel matrix noticeably increased the electrical charge transfer resistance at the substrate and coating interface more than with Alg hydrogel alone.
Collapse
Affiliation(s)
- Aydin Bordbar-Khiabani
- Department of Chemical and Metallurgical Engineering, School of Chemical Engineering, Aalto University Foundation, 02150 Espoo, Finland
| | - Ilijana Kovrlija
- Rudolfs Cimdins Riga Biomaterials Innovation and Development Centre, Faculty of Materials Science and Applied Chemistry, Institute of General Chemical Engineering, Riga Technical University, Pulka 3, LV-1007 Riga, Latvia
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, LV-1007 Riga, Latvia
| | - Janis Locs
- Rudolfs Cimdins Riga Biomaterials Innovation and Development Centre, Faculty of Materials Science and Applied Chemistry, Institute of General Chemical Engineering, Riga Technical University, Pulka 3, LV-1007 Riga, Latvia
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, LV-1007 Riga, Latvia
| | - Dagnija Loca
- Rudolfs Cimdins Riga Biomaterials Innovation and Development Centre, Faculty of Materials Science and Applied Chemistry, Institute of General Chemical Engineering, Riga Technical University, Pulka 3, LV-1007 Riga, Latvia
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, LV-1007 Riga, Latvia
| | - Michael Gasik
- Department of Chemical and Metallurgical Engineering, School of Chemical Engineering, Aalto University Foundation, 02150 Espoo, Finland
| |
Collapse
|
9
|
Hao X, Wang D, Yan Z, Ding Y, Zhang J, Liu J, Shao X, Liu X, Wang L, Luo E, Cai J, Jing D. Bone Deterioration in Response to Chronic High-Altitude Hypoxia Is Attenuated by a Pulsed Electromagnetic Field Via the Primary Cilium/HIF-1α Axis. J Bone Miner Res 2023; 38:597-614. [PMID: 36680558 DOI: 10.1002/jbmr.4772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 12/14/2022] [Accepted: 01/07/2023] [Indexed: 01/22/2023]
Abstract
Chronic high-altitude hypoxia induces irreversible abnormalities in various organisms. Emerging evidence indicates that hypobaric hypoxia markedly suppresses bone mass and bone strength. However, few effective means have been identified to prevent such bone deficits. Here, we assessed the potential of pulsed electromagnetic fields (PEMFs) to noninvasively resist bone deterioration induced by hypobaric hypoxia. We observed that exogenous PEMF treatment at 15 Hz and 20 Gauss (Gs) improved the cancellous and cortical bone mass, bone microstructure, and skeletal mechano-properties in rats subjected to chronic exposure of hypobaric hypoxia simulating an altitude of 4500 m for 6 weeks by primarily modulating osteoblasts and osteoblast-mediated bone-forming activity. Moreover, our results showed that whereas PEMF stimulated the functional activity of primary osteoblasts in hypoxic culture in vitro, it had negligible effects on osteoclasts and osteocytes exposed to hypoxia. Mechanistically, the primary cilium was found to function as the major electromagnetic sensor in osteoblasts exposed to hypoxia. The polycystins PC-1/PC-2 complex was identified as the primary calcium channel in the primary cilium of hypoxia-exposed osteoblastic cells responsible for the detection of external PEMF signals, and thereby translated these biophysical signals into intracellular biochemical events involving significant increase in the intracellular soluble adenylyl cyclase (sAC) expression and subsequent elevation of cyclic adenosine monophosphate (cAMP) concentration. The second messenger cAMP inhibited the transcription of oxygen homeostasis-related hypoxia-inducible factor 1-alpha (HIF-1α), and thus enhanced osteoblast differentiation and improved bone phenotype. Overall, the present study not only advances our understanding of bone physiology at high altitudes, but more importantly, proposes effective means to ameliorate high altitude-induced bone loss in a noninvasive and cost-effective manner. © 2023 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Xiaoxia Hao
- School of Life Science, Northwest University, Xi'an, China.,Department of Biomedical Engineering, Fourth Military Medical University, Xi'an, China
| | - Dan Wang
- School of Life Science, Northwest University, Xi'an, China.,Department of Biomedical Engineering, Fourth Military Medical University, Xi'an, China
| | - Zedong Yan
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an, China
| | - Yuanjun Ding
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an, China
| | - Juan Zhang
- School of Life Science, Northwest University, Xi'an, China
| | - Juan Liu
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an, China
| | - Xi Shao
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an, China
| | - Xiyu Liu
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an, China
| | - Lu Wang
- School of Life Science, Northwest University, Xi'an, China
| | - Erping Luo
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an, China
| | - Jing Cai
- College of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Da Jing
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
10
|
Soares Dos Santos MP, Bernardo RMC. Bioelectronic multifunctional bone implants: recent trends. Bioelectron Med 2022; 8:15. [PMID: 36127721 PMCID: PMC9490885 DOI: 10.1186/s42234-022-00097-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/23/2022] [Indexed: 12/04/2022] Open
Abstract
The concept of Instrumented Smart Implant emerged as a leading research topic that aims to revolutionize the field of orthopaedic implantology. These implants have been designed incorporating biophysical therapeutic actuation, bone-implant interface sensing, implant-clinician communication and self-powering ability. The ultimate goal is to implement revist interface, controlled by clinicians/surgeons without troubling the quotidian activities of patients. Developing such high-performance technologies is of utmost importance, as bone replacements are among the most performed surgeries worldwide and implant failure rates can still exceed 10%. In this review paper, an overview to the major breakthroughs carried out in the scope of multifunctional smart bone implants is provided. One can conclude that many challenges must be overcome to successfully develop them as revision-free implants, but their many strengths highlight a huge potential to effectively establish a new generation of high-sophisticated biodevices.
Collapse
Affiliation(s)
- Marco P Soares Dos Santos
- Department of Mechanical Engineering, Centre for Mechanical Technology & Automation (TEMA), Intelligent Systems Associate Laboratory (LASI), University of Aveiro, Aveiro, Portugal.
| | - Rodrigo M C Bernardo
- Department of Mechanical Engineering, Centre for Mechanical Technology & Automation (TEMA), Intelligent Systems Associate Laboratory (LASI), University of Aveiro, Aveiro, Portugal
| |
Collapse
|
11
|
Khan M, Faisal M, Ahmad L. Biophysical therapy using the pulsating electromagnetic field as adjunctive therapy for implant osseointegration - A review. Natl J Maxillofac Surg 2022; 13:S11-S18. [PMID: 36393938 PMCID: PMC9651243 DOI: 10.4103/njms.njms_400_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 10/05/2021] [Accepted: 10/16/2021] [Indexed: 01/25/2023] Open
Abstract
Development of procedures which accelerate osseointegration of dental implants, reduce the period of healing, and lead to an early rehabilitation of the patient are required for successful oral rehabilitation. Pulsed electromagnetic field (PEMF) is a noninvasive, therapeutic form of low field magnetic stimulation that has been used for healing bone non unions and various fractures. It acts on osteoblasts and bone, affecting their metabolism, therefore, increasing the tissue integration of the implanted devices and their clinical success. A broad range of settings that includes magnetic field intensity, frequency and duration of application, etc. used for PEMFs stimulation is a hurdle to properly define treatment protocols and extensive research is needed to overcome this issue. The present review includes studies that investigated the effects of PEMFs on the response of bone cells to different classes of biomaterials and the reports that focused on in vivo and in vitro investigations of biomaterials implanted in bone. This study is expected to serve as a guide for researchers and clinicians to bring into their clinical use these strategies to improve implant osseointegration in deficient and osteoporotic bone.
Collapse
Affiliation(s)
- Munna Khan
- Department of Biomedical Engineering, Faculty of Engineering and Technology, Faculty of Dentistry, Jamia Millia Islamia, New Delhi, India
| | - Mohammad Faisal
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Jamia Millia Islamia, New Delhi, India,Address for correspondence: Dr. Mohammad Faisal, Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Jamia Millia Islamia, MMA Jauhar Marg, Jamia Nagar, New Delhi, India. E-mail:
| | - Lubna Ahmad
- Intern, Faculty of Dentistry, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
12
|
Zhou R, Xue H, Wang J, Wang X, Wang Y, Zhang A, Zhang J, Han Q, Zhao X. Improving the Stability of a Hemipelvic Prosthesis Based on Bone Mineral Density Screw Channel and Prosthesis Optimization Design. Front Bioeng Biotechnol 2022; 10:892385. [PMID: 35706507 PMCID: PMC9189365 DOI: 10.3389/fbioe.2022.892385] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
In pelvic reconstruction surgery, the hemipelvic prosthesis can cause significant changes in stress distribution due to its high stiffness, and its solid structure is not suitable for osseointegration. The purpose of this study was to identify a novel bone mineral density screw channel and design the structure of the prosthesis so as to improve the distribution of stress, promote bone growth, and enhance the biomechanical properties of the prosthesis. The mechanical characteristics of bone mineral density screw and traditional screw were compared by finite element analysis method, and redesigned by topology optimization. The direction of the newly proposed screw channel was the posterolateral entrance of the auricular surface, ending at the contralateral sacral cape. Compared to the original group, the maximum stress of the optimized prosthesis was decreased by 24.39%, the maximum stress of the sacrum in the optimized group was decreased by 27.23%, and the average strain energy density of the sacrum in the optimized group was increased by 8.43%. On the surface of screw and connecting plate, the area with micromotion more than 28 μm is reduced by 12.17%. On the screw surface, the area with micromotion more than 28 μm is reduced by 22.9%. The newly determined screw channel and optimized prosthesis design can effectively improve the biomechanical properties of a prosthesis and the microenvironment of osseointegration. This method can provide a reference for the fixation of prostheses in clinical pelvic reconstruction.
Collapse
|
13
|
Li J, Cai J, Liu L, Wu Y, Chen Y. Pulsed electromagnetic fields inhibit mandibular bone deterioration depending on the Wnt3a/β-catenin signaling activation in type 2 diabetic db/db mice. Sci Rep 2022; 12:7217. [PMID: 35508623 PMCID: PMC9068619 DOI: 10.1038/s41598-022-10065-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 03/01/2022] [Indexed: 11/21/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) patients have compromised mandibular bone architecture/quality, which markedly increase the risks of tooth loosening, tooth loss, and failure of dental implantation. However, it remains lacks effective and safe countermeasures against T2DM-related mandibular bone deterioration. Herein, we studied the effects of pulsed electromagnetic fields (PEMF) on mandibular bone microstructure/quality and relevant regulatory mechanisms in T2DM db/db mice. PEMF exposure (20 Gs, 15 Hz) for 12 weeks preserved trabecular bone architecture, increased cortical bone thickness, improved material properties and stimulated bone anabolism in mandibles of db/db mice. PEMF also upregulated the expression of canonical Wnt3a ligand (but not Wnt1 or Wnt5a) and its downstream β-catenin. PEMF improved the viability and differentiation of primary osteoblasts isolated from the db/db mouse mandible, and stimulated the specific activation of Wnt3a/β-catenin signaling. These positive effects of PEMF on mandibular osteoblasts of db/db mice were almost totally abolished after Wnt3a silencing in vitro, which were equivalent to the effects following blockade of canonical Wnt signaling using the broad-spectrum antagonist DKK1. Injection with Wnt3a siRNA abrogated the therapeutic effects of PEMF on mandibular bone quantity/quality and bone anabolism in db/db mice. Our study indicates that PEMF might become a non-invasive and safe treatment alternative resisting mandibular bone deterioration in T2DM patients, which is helpful for protecting teeth from loosening/loss and securing the dental implant stability.
Collapse
Affiliation(s)
- Jianjun Li
- Second Clinical Division, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Beijing, 100081, China. .,Beijing Healya Technology Limited, Beijing, 100195, China.
| | - Jing Cai
- College of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Liheng Liu
- Department of Obstetrics, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Yuwei Wu
- Second Clinical Division, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Beijing, 100081, China
| | - Yan Chen
- Second Clinical Division, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Beijing, 100081, China
| |
Collapse
|
14
|
Effects of Magnetic Stimulation on Dental Implant Osseointegration: A Scoping Review. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12094496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This PRISMA-ScR driven scoping review aims to evaluate the influence of magnetic field stimulation on dental implant osseointegration. Seven databases were screened adopting ad-hoc strings. All clinical and preclinical studies analyzing the effects of magnetic fields on dental implant osseointegration were included. From 3124 initial items, on the basis of the eligibility criteria, 33 articles, regarding both Pulsed ElectroMagnetic Fields (PEMF) and Static magnetic Fields from permanent Magnets (SFM) were finally included and critically analyzed. In vitro studies showed a positive effect of PEMF, but contrasting effects of SFM on bone cell proliferation, whereas cell adhesion and osteogenic differentiation were induced by both types of stimulation. In vivo studies showed an increased bone-to-implant contact rate in different animal models and clinical studies revealed positive effects on implant stability, under magnetic stimulation. In conclusion, although positive effects of magnetic exposure on osteogenesis activity and osseointegration emerged, this scoping review highlighted the need for further preclinical and clinical studies. More standardized designs, accurate choice of stimulation parameters, adequate methods of evaluation of the outcomes, greater sample size and longer follow-ups are needed to clearly assess the effect of magnetic fields on dental implant osseointegration.
Collapse
|
15
|
Circadian Rhythm Modulates the Therapeutic Activity of Pulsed Electromagnetic Fields on Intervertebral Disc Degeneration in Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9067611. [PMID: 35368872 PMCID: PMC8975688 DOI: 10.1155/2022/9067611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 02/23/2022] [Accepted: 03/10/2022] [Indexed: 11/29/2022]
Abstract
Circadian rhythm (CR) imparts significant benefits in treating multiple diseases, such as heart diseases and arthritis. But the CR effect on intervertebral disc degeneration (IVDD) therapy remains unclear. Recent studies revealed that pulsed electromagnetic fields (PEMF) are capable of alleviating IVDD. In this study, we evaluated the CR-mediated regulation of PEMF therapeutic effect on IVDD induced by rat tail disc needle puncture. Our results demonstrated that the daytime PEMF stimulation (DPEMF) is more effective than the nighttime PEMF (NPEMF) in delaying IVDD. Moreover, the rats treated with DPEMF maintained better disc stability and histology after 8 weeks, relative to NPEMF. CR and PEMF cotherapies were also examined in cellular models, whereby serum shock was used to induce different levels of clock gene expression in the nucleus pulposus (NP), thus imitating CR in vitro. PEMF at ZT8 (higher level of clock gene expression) correlated with a higher extracellular matrix (ECM) component expression, compared to ZT20 (lower level of clock gene expression). Taken together, these data suggest a strong role of CR in regulating the beneficial effect of PEMF on IVDD. Our findings provide a potential clinical significance of CR in optimizing PEMF positive effects on IVDD.
Collapse
|
16
|
Hou C, An J, Zhao D, Ma X, Zhang W, Zhao W, Wu M, Zhang Z, Yuan F. Surface Modification Techniques to Produce Micro/Nano-scale Topographies on Ti-Based Implant Surfaces for Improved Osseointegration. Front Bioeng Biotechnol 2022; 10:835008. [PMID: 35402405 PMCID: PMC8990803 DOI: 10.3389/fbioe.2022.835008] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/08/2022] [Indexed: 12/24/2022] Open
Abstract
Titanium and titanium alloys are used as artificial bone substitutes due to the good mechanical properties and biocompatibility, and are widely applied in the treatment of bone defects in clinic. However, Pure titanium has stress shielding effect on bone, and the effect of titanium-based materials on promoting bone healing is not significant. To solve this problem, several studies have proposed that the surface of titanium-based implants can be modified to generate micro or nano structures and improve mechanical properties, which will have positive effects on bone healing. This article reviews the application and characteristics of several titanium processing methods, and explores the effects of different technologies on the surface characteristics, mechanical properties, cell behavior and osseointegration. The future research prospects in this field and the characteristics of ideal titanium-based implants are proposed.
Collapse
Affiliation(s)
- Chuang Hou
- Department of Orthopedics, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Jing An
- Nursing Teaching and Research Department, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Duoyi Zhao
- Department of Orthopedics, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Xiao Ma
- Department of Orthopedics, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Weilin Zhang
- Department of Orthopedics, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Wei Zhao
- Department of Orthopedics, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Meng Wu
- Department of Orthopedics, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Zhiyu Zhang
- Department of Orthopedics, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
- *Correspondence: Zhiyu Zhang, ; Fusheng Yuan,
| | - Fusheng Yuan
- Department of Orthopedics, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
- *Correspondence: Zhiyu Zhang, ; Fusheng Yuan,
| |
Collapse
|
17
|
de Sousa BM, Correia CR, Ferreira JAF, Mano JF, Furlani EP, Soares Dos Santos MP, Vieira SI. Capacitive interdigitated system of high osteoinductive/conductive performance for personalized acting-sensing implants. NPJ Regen Med 2021; 6:80. [PMID: 34815414 PMCID: PMC8611088 DOI: 10.1038/s41536-021-00184-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 10/19/2021] [Indexed: 11/15/2022] Open
Abstract
Replacement orthopedic surgeries are among the most common surgeries worldwide, but clinically used passive implants cannot prevent failure rates and inherent revision arthroplasties. Optimized non-instrumented implants, resorting to preclinically tested bioactive coatings, improve initial osseointegration but lack long-term personalized actuation on the bone-implant interface. Novel bioelectronic devices comprising biophysical stimulators and sensing systems are thus emerging, aiming for long-term control of peri-implant bone growth through biointerface monitoring. These acting-sensing dual systems require high frequency (HF) operations able to stimulate osteoinduction/osteoconduction, including matrix maturation and mineralization. A sensing-compatible capacitive stimulator of thin interdigitated electrodes and delivering an electrical 60 kHz HF stimulation, 30 min/day, is here shown to promote osteoconduction in pre-osteoblasts and osteoinduction in human adipose-derived mesenchymal stem cells (hASCs). HF stimulation through this capacitive interdigitated system had significant effects on osteoblasts' collagen-I synthesis, matrix, and mineral deposition. A proteomic analysis of microvesicles released from electrically-stimulated osteoblasts revealed regulation of osteodifferentiation and mineralization-related proteins (e.g. Tgfb3, Ttyh3, Itih1, Aldh1a1). Proteomics data are available via ProteomeXchange with the identifier PXD028551. Further, under HF stimulation, hASCs exhibited higher osteogenic commitment and enhanced hydroxyapatite deposition. These promising osteoinductive/conductive capacitive stimulators will integrate novel bioelectronic implants able to monitor the bone-implant interface and deliver personalized stimulation to peri-implant tissues.
Collapse
Affiliation(s)
- Bárbara M de Sousa
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, 3810-193, Aveiro, Portugal
| | - Clara R Correia
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Jorge A F Ferreira
- Department of Mechanical Engineering, Centre for Mechanical Technology & Automation (TEMA), University of Aveiro, 3810-193, Aveiro, Portugal
| | - João F Mano
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Edward P Furlani
- Department of Chemical and Biological Engineering, Department of Electrical Engineering, University at Buffalo (SUNY), Buffalo, NY, 14260, USA
| | - Marco P Soares Dos Santos
- Department of Mechanical Engineering, Centre for Mechanical Technology & Automation (TEMA), University of Aveiro, 3810-193, Aveiro, Portugal.
- Faculty of Engineering, Associated Laboratory for Energy, Transports and Aeronautics (LAETA), University of Porto, 4200-465, Porto, Portugal.
| | - Sandra I Vieira
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
18
|
Cheng L, Li Y, Xia Q, Meng M, Ye Z, Tang Z, Feng H, Chen X, Chen H, Zeng X, Luo Y, Dong Q. Enamel matrix derivative (EMD) enhances the osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). Bioengineered 2021; 12:7033-7045. [PMID: 34587869 PMCID: PMC8806549 DOI: 10.1080/21655979.2021.1971504] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
To investigate the EMD's capacity in BMSCs osteogenic differentiation. In vivo and in vitro, BMSCs were treated with EMD, scanning electron microscopy, and Alizarin Red staining were used to detect the changes in the osteogenic ability of BMSCs, and the proliferation ability of BMSCs was evaluated by CCK8. In addition, by adding xav939, a typical inhibitor of Wnt/β-catenin signaling pathway, the regulatory function of Wnt/β-catenin signaling was clarified. The results showed that EMD promote cell proliferation and 25 μg/ml EMD had the most significant effect. Cells inducing osteogenesis for 2 and 3 even 4 weeks, the cell staining is deeper in EMD treated group than that of the control (P < 0.05) by alizarin Red staining, suggesting more mineralization of BMSCs. In vivo implanting the titanium plate wrapped with 25 μg/ml EMD treated-BMSC film into nude mice for 8 weeks, more nodules were formed on the surface of the titanium plate than that the control (P < 0.05). HE showed that there is a little blue-violet immature bone-like tissue block. Besides, the expression of RUNX Family Transcription Factor 2 (Runx2), Osterix, Osteocalcin (OCN), collagen I (COLI), alkaline phosphatase (ALP) and β-catenin were inhibited in xav939 group (P < 0.05); Inversely, all were activated in EMD group (P < 0.05). In conclusion, EMD promoted the proliferation and osteogenic differentiation of BMSCs. EMD's function on BMSCs might be associated with the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Lu Cheng
- Department of Prosthodontics, Guiyang Hospital of Stomatology, Guiyang, Gsuizhou Province, 550002, People's Republic of China
| | - Ying Li
- Department of Prosthodonticsand Oral Implantology, Stomatological hospital of Guizhou Medical University, Guiyang, Guizhou Province, 550004, People's Republic of China
| | - Qian Xia
- Department of Prosthodonticsand Oral Implantology, Stomatological hospital of Guizhou Medical University, Guiyang, Guizhou Province, 550004, People's Republic of China
| | - MaoHua Meng
- Department of Prosthodontics, School of Stomatology, Guizhou Medical University, Guiyang, Guizhou Province, 550004, People's Republic of China
| | - ZhaoYang Ye
- Clinical Research Center, the Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, 550004, People's Republic of China
| | - ZhengLong Tang
- Department of Prosthodontics, School of Stomatology, Guizhou Medical University, Guiyang, Guizhou Province, 550004, People's Republic of China.,Department of Prosthodonticsand Oral Implantology, Stomatological hospital of Guizhou Medical University, Guiyang, Guizhou Province, 550004, People's Republic of China
| | - HongChao Feng
- Department of Oral and Maxillofacial Surgery, Guiyang Hospital of Stomatology, Guiyang, Guizhou Province, 550002, People's Republic of China
| | - Xin Chen
- Department of Prosthodontics, School of Stomatology, Guizhou Medical University, Guiyang, Guizhou Province, 550004, People's Republic of China
| | - HeLin Chen
- Department of Prosthodonticsand Oral Implantology, Stomatological hospital of Guizhou Medical University, Guiyang, Guizhou Province, 550004, People's Republic of China
| | - Xiao Zeng
- Department of Prosthodonticsand Oral Implantology, Stomatological hospital of Guizhou Medical University, Guiyang, Guizhou Province, 550004, People's Republic of China
| | - Yi Luo
- Department of Prosthodontics, Guiyang Hospital of Stomatology, Guiyang, Gsuizhou Province, 550002, People's Republic of China
| | - Qiang Dong
- Department of Prosthodontics, School of Stomatology, Guizhou Medical University, Guiyang, Guizhou Province, 550004, People's Republic of China.,Department of Prosthodonticsand Oral Implantology, Stomatological hospital of Guizhou Medical University, Guiyang, Guizhou Province, 550004, People's Republic of China
| |
Collapse
|
19
|
Bagne L, Oliveira MA, Pereira AT, Caetano GF, Oliveira CA, Aro AA, Chiarotto GB, Santos GMT, Mendonça FAS, Santamaria-Jr M. Electrical therapies act on the Ca 2+ /CaM signaling pathway to enhance bone regeneration with bioactive glass [S53P4] and allogeneic grafts. J Biomed Mater Res B Appl Biomater 2021; 109:2104-2116. [PMID: 34008329 DOI: 10.1002/jbm.b.34858] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 04/12/2021] [Accepted: 04/24/2021] [Indexed: 12/26/2022]
Abstract
This study aimed to investigate the application of low-intensity electrostimulation (ES) and electromagnetic stimulation (EM) associated with bioactive glass (BG) or allogeneic grafts (BB) in bone regeneration. A cell viability test on osteoblasts (UMR-106) was performed in the presence of BB and BG grafts associated with ES (10 μA/5 min) and EM (500 Hz/2 min). Critical defects (25 mm2 ) in calvaria were generated in male Wistar rats, and bone regeneration was evaluated on the 30th, 60th, and 120th days after surgery. Cell proliferation increased with the application of ES in both grafts and after EM with BG. Bone remodeling was more effective using the allogeneic graft in both therapies, with increased angiogenesis, osteoblast proliferation, and OPN expression in the BB + EM group. A higher number of osteoblasts and osteoclasts, and an increase in bone sialoprotein, Runx-2, and Opn gene expression were found in the BB + ES group. The BG graft associated with EM therapy had an increased proliferation of osteoblasts and increased expression of Runx-2 and Opn. Groups that had BG and ES therapy had increased numbers of osteoblasts, osteoclasts, and increased OPN expression. The expression of voltage-gated calcium channels increased in groups with ES, while calmodulin expression increased in therapies without grafting. ES and EM therapies favored the repair of bone defects upon grafting by improving angiogenesis, osteogenic gene expression, and tissue reorganization. Despite activating different pathways, both therapies increased the intracellular concentrations of calmodulin, leading to cell proliferation and bone regeneration.
Collapse
Affiliation(s)
- Leonardo Bagne
- Graduate Program in Biomedical Sciences, University Center of Hermínio Ometto Foundation - FHO, Araras, Brazil
| | - Maraiara A Oliveira
- Graduate Program in Biomedical Sciences, University Center of Hermínio Ometto Foundation - FHO, Araras, Brazil
| | - Amanda T Pereira
- Graduate Program in Biomedical Sciences, University Center of Hermínio Ometto Foundation - FHO, Araras, Brazil
| | - Guilherme F Caetano
- Graduate Program in Biomedical Sciences, University Center of Hermínio Ometto Foundation - FHO, Araras, Brazil
| | - Camila A Oliveira
- Graduate Program in Biomedical Sciences, University Center of Hermínio Ometto Foundation - FHO, Araras, Brazil
| | - Andréa A Aro
- Graduate Program in Biomedical Sciences, University Center of Hermínio Ometto Foundation - FHO, Araras, Brazil
| | - Gabriela B Chiarotto
- Graduate Program in Biomedical Sciences, University Center of Hermínio Ometto Foundation - FHO, Araras, Brazil
| | - Glaucia M T Santos
- Graduate Program in Biomedical Sciences, University Center of Hermínio Ometto Foundation - FHO, Araras, Brazil
| | - Fernanda A S Mendonça
- Graduate Program in Biomedical Sciences, University Center of Hermínio Ometto Foundation - FHO, Araras, Brazil
| | - Milton Santamaria-Jr
- Graduate Program in Biomedical Sciences, University Center of Hermínio Ometto Foundation - FHO, Araras, Brazil
| |
Collapse
|
20
|
Investigation into the effects of static and electric fields on bone healing process: An experimental tibial fracture model study in Wistar-Albino male rats. North Clin Istanb 2021; 8:8-14. [PMID: 33623867 PMCID: PMC7881430 DOI: 10.14744/nci.2020.04764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 08/27/2020] [Indexed: 11/28/2022] Open
Abstract
OBJECTIVE: In this experimental study, we aimed to investigate whether 0 Hz-Static and 50 Hz-Electric fields have an effect on bone healing. METHODS: In this study, 45 male Wistar-Albino rats were equally and randomly separated into three groups as follows: a 0 Hz-Static electric field (SEF), a 50-Hz low-frequency electric field (LFEF) and a control group. A manual fracture was performed in the left tibia diaphysis of all rats, and fractures were fixed using circular plaster over the knee. The LFEF group was exposed to 50 Hz electric field for 30 minutes a day, five days a week, for a total of eight weeks. The SEF group was exposed to 0 Hz electric field within the same time interval. The control group was held in identical environmental conditions, without exposure to electric field. Periodic radiographs were taken from all the animals. At the end of this study, rats were sacrificed and mechanical/histopathologic examinations were performed. RESULTS: Radiologic, mechanical and histologic scores of the LFEF group were lower than those of the SEF and control groups; however, no significant difference was found in group comparisons in terms of average histologic and radiologic scores (p>0.05). CONCLUSION: Results extracted from the current study suggest that 0-hz static and 50-hz electric field exposures affect bone healing tissue of tibial fracture models in rats, although it is not significant.
Collapse
|
21
|
Evaluation of pulsed electromagnetic field protocols in implant osseointegration: in vivo and in vitro study. Clin Oral Investig 2020; 25:2925-2937. [PMID: 33033921 DOI: 10.1007/s00784-020-03612-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 09/29/2020] [Indexed: 10/23/2022]
Abstract
OBJECTIVES The present study aims to evaluate two protocols of pulsed electromagnetic field (PEMF) on osseointegration and establish one that addresses ideal parameters for its use in dentistry, especially in the optimization of the implants osseointegration process. MATERIALS AND METHODS Sixty male rats (Wistar) were allocated into three experimental groups: control (GC), test A (GTA, 3 h exposed), and test B (GTB, 1 h exposed). All animals received titanium implants in both tibias, and PEMF application (15 Hz, ± 1 mT, 5 days/week) occurred only in the test groups. They were euthanized at 03, 07, 21, and 45 days after PEMF therapy. Removal torque, histomorphometric measurements, three-dimensional radiographic evaluation, and in vitro biological assay analyses were performed. RESULTS GTB showed better results compared with GTA in removal torque tests, in bone volume and bone mineral density, cell viability, total protein content, and mineralization nodules (p < 0.05). GTA showed better performance in trabecular bone thickness and cell proliferation compared with GTB (p < 0.05), especially at osseointegration early periods. In the histomorphometric analysis and number of trabeculae, there were no differences in the test groups. CONCLUSION PEMF as a biostimulator was effective in optimizing the events in bone tissue that lead to osseointegration, especially when applied for a shorter time and in the initial periods of bone healing. CLINICAL RELEVANCE The PEMF therapy is an effective alternative method for optimizing bone healing.
Collapse
|
22
|
Hu H, Yang W, Zeng Q, Chen W, Zhu Y, Liu W, Wang S, Wang B, Shao Z, Zhang Y. Promising application of Pulsed Electromagnetic Fields (PEMFs) in musculoskeletal disorders. Biomed Pharmacother 2020; 131:110767. [PMID: 33152929 DOI: 10.1016/j.biopha.2020.110767] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/06/2020] [Accepted: 09/17/2020] [Indexed: 12/13/2022] Open
Abstract
Increasing evidence suggests that an exogenous electromagnetic field might be involved in many biologic processes which are of great importance for therapeutic interventions. Pulsed electromagnetic fields (PEMFs) are known to be a noninvasive, safe and effective therapy agent without apparent side effects. Numerous studies have shown that PEMFs possess the potential to become a stand-alone or adjunctive treatment modality for treating musculoskeletal disorders. However, several issues remain unresolved. Prior to their widely clinical application, further researches from well-designed, high-quality studies are still required to standardize the treatment parameters and derive the optimal protocol for health-care decision making. In this review, we aim to provide current evidence on the mechanism of action, clinical applications, and controversies of PEMFs in musculoskeletal disorders.
Collapse
Affiliation(s)
- Hongzhi Hu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, 050051, China.
| | - Wenbo Yang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Qianwen Zeng
- Department of Pediatrics, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Wei Chen
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, 050051, China
| | - YanBin Zhu
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, 050051, China
| | - Weijian Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shangyu Wang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Baichuan Wang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Zengwu Shao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Yingze Zhang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, 050051, China.
| |
Collapse
|
23
|
Cai J, Shao X, Yang Q, Yang Y, Yan Z, Luo E, Feng X, Jing D. Pulsed electromagnetic fields modify the adverse effects of glucocorticoids on bone architecture, bone strength and porous implant osseointegration by rescuing bone-anabolic actions. Bone 2020; 133:115266. [PMID: 32044333 DOI: 10.1016/j.bone.2020.115266] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 02/05/2020] [Accepted: 02/06/2020] [Indexed: 01/08/2023]
Abstract
Long-term glucocorticoid therapy is known to induce increased bone fragility and impaired skeletal regeneration potential. Growing evidence suggests that pulsed electromagnetic fields (PEMF) can accelerate fracture healing and increase bone mass both experimentally and clinically. However, how glucocorticoid-treated bone and bone cells respond to PEMF stimulation remains poorly understood. Here we tested the effects of PEMF on bone quantity/quality, bone metabolism, and porous implant osseointegration in rabbits treated with dexamethasone (0.5 mg/kg/day, 6 weeks). The micro-CT, histologic and nanoindentation results showed that PEMF ameliorated the glucocorticoid-mediated deterioration of cancellous and cortical bone architecture and intrinsic material properties. Utilizing the new porous titanium implant (Ti2448) with low toxicity and low elastic modulus, we found that PEMF stimulated bone ingrowth into the pores of implants and enhanced peri-implant bone material quality during osseous defect repair in glucocorticoid-treated rabbits. Dynamic histomorphometric results revealed that PEMF reversed the adverse effects of glucocorticoids on bone formation, which was confirmed by increased circulating osteocalcin and P1NP. PEMF also significantly attenuated osteocyte apoptosis, promoted osteoblast-related osteocalcin, Runx2 and Osx expression, and inhibited osteocyte-specific DKK1 and Sost expression (negative regulators of osteoblasts) in glucocorticoid-treated skeletons, revealing improved functional activities of osteoblasts and osteocytes. Nevertheless, PEMF exerted no effect on circulating bone-resorbing cytokines (serum TRAcP5b and CTX-1) or skeletal gene expression of osteoclast-specific markers (TRAP and cathepsin K). PEMF also significantly upregulated skeletal gene expression of canonical Wnt ligands (Wnt1, Wnt3a and Wnt10b), whereas PEMF did not alter non-canonical Wnt5a expression. This study demonstrates that PEMF treatment improves bone mass, strength and porous implant osseointegration in glucocorticoid-treated rabbits by promoting potent bone-anabolic action, which is associated with canonical Wnt-mediated improvement in osteoblast and osteocyte functions. This study provides a new treatment alternative for glucocorticoid-related bone disorders in a convenient and non-invasive manner.
Collapse
Affiliation(s)
- Jing Cai
- College of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang, China; Department of Biomedical Engineering, Fourth Military Medical University, Xi'an, China
| | - Xi Shao
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an, China
| | - Qiuju Yang
- Department of Anesthesia, The First Clinical College, Xinxiang Medical University, Xinxiang, China
| | - Yongqing Yang
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an, China
| | - Zedong Yan
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an, China
| | - Erping Luo
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an, China
| | - Xue Feng
- Department of Cell Biology, School of Medicine, Northwest University, Xi'an, China.
| | - Da Jing
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
24
|
Liu L, Zeng D, Chen Y, Zhou J, Liao Y, Shi B. Microarc oxidation surface of titanium implants promote osteogenic differentiation by activating ERK1/2-miR-1827-Osterix. In Vitro Cell Dev Biol Anim 2020; 56:296-306. [PMID: 32270391 DOI: 10.1007/s11626-020-00444-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 03/16/2020] [Indexed: 11/25/2022]
Abstract
There has been a constant requirement from the clinic to develop biomedical titanium (Ti) implants with high osteogenic ability. In this study, we clarified a novel mechanism of how MAO (microarc oxidation) coating of Ti implants facilitates osteogenic differentiation of human bone marrow mesenchymal stem cells (hB-MSCs) by activating ERK1/2-miR-1827-Osterix signaling pathway in vitro. MAO surface of titanium implant was more favorable to promote osteogenic differentiation than SLA and AOS coating. Besides, titanium implants regulated hB-MSCs osteogenesis through the p38 MAPK pathway and ERK1/2 might be the most efficient target. Furthermore, MAO coating induced osteogenic differentiation though ERK1/2-miR-1827 pathway. Finally, we verified miR-1827 regulated osteogenic differentiation partially through Osterix. Our study reveals novel insights that MAO surface of titanium implant is a prior choice for biomedical trial and for its use in periprosthetic osteolysis (PIO) treatment in an evidence-based rationale.
Collapse
Affiliation(s)
- Liu Liu
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital, Laboratory of Facial Plastic and Reconstruction, Fujian Medical University, No. 20, Chazhong Road, Fuzhou, 350005, Fujian, China
- School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian, China
| | - Da Zeng
- Xiamen Medical Device Research & Testing center, Xiamen, Fujian, China
| | - Yanwen Chen
- Xiamen Medical Device Research & Testing center, Xiamen, Fujian, China
| | - Junbo Zhou
- Department of stomatology, Nanjing Integrated Traditional Chinese and Western Medicine Hospital, Nanjing University of Traditional Chinese Medicine, Nanjing, Jiangsu, China
| | - Yunyang Liao
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital, Laboratory of Facial Plastic and Reconstruction, Fujian Medical University, No. 20, Chazhong Road, Fuzhou, 350005, Fujian, China
| | - Bin Shi
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital, Laboratory of Facial Plastic and Reconstruction, Fujian Medical University, No. 20, Chazhong Road, Fuzhou, 350005, Fujian, China.
| |
Collapse
|
25
|
Zheng T, Zhang Z, Zhu R, Sun D. A microelectrode array chip for osteogenic differentiation of mesenchymal stem cells under electrical stimulation. LAB ON A CHIP 2020; 20:373-383. [PMID: 31850469 DOI: 10.1039/c9lc01081e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Electrical stimulation (ES) as an easy and effective inducing method has been widely used in induction differentiation of stem cells, e.g. osteogenic differentiation of mesenchymal stem cells (MSCs) for bone healing and bone tissue therapies. However, the micro-effect of an inhomogeneous electric field has rarely been investigated for ES in induction differentiation, and conventionally used ex situ assays may preclude accurate assessment due to variation from cell inoculation and treatments. Here, a novel electrical stimulation method with a microelectrode array chip is proposed for osteogenic differentiation of MSCs. The electric field applied onto the MSCs by the microelectrode array is designed similarly with a natural aggregation distribution of differentiated MSCs. The proposed ES method accelerates osteoblast proliferation and differentiation in the electrode array region and generates a larger amount of mineralized deposits, which are assayed via in situ alizarin red staining and morphology observation as well as immunocytochemistry. In addition, this method allows a direct in situ assessment to compare the osteogenic differentiation of MSCs with and without ES on a single chip to avoid culture environment difference. The method provides a fundamental platform for investigating induced differentiation of stem cells and allows integration with multifunctional cell assays to achieve in situ tracking for the differentiation process of stem cells.
Collapse
Affiliation(s)
- Tianyang Zheng
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, 100084, China.
| | - Zhizhong Zhang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, 100084, China.
| | - Rong Zhu
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, 100084, China.
| | - Dong Sun
- Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| |
Collapse
|
26
|
Suryani L, Too JH, Hassanbhai AM, Wen F, Lin DJ, Yu N, Teoh SH. Effects of Electromagnetic Field on Proliferation, Differentiation, and Mineralization of MC3T3 Cells. Tissue Eng Part C Methods 2020; 25:114-125. [PMID: 30661463 DOI: 10.1089/ten.tec.2018.0364] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
IMPACT STATEMENT We present the study about how the parameters of pulsed electromagnetic field (PEMF) stimulus affected calvarial osteoblast precursor cell in terms of growth, viability, and differentiation. This research provides insight and foundation to clinical application of noninvasive therapy using PEMF to improve bone regeneration.
Collapse
Affiliation(s)
- Luvita Suryani
- 1 School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore.,2 Centre for Developmental Biology, Tissue Engineering, Regenerative Medicine and Innovation, Singapore, Singapore
| | - Jian Hui Too
- 3 National Dental Centre Singapore, Singapore, Singapore
| | - Ammar Mansoor Hassanbhai
- 1 School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore.,2 Centre for Developmental Biology, Tissue Engineering, Regenerative Medicine and Innovation, Singapore, Singapore
| | - Feng Wen
- 1 School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore.,2 Centre for Developmental Biology, Tissue Engineering, Regenerative Medicine and Innovation, Singapore, Singapore
| | - Daryl Jimian Lin
- 1 School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
| | - Na Yu
- 3 National Dental Centre Singapore, Singapore, Singapore.,4 Duke-NUS Medical School Singapore, Singapore, Singapore
| | - Swee-Hin Teoh
- 1 School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore.,2 Centre for Developmental Biology, Tissue Engineering, Regenerative Medicine and Innovation, Singapore, Singapore.,5 Lee Kong Chian School of Medicine Singapore, Singapore, Singapore
| |
Collapse
|
27
|
Chen J, Tu C, Tang X, Li H, Yan J, Ma Y, Wu H, Liu C. The combinatory effect of sinusoidal electromagnetic field and VEGF promotes osteogenesis and angiogenesis of mesenchymal stem cell-laden PCL/HA implants in a rat subcritical cranial defect. Stem Cell Res Ther 2019; 10:379. [PMID: 31842985 PMCID: PMC6915868 DOI: 10.1186/s13287-019-1464-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 10/13/2019] [Accepted: 10/21/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Restoration of massive bone defects remains a huge challenge for orthopedic surgeons. Insufficient vascularization and slow bone regeneration limited the application of tissue engineering in bone defect. The effect of electromagnetic field (EMF) on bone defect has been reported for many years. However, sinusoidal EMF (SEMF) combined with tissue engineering in bone regeneration remains poorly investigated. METHODS In the present study, we investigated the effect of SEMF and vascular endothelial growth factor (VEGF) on osteogenic and vasculogenic differentiation of rat bone marrow-derived mesenchymal stem cells (rBMSCs). Furthermore, pretreated rBMSC- laden polycaprolactone-hydroxyapatite (PCL/HA) scaffold was constructed and implanted into the subcritical cranial defect of rats. The bone formation and vascularization were evaluated 4 and 12 weeks after implantation. RESULTS It was shown that SEMF and VEGF could enhance the protein and mRNA expression levels of osteoblast- and endothelial cell-related markers, respectively. The combinatory effect of SEMF and VEGF slightly promoted the angiogenic differentiation of rBMSCs. The proteins of Wnt1, low-density lipoprotein receptor-related protein 6 (LRP-6), and β-catenin increased in all inducted groups, especially in SEMF + VEGF group. The results indicated that Wnt/β-catenin pathway might participate in the osteogenic and angiogenic differentiation of rBMSCs. Histological evaluation and reconstructed 3D graphs revealed that tissue-engineered constructs significantly promoted the new bone formation and angiogenesis compared to other groups. CONCLUSION The combinatory effect of SEMF and VEGF raised an efficient approach to enhance the osteogenesis and vascularization of tissue-engineered constructs, which provided a useful guide for regeneration of bone defects.
Collapse
Affiliation(s)
- Jingyuan Chen
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, 430030, China
| | - Chang Tu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, 430030, China
| | - Xiangyu Tang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, 430030, China
| | - Hao Li
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, 430030, China
| | - Jiyuan Yan
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, 430030, China
| | - Yongzhuang Ma
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, 430030, China
| | - Hua Wu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, 430030, China.
| | - Chaoxu Liu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, 430030, China.
| |
Collapse
|
28
|
Osteoblast studied on gelatin based biomaterials in rabbit Bone Bioengineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 104:109892. [PMID: 31499962 DOI: 10.1016/j.msec.2019.109892] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 05/12/2019] [Accepted: 06/12/2019] [Indexed: 01/06/2023]
Abstract
The bone-derived-osteoblast seeded biomaterials scaffold in tissue engineering, have displayed prominence in the treatment of the osseous medical condition. In vitro osteogenesis of rabbit osteoblast cell (rOb) from bone tissue (rT) and MSC-derived rOb from bone marrow (rM) on Gelatin-Hydroxyapatite (HG) based biomaterials was investigated. In this work, lyophilized biomaterial was prepared by the addition of amorphous chitosan ('C') to 'H' dispersed in 'G' matrix, to find its role in biomaterials biocompatibility. Isolated rOb seeded biomaterials were studied using CLSM and flow cytometry for proliferation potential. The biomaterial's core and surface morphology was studied from SEM-EDX and AFM respectively. Upon co-culture with HCG, rT over rM showed rabbit bone extracellular matrix (ECM) mimicking properties both in in vitro studies and biomaterials micro architecture. The in vitro metabolic behaviour was studied by Alamar Blue (AB) assay, DNA content using Hoechst 33258, potency via the activity of Alkaline Phosphatase (ALP), Calcium's relative content by Alizarin Red S (ARS) assay. A novel combination of biomaterials-cell interaction was observed when rT was co-cultured with HCG and proved effective in osteogenesis with regard to Bone Bioengineering.
Collapse
|
29
|
Oltean-Dan D, Dogaru GB, Tomoaia-Cotisel M, Apostu D, Mester A, Benea HRC, Paiusan MG, Jianu EM, Mocanu A, Balint R, Popa CO, Berce C, Bodizs GI, Toader AM, Tomoaia G. Enhancement of bone consolidation using high-frequency pulsed electromagnetic short-waves and titanium implants coated with biomimetic composite embedded into PLA matrix: in vivo evaluation. Int J Nanomedicine 2019; 14:5799-5816. [PMID: 31440048 PMCID: PMC6664427 DOI: 10.2147/ijn.s205880] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 05/14/2019] [Indexed: 12/25/2022] Open
Abstract
Purpose Bone consolidation after severe trauma is the most challenging task in orthopedic surgery. This study aimed to develop biomimetic composite for coating Ti implants. Afterwards, these implants were tested in vivo to assess bone consolidation in the absence or the presence of high-frequency pulsed electromagnetic short-waves (HF-PESW). Materials Biomimetic coating was successfully developed using multi-substituted hydroxyapatite (ms-HAP) functionalized with collagen (ms-HAP/COL), embedded into poly-lactic acid (PLA) matrix (ms-HAP/COL@PLA), and subsequently covered with self-assembled COL layer (ms-HAP/COL@PLA/COL, named HAPc). Methods For in vivo evaluation, 32 Wistar albino rats were used in four groups: control group (CG) with Ti implant; PESW group with Ti implant+HF-PESW; HAPc group with Ti implant coated with HAPc; HAPc+PESW group with Ti implant coated with HAPc+HF-PESW. Left femoral diaphysis was fractured and fixed intramedullary. From the first post-operative day, PESW and HAPc+PESW groups underwent HF-PESW stimulation for 14 consecutive days. Biomimetic coating was characterized by XRD, HR-TEM, SEM, EDX and AFM. Results Osteogenic markers (ALP and osteocalcin) and micro-computed tomography (CT) analysis (especially bone volume/tissue volume ratio results) indicated at 2 weeks the following group order: HAPc+PESW>HAPc≈PESW (P>0.05) and HAPc+PESW>control (P<0.05), indicating the higher values in HAPc+PESW group compared to CG. The fracture-site bone strength showed, at 2 weeks, the highest average value in HAPc+PESW group. Moreover, histological analysis revealed the most abundant COL fibers assembled in dense bundles in HAPc-PESW group. At 8 weeks, micro-CT indicated higher values only in HAPc+PESW group vs CG (P<0.05), and histological results showed a complete-healed fracture in groups: HAPc+PESW, HAPc and PESW, but with more advanced bone remodeling in HAPc+PESW group. Conclusion Using Ti implants coated by HAPc jointly with HF-PESW stimulation positively influenced the bone consolidation process, especially in its early phase, thus potentially providing a superior strategy for clinical applications.
Collapse
Affiliation(s)
- Daniel Oltean-Dan
- Iuliu Hatieganu University of Medicine and Pharmacy, Department of Orthopedics and Traumatology, 400132 Cluj-Napoca, Romania
| | - Gabriela-Bombonica Dogaru
- Iuliu Hatieganu University of Medicine and Pharmacy, Department of Medical Rehabilitation, 400347 Cluj-Napoca, Romania
| | - Maria Tomoaia-Cotisel
- Babes Bolyai University, Faculty of Chemistry and Chemical Engineering, Department of Chemical Engineering, Research Center of Physical Chemistry, 400028 Cluj-Napoca, Romania.,Academy of Romanian Scientists , 050085 Bucharest, Romania
| | - Dragos Apostu
- Iuliu Hatieganu University of Medicine and Pharmacy, Department of Orthopedics and Traumatology, 400132 Cluj-Napoca, Romania
| | - Alexandru Mester
- Iuliu Hatieganu University of Medicine and Pharmacy, Department of Oral Rehabilitation, Oral Health and Management, 400012 Cluj-Napoca, Romania
| | - Horea-Rares-Ciprian Benea
- Iuliu Hatieganu University of Medicine and Pharmacy, Department of Orthopedics and Traumatology, 400132 Cluj-Napoca, Romania
| | - Mihai-Gheorghe Paiusan
- Iuliu Hatieganu University of Medicine and Pharmacy, Department of Orthopedics and Traumatology, 400132 Cluj-Napoca, Romania
| | - Elena-Mihaela Jianu
- Iuliu Hatieganu University of Medicine and Pharmacy, Department of Histology, 400349 Cluj-Napoca, Romania
| | - Aurora Mocanu
- Babes Bolyai University, Faculty of Chemistry and Chemical Engineering, Department of Chemical Engineering, Research Center of Physical Chemistry, 400028 Cluj-Napoca, Romania
| | - Reka Balint
- Babes Bolyai University, Faculty of Chemistry and Chemical Engineering, Department of Chemical Engineering, Research Center of Physical Chemistry, 400028 Cluj-Napoca, Romania
| | - Catalin-Ovidiu Popa
- Technical University of Cluj-Napoca, Department of Materials Science and Engineering, 400641 Cluj-Napoca, Romania
| | - Cristian Berce
- Iuliu Hatieganu University of Medicine and Pharmacy, Center for Experimental Medicine, 400349 Cluj-Napoca, Romania
| | | | - Alina-Mihaela Toader
- Iuliu Hatieganu University of Medicine and Pharmacy, Department of Physiology, 400006 Cluj-Napoca, Romania
| | - Gheorghe Tomoaia
- Iuliu Hatieganu University of Medicine and Pharmacy, Department of Orthopedics and Traumatology, 400132 Cluj-Napoca, Romania.,Academy of Romanian Scientists , 050085 Bucharest, Romania
| |
Collapse
|
30
|
Zhou J, Gao YH, Zhu BY, Shao JL, Ma HP, Xian CJ, Chen KM. Sinusoidal Electromagnetic Fields Increase Peak Bone Mass in Rats by Activating Wnt10b/β-Catenin in Primary Cilia of Osteoblasts. J Bone Miner Res 2019; 34:1336-1351. [PMID: 30779853 DOI: 10.1002/jbmr.3704] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 01/31/2019] [Accepted: 02/12/2019] [Indexed: 12/22/2022]
Abstract
Extremely low-frequency electromagnetic fields have been considered a potential candidate for the prevention and treatment of osteoporosis; however, their action mechanism and optimal magnetic flux density (intensity) parameter are still elusive. The present study found that 50-Hz sinusoidal electromagnetic fields (SEMFs) at 1.8 mT increased the peak bone mass of young rats by increasing bone formation. Gene array expression studies with femoral bone samples showed that SEMFs increased the expression levels of collagen-1α1 and Wnt10b, a critical ligand of the osteogenic Wnt/β-catenin pathway. Consistently, SEMFs promoted osteogenic differentiation and maturation of rat calvarial osteoblasts (ROBs) in vitro through activating the Wnt10b/β-catenin pathway. This osteogenesis-promoting effect of SEMFs via Wnt10b/β-catenin signaling was found to depend on the functional integrity of primary cilia in osteoblasts. When the primary cilia were abrogated by small interfering RNA (siRNA) targeting IFT88, the ability of SEMFs to promote the osteogenic differentiation of ROBs through activating Wnt10b/β-catenin signaling was blocked. Although the knockdown of Wnt10b expression with RNA interference had no effect on primary cilia, it significantly suppressed the promoting effect of SEMFs on osteoblastic differentiation/maturation. Wnt10b was normally localized at the bases of primary cilia, but it disappeared (or was released) from the cilia upon SEMF treatment. Interestingly, primary cilia were elongated to different degrees by different intensities of 50-Hz SEMFs, with the window effect observed at 1.8 mT, and the expression level of Wnt10b increased in accord with the lengths of primary cilia. These results indicate that 50-Hz 1.8-mT SEMFs increase the peak bone mass of growing rats by promoting osteogenic differentiation/maturation of osteoblasts, which is mediated, at least in part, by Wnt10b at the primary cilia and the subsequent activation of Wnt/β-catenin signaling. © 2019 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Jian Zhou
- Institute of Orthopaedics, Lanzhou General Hospital, CPLA, Lanzhou 730050, People's Republic of China
| | - Yu-Hai Gao
- Institute of Orthopaedics, Lanzhou General Hospital, CPLA, Lanzhou 730050, People's Republic of China
| | - Bao-Ying Zhu
- Institute of Orthopaedics, Lanzhou General Hospital, CPLA, Lanzhou 730050, People's Republic of China
| | - Jia-Le Shao
- Institute of Orthopaedics, Lanzhou General Hospital, CPLA, Lanzhou 730050, People's Republic of China
| | - Hui-Ping Ma
- Department of Pharmacy, Lanzhou General Hospital, CPLA, Lanzhou 730050, People's Republic of China
| | - Cory J Xian
- School of Pharmacy and Medical Sciences, and UniSA Cancer Research Institute, University of South Australia, Adelaide, SA 5001, Australia
| | - Ke-Ming Chen
- Institute of Orthopaedics, Lanzhou General Hospital, CPLA, Lanzhou 730050, People's Republic of China
| |
Collapse
|
31
|
Yadav N, Srivastava P. In vitro studies on gelatin/hydroxyapatite composite modified with osteoblast for bone bioengineering. Heliyon 2019; 5:e01633. [PMID: 31193071 PMCID: PMC6514539 DOI: 10.1016/j.heliyon.2019.e01633] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 03/03/2019] [Accepted: 04/30/2019] [Indexed: 12/29/2022] Open
Abstract
A promising route towards bone tissue engineering is made by the raw materials of the composite which mimics properties of the extracellular matrix components. Herein, the favourable human origin bone cells were seeded on the scaffold types to investigate the best co-culture system. The same has been achieved after the synthesis and characterization of gelatin/hydroxyapatite composites infused with chitosan for their calcium to phosphate (Ca/P) ratio by SEM-EDX. Also, in vitro biodegradation and bio-mineralization determined after immersing in lysozyme and SBF respectively. Uni-axial Compressive Strength (UCS), porosity, qualitative to quantitative phase development by XRD and FTIR were evaluated. The human bone cell-seeded composite was tested by flow cytometry, CLSM, SEM and DSC. This study statistically signified the human mesenchymal stem cell (hM) derived bone cell as potential raw material for minor to severe bone related tissue regenerative studies.
Collapse
|
32
|
Shao J, Li Z, Zhou J, Li K, Qin R, Chen K. [Effect of low-frequency pulsed electromagnetic fields on activity of rat calvarial osteoblasts through IGF-1R/NO signaling pathway]. Zhejiang Da Xue Xue Bao Yi Xue Ban 2019; 48:158-164. [PMID: 31309753 PMCID: PMC8800640 DOI: 10.3785/j.issn.1008-9292.2019.04.06] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 03/13/2019] [Indexed: 06/10/2023]
Abstract
OBJECTIVE To investigate the effect of low-frequency pulsed electromagnetic fields (PEMF) on the maturation and mineralization of rat cranial osteoblasts in vitro and its relation to IGF-1R/NO signaling pathway. METHODS The rat osteoblasts were isolated and cultured in vitro and randomly divided into blank control group, PEMF group, GSK group (IGF-1R blocker) and PEMF+GSK group. The cells were treated with 50 Hz 0.6 mT PEMF for 1.5 h/d. After 3 d of PEMF treatment, the expressions of protein kinase (AKT), inducible nitric oxide synthase (iNOS) and cGMP-dependent protein kinase (PKG) were detected by Western blotting; on 6 d of PEMF treatment alkaline phosphatase (ALP) activity was determined; on 12 d of PEMF treatment the calcification nodule formation was demonstrated by Alizarin red staining. RESULTS NO level was significantly increased in rat osteoblasts treated with 50 Hz 0.6 mT PEMF for 1.5 h/d. Western blot analysis showed that the expressions of AKT, iNOS and PKG protein in PEMF group were higher than those in the control group (all P<0.01); the ALP activity was increased(P<0.05), and the PEMF group had the largest area of Alizarin red staining (P<0.01). The expressions of AKT, iNOS and PKG protein in GSK group were lower than those in the control group; the ALP activity was decreased (P<0.05), and the GSK group had the least area of Alizarin red staining (P<0.01). The expressions of AKT, iNOS, PKG protein, the ALP activity and the area of Alizarin red staining in PEMF+GSK group were between PEMF group and GSK group. CONCLUSIONS PEMF may enhance the maturation and mineralization of rat cranial osteoblasts in vitro through IGF-1R/NO signaling pathway.
Collapse
Affiliation(s)
- Jiale Shao
- Institute of Orthopedic Research, the 940th Hospital of Joint Logistics Support Force of People's Liberation Army, Lanzhou 730050, China
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Zhizhong Li
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Jian Zhou
- Institute of Orthopedic Research, the 940th Hospital of Joint Logistics Support Force of People's Liberation Army, Lanzhou 730050, China
| | - Kai Li
- Institute of Orthopedic Research, the 940th Hospital of Joint Logistics Support Force of People's Liberation Army, Lanzhou 730050, China
| | - Rong Qin
- Institute of Orthopedic Research, the 940th Hospital of Joint Logistics Support Force of People's Liberation Army, Lanzhou 730050, China
| | - Keming Chen
- Institute of Orthopedic Research, the 940th Hospital of Joint Logistics Support Force of People's Liberation Army, Lanzhou 730050, China
| |
Collapse
|
33
|
Wang P, Tang C, Wu J, Yang Y, Yan Z, Liu X, Shao X, Zhai M, Gao J, Liang S, Luo E, Jing D. Pulsed electromagnetic fields regulate osteocyte apoptosis, RANKL/OPG expression, and its control of osteoclastogenesis depending on the presence of primary cilia. J Cell Physiol 2018; 234:10588-10601. [DOI: 10.1002/jcp.27734] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 10/18/2018] [Indexed: 12/23/2022]
Affiliation(s)
- Pan Wang
- Department of Biomedical Engineering Fourth Military Medical University Xi’an China
| | - Chi Tang
- Department of Biomedical Engineering Fourth Military Medical University Xi’an China
| | - Junjie Wu
- State Key Laboratory of Military Stomatology, Department of Orthodontics School of Stomatology, Fourth Military Medical University Xi’an China
| | - Yuefan Yang
- Department of Neurosurgery 251 Hospital of Chinese People’s Liberation Army Zhangjiakou China
| | - Zedong Yan
- Department of Biomedical Engineering Fourth Military Medical University Xi’an China
| | - Xiyu Liu
- Department of Biomedical Engineering Fourth Military Medical University Xi’an China
| | - Xi Shao
- Department of Biomedical Engineering Fourth Military Medical University Xi’an China
| | - Mingming Zhai
- Department of Biomedical Engineering Fourth Military Medical University Xi’an China
| | - Jie Gao
- State Key Laboratory of Military Stomatology, Department of Orthodontics School of Stomatology, Fourth Military Medical University Xi’an China
| | - Shengru Liang
- Department of Endocrinology Xijing Hospital, Fourth Military Medical Univerisity Xi’an China
| | - Erping Luo
- Department of Biomedical Engineering Fourth Military Medical University Xi’an China
| | - Da Jing
- Department of Biomedical Engineering Fourth Military Medical University Xi’an China
| |
Collapse
|
34
|
Hu W, Chen T, Tsao C, Cheng Y. The effects of substrate‐mediated electrical stimulation on the promotion of osteogenic differentiation and its optimization. J Biomed Mater Res B Appl Biomater 2018; 107:1607-1619. [DOI: 10.1002/jbm.b.34253] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 08/29/2018] [Accepted: 09/08/2018] [Indexed: 01/09/2023]
Affiliation(s)
- Wei‐Wen Hu
- Department of Chemical and Materials EngineeringNational Central University Zhongli District, Taoyuan City Taiwan
- Center for Biocellular EngineeringNational Central University Zhongli District, Taoyuan City Taiwan
| | - Tun‐Chi Chen
- Department of Chemical and Materials EngineeringNational Central University Zhongli District, Taoyuan City Taiwan
| | - Chia‐Wen Tsao
- Center for Biocellular EngineeringNational Central University Zhongli District, Taoyuan City Taiwan
- Department of Mechanical EngineeringNational Central University Zhongli District, Taoyuan City Taiwan
| | - Yu‐Che Cheng
- Center for Biocellular EngineeringNational Central University Zhongli District, Taoyuan City Taiwan
- School of MedicineFu Jen Catholic University New Taipei City Taiwan
- Proteomics Laboratory, Department of Medical ResearchCathay General Hospital Taipei Taiwan
- Department of Biomedical Sciences and EngineeringNational Central University Zhongli Taiwan
| |
Collapse
|
35
|
Li Q, Li C, Xi S, Li X, Ding L, Li M. The effects of photobiomodulation therapy on mouse pre-osteoblast cell line MC3T3-E1 proliferation and apoptosis via miR-503/Wnt3a pathway. Lasers Med Sci 2018; 34:607-614. [DOI: 10.1007/s10103-018-2636-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 09/05/2018] [Indexed: 12/12/2022]
|
36
|
The Use of Pulsed Electromagnetic Fields to Promote Bone Responses to Biomaterials In Vitro and In Vivo. Int J Biomater 2018; 2018:8935750. [PMID: 30254677 PMCID: PMC6140132 DOI: 10.1155/2018/8935750] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 08/09/2018] [Indexed: 12/14/2022] Open
Abstract
Implantable biomaterials are extensively used to promote bone regeneration or support endosseous prosthesis in orthopedics and dentistry. Their use, however, would benefit from additional strategies to improve bone responses. Pulsed Electromagnetic Fields (PEMFs) have long been known to act on osteoblasts and bone, affecting their metabolism, in spite of our poor understanding of the underlying mechanisms. Hence, we have the hypothesis that PEMFs may also ameliorate cell responses to biomaterials, improving their growth, differentiation, and the expression of a mature phenotype and therefore increasing the tissue integration of the implanted devices and their clinical success. A broad range of settings used for PEMFs stimulation still represents a hurdle to better define treatment protocols and extensive research is needed to overcome this issue. The present review includes studies that investigated the effects of PEMFs on the response of bone cells to different classes of biomaterials and the reports that focused on in vivo investigations of biomaterials implanted in bone.
Collapse
|
37
|
Xia Y, Sun J, Zhao L, Zhang F, Liang XJ, Guo Y, Weir MD, Reynolds MA, Gu N, Xu HHK. Magnetic field and nano-scaffolds with stem cells to enhance bone regeneration. Biomaterials 2018; 183:151-170. [PMID: 30170257 DOI: 10.1016/j.biomaterials.2018.08.040] [Citation(s) in RCA: 158] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 08/10/2018] [Accepted: 08/20/2018] [Indexed: 12/20/2022]
Abstract
Novel strategies utilizing magnetic nanoparticles (MNPs) and magnetic fields are being developed to enhance bone tissue engineering efficacy. This article first reviewed cutting-edge research on the osteogenic enhancements via magnetic fields and MNPs. Then the current developments in magnetic strategies to improve the cells, scaffolds and growth factor deliveries were described. The magnetic-cell strategies included cell labeling, targeting, patterning, and gene modifications. MNPs were incorporated to fabricate magnetic composite scaffolds, as well as to construct delivery systems for growth factors, drugs and gene transfections. The novel methods using magnetic nanoparticles and scaffolds with magnetic fields and stem cells increased the osteogenic differentiation, angiogenesis and bone regeneration by 2-3 folds over those of the controls. The mechanisms of magnetic nanoparticles and scaffolds with magnetic fields and stem cells to enhance bone regeneration were identified as involving the activation of signaling pathways including MAPK, integrin, BMP and NF-κB. Potential clinical applications of magnetic nanoparticles and scaffolds with magnetic fields and stem cells include dental, craniofacial and orthopedic treatments with substantially increased bone repair and regeneration efficacy.
Collapse
Affiliation(s)
- Yang Xia
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, China; Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China; Department of Advanced Oral Sciences & Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Jianfei Sun
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Liang Zhao
- Department of Advanced Oral Sciences & Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA; Department of Orthopedic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Feimin Zhang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, China; Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou, Jiangsu 215123, China
| | - Xing-Jie Liang
- Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Yu Guo
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Michael D Weir
- Department of Advanced Oral Sciences & Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Mark A Reynolds
- Department of Advanced Oral Sciences & Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Ning Gu
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China; Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou, Jiangsu 215123, China.
| | - Hockin H K Xu
- Department of Advanced Oral Sciences & Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA; Center for Stem Cell Biology and Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA; University of Maryland Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
38
|
Eischen-Loges M, Oliveira KMC, Bhavsar MB, Barker JH, Leppik L. Pretreating mesenchymal stem cells with electrical stimulation causes sustained long-lasting pro-osteogenic effects. PeerJ 2018; 6:e4959. [PMID: 29910982 PMCID: PMC6001709 DOI: 10.7717/peerj.4959] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 05/22/2018] [Indexed: 02/06/2023] Open
Abstract
Background Electrical stimulation (ES) has a long history of successful use in the clinical treatment of refractory, non-healing bone fractures and has recently been proposed as an adjunct to bone tissue-engineering treatments to optimize their therapeutic potential. This idea emerged from ES’s demonstrated positive effects on stem cell migration, proliferation, differentiation and adherence to scaffolds, all cell behaviors recognized to be advantageous in Bone Tissue Engineering (BTE). In previous in vitro experiments we demonstrated that direct current ES, administered daily, accelerates Mesenchymal Stem Cell (MSC) osteogenic differentiation. In the present study, we sought to define the optimal ES regimen for maximizing this pro-osteogenic effect. Methods Rat bone marrow-derived MSC were exposed to 100 mV/mm, 1 hr/day for three, seven, and 14 days, then osteogenic differentiation was assessed at Day 14 of culture by measuring collagen production, calcium deposition, alkaline phosphatase activity and osteogenic marker gene expression. Results We found that exposing MSC to ES for three days had minimal effect, while seven and 14 days resulted in increased osteogenic differentiation, as indicated by significant increases in collagen and calcium deposits, and expression of osteogenic marker genes Col1a1, Osteopontin, Osterix and Calmodulin. We also found that cells treated with ES for seven days, maintained this pro-osteogenic activity long (for at least seven days) after discontinuing ES exposure. Discussion This study showed that while three days of ES is insufficient to solicit pro-osteogenic effects, seven and 14 days significantly increases osteogenic differentiation. Importantly, we found that cells treated with ES for only seven days, maintained this pro-osteogenic activity long after discontinuing ES exposure. This sustained positive osteogenic effect is likely due to the enhanced expression of RunX2 and Calmodulin we observed. This prolonged positive osteogenic effect, long after discontinuing ES treatment, if incorporated into BTE treatment protocols, could potentially improve outcomes and in doing so help BTE achieve its full therapeutic potential.
Collapse
Affiliation(s)
- Maria Eischen-Loges
- Frankfurt Initiative for Regenerative Medicine, Johann Wolfgang Goethe Universität Frankfurt am Main, Frankfurt am Main, Hessen, Germany
| | - Karla M C Oliveira
- Frankfurt Initiative for Regenerative Medicine, Johann Wolfgang Goethe Universität Frankfurt am Main, Frankfurt am Main, Hessen, Germany
| | - Mit B Bhavsar
- Frankfurt Initiative for Regenerative Medicine, Johann Wolfgang Goethe Universität Frankfurt am Main, Frankfurt am Main, Hessen, Germany
| | - John H Barker
- Frankfurt Initiative for Regenerative Medicine, Johann Wolfgang Goethe Universität Frankfurt am Main, Frankfurt am Main, Hessen, Germany
| | - Liudmila Leppik
- Frankfurt Initiative for Regenerative Medicine, Johann Wolfgang Goethe Universität Frankfurt am Main, Frankfurt am Main, Hessen, Germany
| |
Collapse
|
39
|
Yin Y, Chen P, Yu Q, Peng Y, Zhu Z, Tian J. The Effects of a Pulsed Electromagnetic Field on the Proliferation and Osteogenic Differentiation of Human Adipose-Derived Stem Cells. Med Sci Monit 2018; 24:3274-3282. [PMID: 29775452 PMCID: PMC5987610 DOI: 10.12659/msm.907815] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Background A low frequency pulsed electromagnetic field (PEMF) has been confirmed to play an important role in promoting the osteogenic differentiation of human bone marrow stem cells (BMSCs). Adipose-derived stem cells (ASCs) possess some attractive characteristics for clinical application compared to BMSCs, such as abundant stem cells from lipoaspirates, faster growth, less discomfort and morbidity during surgery. ASCs can become adipocytes, osteoblasts, chondrocytes, myocytes, neurocytes, and other cell types. Thus, ASCs might be a good alternative in clinical work involving treatment with PEMF. Material/Methods Human ASCs (hASCs)were divided into a control group (without PEMF exposure) and an experimental group (PEMF for two hours per day). We examined the effect of PEMF on promoting cell proliferation and osteogenic differentiation from several aspects: CCK-8 proliferation assay, RNA extraction, qRT-PCR detection, western blotting, and immunofluorescence staining experiments. Results PEMF could promote cell proliferation of human ASCs (hASCs) at an early stage as determined by CCK-8 assay. A specific intensity (1 mT) and frequency (50 Hz) of PEMF promoted osteogenic differentiation in hASCs in alkaline phosphatase (ALP) staining experiments. In addition, bone-related gene expression increased after two weeks of PEMF exposure, the protein expression of OPN, OCN, and RUNX-2 also increased after a longer period (three weeks) of PEMF treatment as determined by western blotting and immunofluorescence staining. Conclusions We found for the first time that PMEF has a role in stimulating cell proliferation of hASCs at an early period, subsequently promoting bone-related gene expression and inducing the expression of related proteins to stimulate osteogenic differentiation.
Collapse
Affiliation(s)
- Yukun Yin
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Haizhu, Guangzhou, China (mainland)
| | - Ping Chen
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Haizhu, Guangzhou, China (mainland)
| | - Qiang Yu
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Haizhu, Guangzhou, China (mainland)
| | - Yan Peng
- Department of Human Anatomy, Basic Medical College, Southern Medical University, Baiyun, Guangzhou, China (mainland)
| | - ZeHao Zhu
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Haizhu, Guangzhou, China (mainland)
| | - Jing Tian
- Department of Orthopedics, Zhujiang Hospital,Southern Medical University, Haizhu, Guangzhou, China (mainland)
| |
Collapse
|
40
|
Wu S, Yu Q, Sun Y, Tian J. Synergistic effect of a LPEMF and SPIONs on BMMSC proliferation, directional migration, and osteoblastogenesis. Am J Transl Res 2018; 10:1431-1443. [PMID: 29887957 PMCID: PMC5992538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 04/19/2018] [Indexed: 06/08/2023]
Abstract
Pulsed electromagnetic fields (PEMFs) represent a new type of physiotherapy that has been shown to be effective for improving bone fracture healing and treating osteoporosis. Targeted therapy with bone marrow mesenchymal stem cells (BMMSCs) has been the focus of several recent studies. The key to such therapy is the effective application of certain nanomaterials in BMMSCs so they achieve an ideal target concentration under the influence of a PEMF. In our present study, the effects of a PEMF on the process of osteoblastogenesis were systematically investigated using superparamagnetic iron oxide nanoparticle (SPION)-labeled BMMSCs. Rat BMMSCs labeled with SPIONs were exposed to a low-frequency pulsed electromagnetic field (LPEMF) of 50 Hz at 1.1 mT. Exposure to the LPEMF resulted in an enhanced proliferation of SPION-labeled BMMSCs when compared with a control group. Furthermore, observations made by transmission electron microscopy (TEM) revealed greater cell concentrations in the central zone with exposure to the LPEMF than in the peripheral zone without LPEMF stimulation, indicating that a LPEMF could induce the migration of SPION-labeled BMMSCs towards a magnetic field. Transwell experiments confirmed that combining SPIONs with a LPEMF could significantly promote the directional migration of BMMSCs. Von Kossa and ALP staining of LPEMF-exposed SPION-labeled cells was more intense, and those cells displayed higher levels of ALP activity than control cells. The SPION-labeled, LPEMF-exposed cells also showed increased levels of osteogenesis-related gene and protein expression (e.g., ALP, OCN, and RUNX2) in PCR and western blot studies. Taken together, our findings suggest that a combination of LPEMF and SPIONs exerts a synergistic effect on promoting the directional migration and osteogenic differentiation of BMMSCs, indicating that application of a LPEMF in conjunction with SPIONs may constitute a method for treating bone defects.
Collapse
Affiliation(s)
- Shaoyu Wu
- Zhujiang Hospital of Southern Medical UniversityGuangzhou 510282, Guangdong, PR China
| | - Qiang Yu
- Department of Orthopaedics, Zhujiang Hospital, Southern Medical UniversityGuanzhou 510280, Guangdong, PR China
| | - Yang Sun
- Zhujiang Hospital of Southern Medical UniversityGuangzhou 510282, Guangdong, PR China
| | - Jing Tian
- Department of Orthopaedics, Zhujiang Hospital, Southern Medical UniversityGuanzhou 510280, Guangdong, PR China
| |
Collapse
|
41
|
Lei Y, Su J, Xu H, Yu Q, Zhao M, Tian J. Pulsed electromagnetic fields inhibit osteoclast differentiation in RAW264.7 macrophages via suppression of the protein kinase B/mammalian target of rapamycin signaling pathway. Mol Med Rep 2018; 18:447-454. [PMID: 29749519 DOI: 10.3892/mmr.2018.8999] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Accepted: 04/17/2018] [Indexed: 11/06/2022] Open
Abstract
When bone resorption, aided by the activity of osteoclasts, exceeds bone formation induced by osteoblasts, bone metabolism loses equilibration, which results in the development of bone diseases, including osteoporosis. Pulsed electromagnetic fields (PEMFs) are known to be involved in various biological processes, including cell proliferation, differentiation and apoptosis. However, the exact mechanism of action of osteoclasts remains poorly understood. In the present study, the effects of PEMFs on osteoclast differentiation and associated signaling pathways were systematically investigated in RAW264.7 macrophages. RAW264.7 cells were induced by receptor activator of nuclear factor‑κB ligand (RANKL) to obtain osteoclasts in vitro. The results of the present study demonstrated that PEMF exposure decreased osteoclast formation, limited tartrate‑resistant acid phosphatase activity, contracted bone resorption area and inhibited osteoclastic specific gene and protein expression. Furthermore, western blot analysis indicated that PEMFs distinctly abolished the upregulation of phosphorylated‑protein kinase B (Akt), ‑mammalian target of rapamycin (mTOR) and ‑ribosome S6 protein kinase (p70S6K) induced by RANKL, which was consistent with the effects of pharmacological inhibitor perifosine and rapamycin. Therefore, the present study suggested that PEMFs reduced osteoclast formation from RAW264.7 macrophages via inhibition of the Akt/mTOR signaling pathway. These findings provided novel insight into the mechanisms through which PEMFs suppress osteoclast differentiation.
Collapse
Affiliation(s)
- Yutian Lei
- Department of Orthopaedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Jinyu Su
- Department of Pathophysiology, Key Laboratory for Shock and Microcirculation Research of Guangdong, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Haixia Xu
- Department of Orthopaedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Qiang Yu
- Department of Orthopaedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Ming Zhao
- Department of Pathophysiology, Key Laboratory for Shock and Microcirculation Research of Guangdong, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Jing Tian
- Department of Orthopaedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| |
Collapse
|
42
|
Cai J, Li W, Sun T, Li X, Luo E, Jing D. Pulsed electromagnetic fields preserve bone architecture and mechanical properties and stimulate porous implant osseointegration by promoting bone anabolism in type 1 diabetic rabbits. Osteoporos Int 2018. [PMID: 29523929 DOI: 10.1007/s00198-018-4392-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
UNLABELLED The effects of exogenous pulsed electromagnetic field (PEMF) stimulation on T1DM-associated osteopathy were investigated in alloxan-treated rabbits. We found that PEMF improved bone architecture, mechanical properties, and porous titanium (pTi) osseointegration by promoting bone anabolism through a canonical Wnt/β-catenin signaling-associated mechanism, and revealed the clinical potential of PEMF stimulation for the treatment of T1DM-associated bone complications. INTRODUCTION Type 1 diabetes mellitus (T1DM) is associated with deteriorated bone architecture and impaired osseous healing potential; nonetheless, effective methods for resisting T1DM-associated osteopenia/osteoporosis and promoting bone defect/fracture healing are still lacking. PEMF, as a safe and noninvasive method, have proven to be effective for promoting osteogenesis, whereas the potential effects of PEMF on T1DM osteopathy remain poorly understood. METHODS We herein investigated the effects of PEMF stimulation on bone architecture, mechanical properties, bone turnover, and its potential molecular mechanisms in alloxan-treated diabetic rabbits. We also developed novel nontoxic Ti2448 pTi implants with closer elastic modulus with natural bone and investigated the impacts of PEMF on pTi osseointegration for T1DM bone-defect repair. RESULTS The deteriorations of cancellous and cortical bone architecture and tissue-level mechanical strength were attenuated by 8-week PEMF stimulation. PEMF also promoted osseointegration and stimulated more adequate bone ingrowths into the pore spaces of pTi in T1DM long-bone defects. Moreover, T1DM-associated reduction of bone formation was significantly attenuated by PEMF, whereas PEMF exerted no impacts on bone resorption. We also found PEMF-induced activation of osteoblastogenesis-related Wnt/β-catenin signaling in T1DM skeletons, but PEMF did not alter osteoclastogenesis-associated RANKL/RANK signaling gene expression. CONCLUSION We reveal that PEMF improved bone architecture, mechanical properties, and pTi osseointegration by promoting bone anabolism through a canonical Wnt/β-catenin signaling-associated mechanism. This study enriches our basic knowledge for understanding skeletal sensitivity in response to external electromagnetic signals, and also opens new treatment alternatives for T1DM-associated osteopenia/osteoporosis and osseous defects in an easy and highly efficient manner.
Collapse
MESH Headings
- Animals
- Biomechanical Phenomena/physiology
- Bone Diseases, Metabolic/etiology
- Bone Diseases, Metabolic/physiopathology
- Bone Diseases, Metabolic/prevention & control
- Bone Remodeling/physiology
- Bone and Bones/metabolism
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/physiopathology
- Diabetes Mellitus, Type 1/complications
- Diabetes Mellitus, Type 1/metabolism
- Diabetes Mellitus, Type 1/physiopathology
- Implants, Experimental
- Magnetic Field Therapy/methods
- Male
- Osseointegration/physiology
- Porosity
- Rabbits
- Titanium
- Wnt Signaling Pathway/physiology
- X-Ray Microtomography
Collapse
Affiliation(s)
- J Cai
- College of Basic Medicine, Shaanxi University of Chinese Medicine, Xi'an-Xianyang New Economic Zone, Xianyang, 712046, China.
- Department of Biomedical Engineering, Fourth Military Medical University, 17 West Changle Road, Xi'an, 710032, China.
| | - W Li
- Department of Biomedical Engineering, Fourth Military Medical University, 17 West Changle Road, Xi'an, 710032, China
| | - T Sun
- Department of Biomedical Engineering, Fourth Military Medical University, 17 West Changle Road, Xi'an, 710032, China
| | - X Li
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - E Luo
- Department of Biomedical Engineering, Fourth Military Medical University, 17 West Changle Road, Xi'an, 710032, China
| | - D Jing
- Department of Biomedical Engineering, Fourth Military Medical University, 17 West Changle Road, Xi'an, 710032, China.
| |
Collapse
|
43
|
Knockdown of ARL4C inhibits osteogenic differentiation of human adipose-derived stem cells through disruption of the Wnt signaling pathway. Biochem Biophys Res Commun 2018; 497:256-263. [PMID: 29432742 DOI: 10.1016/j.bbrc.2018.02.066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 02/07/2018] [Indexed: 11/23/2022]
Abstract
ADP-ribosylation factor-like 4C (ARL4C) has been shown to play an important role in cholesterol secretion, microtubule dynamics, and cell morphological changes. However, its role in osteogenesis has not been explored. In this study, we found that ARL4C is downregulated during the osteogenic differentiation of human adipose derived stem cells (hASCs). Knockdown of ARL4C suppresses osteogenesis of hASCs in vitro and in vivo. We demonstrate that ARL4C knockdown likely attenuates osteogenesis of hASCs through inhibition of the Wnt signaling pathway. These results provide new insights into the mechanisms of osteogenic differentiation and provide a potential molecular target for bone tissue engineering.
Collapse
|
44
|
Jing D, Yan Z, Cai J, Tong S, Li X, Guo Z, Luo E. Low-1 level mechanical vibration improves bone microstructure, tissue mechanical properties and porous titanium implant osseointegration by promoting anabolic response in type 1 diabetic rabbits. Bone 2018; 106:11-21. [PMID: 28982588 DOI: 10.1016/j.bone.2017.10.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 09/14/2017] [Accepted: 10/01/2017] [Indexed: 12/31/2022]
Abstract
Type 1 diabetes mellitus (T1DM) is associated with reduced bone mass, increased fracture risk, and impaired bone defect regeneration potential. These skeletal complications are becoming important clinical challenges due to the rapidly increasing T1DM population, which necessitates developing effective treatment for T1DM-associated osteopenia/osteoporosis and bone trauma. This study aims to investigate the effects of whole-body vibration (WBV), an easy and non-invasive biophysical method, on bone microstructure, tissue-level mechanical properties and porous titanium (pTi) osseointegration in alloxan-diabetic rabbits. Six non-diabetic and twelve alloxan-treated diabetic rabbits were equally assigned to the Control, DM, and DM with WBV stimulation (WBV) groups. A cylindrical drill-hole defect was established on the left femoral lateral condyle of all rabbits and filled with a novel non-toxic Ti2448 pTi. Rabbits in the WBV group were exposed to 1h/day WBV (0.3g, 30Hz) for 8weeks. After sacrifice, the left femoral condyles were harvested for histological, histomorphometric and nanoindentation analyses. The femoral sample with 2-cm height above the defect was used for qRT-PCR analysis. The right distal femora were scanned with μCT. We found that all alloxan-treated rabbits exhibited hyperglycemia throughout the experimental period. WBV inhibited the deterioration of cancellous and cortical bone architecture and tissue-level mechanical properties via μCT, histological and nanoindentation examinations. T1DM-induced reduction of bone formation was inhibited by WBV, as evidenced by elevated serum OCN and increased mineral apposition rate (MAR), whereas no alteration was observed in bone resorption marker TRACP5b. WBV also stimulated more adequate ingrowths of mineralized bone tissue into pTi pore spaces, and improved peri-implant bone tissue-level mechanical properties and MAR in T1DM bone defects. WBV mitigated the reductions in femoral BMP2, OCN, Wnt3a, Lrp6, and β-catenin and inhibited Sost mRNA expression but did not alter RANKL or RANK gene expression in T1DM rabbits. Our findings demonstrated that WBV improved bone architecture, tissue-level mechanical properties, and pTi osseointegration by promoting canonical Wnt signaling-mediated skeletal anabolic response. This study not only advances our understanding of T1DM skeletal sensitivity in response to external mechanical cues but also offers new treatment alternatives for T1DM-associated osteopenia/osteoporosis and osseous defects in an economic and highly efficient manner.
Collapse
Affiliation(s)
- Da Jing
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an, China; Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| | - Zedong Yan
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an, China
| | - Jing Cai
- College of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Shichao Tong
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an, China
| | - Xiaokang Li
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zheng Guo
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Erping Luo
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
45
|
Apostu D, Lucaciu O, Berce C, Lucaciu D, Cosma D. Current methods of preventing aseptic loosening and improving osseointegration of titanium implants in cementless total hip arthroplasty: a review. J Int Med Res 2017; 46:2104-2119. [PMID: 29098919 PMCID: PMC6023061 DOI: 10.1177/0300060517732697] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Hip osteoarthritis is the most common joint disorder, and is represented by a degenerative process, resulting in pain and functional impairment. If conservative treatment for hip osteoarthritis fails, the only remaining option is hip arthroplasty. Despite good survival of implants, loosening of components is the most common complication. This leads to revision surgeries, which are technically demanding, expensive, and result in a low satisfaction rate. Uncemented hip replacements require proper osseointegration for increased survival. Physical characteristics of implants include biocompatibility, Young’s modulus of elasticity, strength, and corrosion resistance, and each influence fixation of implants. Moreover, implant surface treatments, pore size, pore density, and femoral stem design should be appropriately selected. Patients’ optimization of obesity, osteoporosis, cardiovascular disease, psychotic disorders, and smoking cessation are associated with a higher survival of implants. Surgical factors, such as approach, drilling and rasping, acetabular bone coverage, acetabular cup positioning, and implant size, also affect survival of implants. Avoiding drugs, which may impair osseointegration of implants, and having an appropriate rehabilitation protocol are important. Future directions include anabolic and anti-catabolic bone-acting drugs to enhance osseointegration of implants. Comprehensive knowledge of the factors mentioned above is important for preventing aseptic loosening, with important socioeconomic consequences.
Collapse
Affiliation(s)
- Dragos Apostu
- 1 Department of Orthopaedics and Traumatology, University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ondine Lucaciu
- 2 Department of Oral Rehabilitation, University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Cristian Berce
- 3 Department of Animal Facility, University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Dan Lucaciu
- 4 Department of Orthopaedics and Traumatology, Rehabilitation Clinic, Cluj, Romania
| | - Dan Cosma
- 5 Department of Paediatric Orthopaedics, University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
46
|
Effects of low-intensity pulsed electromagnetic fields on bone microarchitecture, mechanical strength and bone turnover in type 2 diabetic db/db mice. Sci Rep 2017; 7:10834. [PMID: 28883516 PMCID: PMC5589741 DOI: 10.1038/s41598-017-11090-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 08/17/2017] [Indexed: 01/06/2023] Open
Abstract
Type 2 diabetic patients have impaired bone quality, leading to increased fracture risk. Substantial evidence demonstrates that pulsed electromagnetic fields (PEMF) could resist osteopenia/osteoporosis induced by estrogen deficiency and disuse. However, the effects of PEMF on osteopenia/osteoporosis associated with diabetes, especially for more prevalent type 2 diabetes, remain poorly understood. We herein investigated the skeletal effects and mechanisms of PEMF (15 Hz, 20 Gs) on leptin receptor-deficient db/db mice with typical type 2 diabetic symptoms. Our µCT results showed that 12-week PEMF exposure significantly improved both cancellous and cortical bone microarchitecture in db/db mice. Three-point bending and biomechanical indentation testing demonstrated that PEMF improved whole-bone structural properties and tissue-level material properties in db/db mice. PEMF significantly promoted bone formation in db/db mice evidenced by increased serum osteocalcin and bone mineral apposition rate, whereas PEMF exerted no observable alteration in bone resorption. Real-time PCR showed that PEMF upregulated tibial gene expression of osteoblastogenesis-related of canonical Wnt/β-catenin signaling but not osteoclastogenesis-related RANKL-RANK signaling in db/db mice. Our findings demonstrate that PEMF improved bone quantity and quality with obvious anabolic activities in db/db mice, and imply that PEMF might become a clinically applicable treatment modality for improving bone quality in type 2 diabetic patients.
Collapse
|
47
|
Long H, Sun B, Cheng L, Zhao S, Zhu Y, Zhao R, Zhu J. miR-139-5p Represses BMSC Osteogenesis via Targeting Wnt/β-Catenin Signaling Pathway. DNA Cell Biol 2017. [PMID: 28622009 DOI: 10.1089/dna.2017.3657] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Osteogenesis of mesenchymal stem cells (MSCs) has played a necessary role in the repair of bone. According to some reports, microRNAs participate in different physiological activity of the cells, including cell differentiation. This study investigated the function that miR-139-5p plays in the osteogenic differentiation of human bone marrow MSCs (hBMSCs). In addition to miR-139-5p, the effects of alkaline phosphatase (ALP), a membrane-bound metalloenzyme that is considered an early osteogenic differentiation marker, have also been investigated. Calcium-rich deposit (mineralization) is also a typical osteogenic differentiation marker that could be visualized by alizarin red S (ARS) staining. Inhibiting miR-139-5p notably promotes the hBMSC osteoblast differentiation, which, however, will be reduced by overexpressed miR-139-5p. This result has been made based on the alternations of ALP activity, ARS staining, as well as expression of osteogenic genes, including runt-related gene-2 (Runx2), collagen I (Col-1), and osteocalcin (OCN). miR-139-5p exerts its role in BMSC osteogenesis most probably through the Wnt/β-catenin pathway, by direct targeting CTNNB1 and frizzled 4 (FZD4), essential factors of Wnt/β-catenin pathway. In conclusion, according to the present study, inhibiting miR-139-5p could be a promising strategy in hBMSC osteogenesis.
Collapse
Affiliation(s)
- Haitao Long
- Department of Orthopedics, Xiangya Hospital of Central South University , Changsha, Hunan, People's Republic of China
| | - Buhua Sun
- Department of Orthopedics, Xiangya Hospital of Central South University , Changsha, Hunan, People's Republic of China
| | - Liang Cheng
- Department of Orthopedics, Xiangya Hospital of Central South University , Changsha, Hunan, People's Republic of China
| | - Shushan Zhao
- Department of Orthopedics, Xiangya Hospital of Central South University , Changsha, Hunan, People's Republic of China
| | - Yong Zhu
- Department of Orthopedics, Xiangya Hospital of Central South University , Changsha, Hunan, People's Republic of China
| | - Ruibo Zhao
- Department of Orthopedics, Xiangya Hospital of Central South University , Changsha, Hunan, People's Republic of China
| | - Jianxi Zhu
- Department of Orthopedics, Xiangya Hospital of Central South University , Changsha, Hunan, People's Republic of China
| |
Collapse
|
48
|
Adenosine Receptors as a Biological Pathway for the Anti-Inflammatory and Beneficial Effects of Low Frequency Low Energy Pulsed Electromagnetic Fields. Mediators Inflamm 2017; 2017:2740963. [PMID: 28255202 PMCID: PMC5309410 DOI: 10.1155/2017/2740963] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 01/12/2017] [Indexed: 12/22/2022] Open
Abstract
Several studies explored the biological effects of low frequency low energy pulsed electromagnetic fields (PEMFs) on human body reporting different functional changes. Much research activity has focused on the mechanisms of interaction between PEMFs and membrane receptors such as the involvement of adenosine receptors (ARs). In particular, PEMF exposure mediates a significant upregulation of A2A and A3ARs expressed in various cells or tissues involving a reduction in most of the proinflammatory cytokines. Of particular interest is the observation that PEMFs, acting as modulators of adenosine, are able to increase the functionality of the endogenous agonist. By reviewing the scientific literature on joint cells, a double role for PEMFs could be hypothesized in vitro by stimulating cell proliferation, colonization of the scaffold, and production of tissue matrix. Another effect could be obtained in vivo after surgical implantation of the construct by favoring the anabolic activities of the implanted cells and surrounding tissues and protecting the construct from the catabolic effects of the inflammatory status. Moreover, a protective involvement of PEMFs on hypoxia damage in neuron-like cells and an anti-inflammatory effect in microglial cells have suggested the hypothesis of a positive impact of this noninvasive biophysical stimulus.
Collapse
|