1
|
Toyohara Y, Taguchi A, Ishii Y, Yoshimoto D, Yamazaki M, Matsunaga H, Nakatani K, Hoshi D, Tsuchimochi S, Kusakabe M, Baba S, Kawata A, Ikemura M, Tanikawa M, Sone K, Uchino‐Mori M, Ushiku T, Takeyama H, Oda K, Kawana K, Hippo Y, Osuga Y. Identification of target cells of human papillomavirus 18 using squamocolumnar junction organoids. Cancer Sci 2024; 115:125-138. [PMID: 37996972 PMCID: PMC10823277 DOI: 10.1111/cas.15988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 09/19/2023] [Accepted: 09/22/2023] [Indexed: 11/25/2023] Open
Abstract
Human papillomavirus 18 (HPV18) is a highly malignant HPV genotype among high-risk HPVs, characterized by the difficulty of detecting it in precancerous lesions and its high prevalence in adenocarcinomas. The cellular targets and molecular mechanisms underlying its infection remain unclear. In this study, we aimed to identify the cells targeted by HPV18 and elucidate the molecular mechanisms underlying HPV18 replication. Initially, we established a lentiviral vector (HPV18LCR-GFP vector) containing the HPV18 long control region promoter located upstream of EGFP. Subsequently, HPV18LCR-GFP vectors were transduced into patient-derived squamocolumnar junction organoids, and the presence of GFP-positive cells was evaluated. Single-cell RNA sequencing of GFP-positive and GFP-negative cells was conducted. Differentially expressed gene analysis revealed that 169 and 484 genes were significantly upregulated in GFP-positive and GFP-negative cells, respectively. Pathway analysis showed that pathways associated with cell cycle and viral carcinogenesis were upregulated in GFP-positive cells, whereas keratinization and mitophagy/autophagy-related pathways were upregulated in GFP-negative cells. siRNA-mediated luciferase reporter assay and HPV18 genome replication assay validated that, among the upregulated genes, ADNP, FHL2, and NPM3 were significantly associated with the activation of the HPV18 early promoter and maintenance of the HPV18 genome. Among them, NPM3 showed substantially higher expression in HPV-related cervical adenocarcinomas than in squamous cell carcinomas, and NPM3 knockdown of HPV18-infected cells downregulated stem cell-related genes. Our new experimental model allows us to identify novel genes involved in HPV18 early promoter activities. These molecules might serve as therapeutic targets in HPV18-infected cervical lesions.
Collapse
Affiliation(s)
- Yusuke Toyohara
- Department of Obstetrics and Gynecology, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Ayumi Taguchi
- Department of Obstetrics and Gynecology, Graduate School of MedicineThe University of TokyoTokyoJapan
- Laboratory of Human Single Cell Immunology, World Premier International Immunology Frontier Research Center (WPI‐IFReC)Osaka UniversitySuitaJapan
| | - Yoshiyuki Ishii
- Pathogen Genomics CenterNational Institute of Infectious DiseasesTokyoJapan
| | - Daisuke Yoshimoto
- Department of Obstetrics and Gynecology, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Miki Yamazaki
- Department of Life Science and Medical BioscienceWaseda UniversityTokyoJapan
- Computational Bio Big‐Data Open Innovation LaboratoryAIST‐Waseda UniversityTokyoJapan
| | - Hiroko Matsunaga
- Research organization for Nano and Life InnovationWaseda UniversityTokyoJapan
| | - Kazuma Nakatani
- Department of Molecular CarcinogenesisChiba Cancer Center Research InstituteChibaJapan
| | - Daisuke Hoshi
- Department of Oncologic PathologyKanazawa Medical UniversityUchinadaJapan
| | - Saki Tsuchimochi
- Department of Obstetrics and Gynecology, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Misako Kusakabe
- Department of Obstetrics and Gynecology, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Satoshi Baba
- Department of Obstetrics and Gynecology, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Akira Kawata
- Department of Obstetrics and Gynecology, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Masako Ikemura
- Department of Pathology, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Michihiro Tanikawa
- Department of Obstetrics and Gynecology, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Kenbun Sone
- Department of Obstetrics and Gynecology, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Mayuyo Uchino‐Mori
- Department of Obstetrics and Gynecology, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Tetsuo Ushiku
- Department of Pathology, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Haruko Takeyama
- Department of Life Science and Medical BioscienceWaseda UniversityTokyoJapan
- Computational Bio Big‐Data Open Innovation LaboratoryAIST‐Waseda UniversityTokyoJapan
- Research organization for Nano and Life InnovationWaseda UniversityTokyoJapan
- Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and EngineeringWaseda UniversityTokyoJapan
| | - Katsutoshi Oda
- Department of Integrative Genomics, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Kei Kawana
- Department of Obstetrics and GynecologyNihon University School of MedicineTokyoJapan
| | - Yoshitaka Hippo
- Department of Molecular CarcinogenesisChiba Cancer Center Research InstituteChibaJapan
| | - Yutaka Osuga
- Department of Obstetrics and Gynecology, Graduate School of MedicineThe University of TokyoTokyoJapan
| |
Collapse
|
2
|
Bobde RC, Kumar A, Vasudevan D. Plant-specific HDT family histone deacetylases are nucleoplasmins. THE PLANT CELL 2022; 34:4760-4777. [PMID: 36069647 PMCID: PMC9709999 DOI: 10.1093/plcell/koac275] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
Histone acetyltransferase (HAT)- and histone deacetylase (HDAC)-mediated histone acetylation and deacetylation regulate nucleosome dynamics and gene expression. HDACs are classified into different families, with HD-tuins or HDTs being specific to plants. HDTs show some sequence similarity to nucleoplasmins, the histone chaperones that aid in binding, storing, and loading H2A/H2B dimers to assemble nucleosomes. Here, we solved the crystal structure of the N-terminal domain (NTD) of all four HDTs (HDT1, HDT2, HDT3, and HDT4) from Arabidopsis (Arabidopsis thaliana). The NTDs form a nucleoplasmin fold, exist as pentamers in solution, and are resistant to protease treatment, high temperature, salt, and urea conditions. Structurally, HDTs do not form a decamer, unlike certain classical nucleoplasmins. The HDT-NTD requires an additional A2 acidic tract C-terminal to the nucleoplasmin domain for interaction with histone H3/H4 and H2A/H2B oligomers. We also report the in-solution structures of HDT2 pentamers in complex with histone oligomers. Our study provides a detailed structural and in vitro functional characterization of HDTs, revealing them to be nucleoplasmin family histone chaperones. The experimental confirmation that HDTs are nucleoplasmins may spark new interest in this enigmatic family of proteins.
Collapse
Affiliation(s)
- Ruchir C Bobde
- Institute of Life Sciences, Bhubaneswar, Odisha 751023, India
- Regional Centre for Biotechnology, Faridabad 121001, Haryana, India
| | - Ashish Kumar
- Institute of Life Sciences, Bhubaneswar, Odisha 751023, India
| | | |
Collapse
|
3
|
Singh AK, Saharan K, Baral S, Vasudevan D. The plant nucleoplasmin AtFKBP43 needs its extended arms for histone interaction. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2022; 1865:194872. [PMID: 36058470 DOI: 10.1016/j.bbagrm.2022.194872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/20/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
The nucleoplasmin family of histone chaperones is a key player in governing the dynamic architecture of chromatin, thereby regulating various DNA-templated processes. The crystal structure of the N-terminal domain of Arabidopsis thaliana FKBP43 (AtFKBP43), an FK506-binding immunophilin protein, revealed a characteristic nucleoplasmin fold, thus confirming it to be a member of the FKBP nucleoplasmin class. Small-Angle X-ray Scattering (SAXS) analyses confirmed its pentameric nature in solution, and additional studies confirmed the nucleoplasmin fold to be highly stable. Unlike its homolog AtFKBP53, the AtFKBP43 nucleoplasmin core domain could not interact with histones and required the acidic arms, C-terminal to the core, for histone association. However, SAXS generated low-resolution envelope structure, ITC, and AUC results revealed that an AtFKBP43 pentamer with C-terminal extensions interacts with H2A/H2B dimer and H3/H4 tetramer in an equimolar ratio, like AtFKBP53. Put together, AtFKBP43 belongs to a hitherto unreported subclass of FKBP nucleoplasmins that requires the C-terminal acidic stretches emanating from the core domain for histone interaction.
Collapse
Affiliation(s)
| | - Ketul Saharan
- Institute of Life Sciences, Bhubaneswar 751023, India; Regional Centre for Biotechnology, Faridabad 121001, India
| | - Somanath Baral
- Institute of Life Sciences, Bhubaneswar 751023, India; School of Biotechnology, KIIT University, Bhubaneswar 751024, India
| | | |
Collapse
|
4
|
Rajam SM, Varghese PC, Dutta D. Histone Chaperones as Cardinal Players in Development. Front Cell Dev Biol 2022; 10:767773. [PMID: 35445016 PMCID: PMC9014011 DOI: 10.3389/fcell.2022.767773] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 03/03/2022] [Indexed: 11/25/2022] Open
Abstract
Dynamicity and flexibility of the chromatin landscape are critical for most of the DNA-dependent processes to occur. This higher-order packaging of the eukaryotic genome into the chromatin is mediated by histones and associated non-histone proteins that determine the states of chromatin. Histone chaperones- “the guardian of genome stability and epigenetic information” controls the chromatin accessibility by escorting the nucleosomal and non-nucleosomal histones as well as their variants. This distinct group of molecules is involved in all facets of histone metabolism. The selectivity and specificity of histone chaperones to the histones determine the maintenance of the chromatin in an open or closed state. This review highlights the functional implication of the network of histone chaperones in shaping the chromatin function in the development of an organism. Seminal studies have reported embryonic lethality at different stages of embryogenesis upon perturbation of some of the chaperones, suggesting their essentiality in development. We hereby epitomize facts and functions that emphasize the relevance of histone chaperones in orchestrating different embryonic developmental stages starting from gametogenesis to organogenesis in multicellular organisms.
Collapse
Affiliation(s)
- Sruthy Manuraj Rajam
- Regenerative Biology Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, India.,Manipal Academy of Higher Education, Manipal, India
| | - Pallavi Chinnu Varghese
- Regenerative Biology Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, India.,Manipal Academy of Higher Education, Manipal, India
| | - Debasree Dutta
- Regenerative Biology Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, India
| |
Collapse
|
5
|
A tri-functional amino acid enables mapping of binding sites for posttranslational-modification-mediated protein-protein interactions. Mol Cell 2021; 81:2669-2681.e9. [PMID: 33894155 DOI: 10.1016/j.molcel.2021.04.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 03/01/2021] [Accepted: 03/31/2021] [Indexed: 12/16/2022]
Abstract
Posttranslational modification (PTM), through the recruitment of effector proteins (i.e., "readers") that signal downstream events, plays key roles in regulating a variety of cellular processes. To understand how a PTM is recognized, it is necessary to find its readers and, importantly, the location of the binding pockets responsible for PTM recognition. Although various methods have been developed to identify PTM readers, it remains a challenge to directly map the PTM-binding regions, especially for intrinsically disordered domains. Here, we demonstrate a photo-crosslinkable, clickable, and cleavable tri-functional amino acid, ADdis-Cys, that when coupled with mass spectrometry (ADdis-Cys-MS) can not only identify PTM readers from complex proteomes but also simultaneously map their PTM-recognition modules. Using ADdis-Cys-MS, we successfully identify the binding sites of several reader-PTM interactions, among which we discover human C1QBP as a histone chaperone. This robust method should find wide applications in examining other histone or non-histone PTM-mediated protein-protein interactions.
Collapse
|
6
|
Korolev N. How potassium came to be the dominant biological cation: of metabolism, chemiosmosis, and cation selectivity since the beginnings of life. Bioessays 2020; 43:e2000108. [PMID: 33191554 DOI: 10.1002/bies.202000108] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 09/30/2020] [Accepted: 09/30/2020] [Indexed: 12/22/2022]
Abstract
In the cytoplasm of practically all living cells, potassium is the major cation while sodium dominates in the media (seawater, extracellular fluids). Both prokaryotes and eukaryotes have elaborate mechanisms and spend significant energy to maintain this asymmetric K+ /Na+ distribution. This essay proposes an original line of evidence to explain how bacteria selected potassium at the very beginning of the evolutionary process and why it remains essential for eukaryotes.
Collapse
Affiliation(s)
- Nikolay Korolev
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, Singapore
| |
Collapse
|
7
|
Singh AK, Datta A, Jobichen C, Luan S, Vasudevan D. AtFKBP53: a chimeric histone chaperone with functional nucleoplasmin and PPIase domains. Nucleic Acids Res 2020; 48:1531-1550. [PMID: 31807785 PMCID: PMC7026663 DOI: 10.1093/nar/gkz1153] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/20/2019] [Accepted: 12/02/2019] [Indexed: 12/23/2022] Open
Abstract
FKBP53 is one of the seven multi-domain FK506-binding proteins present in Arabidopsis thaliana, and it is known to get targeted to the nucleus. It has a conserved PPIase domain at the C-terminus and a highly charged N-terminal stretch, which has been reported to bind to histone H3 and perform the function of a histone chaperone. To better understand the molecular details of this PPIase with histone chaperoning activity, we have solved the crystal structures of its terminal domains and functionally characterized them. The C-terminal domain showed strong PPIase activity, no role in histone chaperoning and revealed a monomeric five-beta palm-like fold that wrapped over a helix, typical of an FK506-binding domain. The N-terminal domain had a pentameric nucleoplasmin-fold; making this the first report of a plant nucleoplasmin structure. Further characterization revealed the N-terminal nucleoplasmin domain to interact with H2A/H2B and H3/H4 histone oligomers, individually, as well as simultaneously, suggesting two different binding sites for H2A/H2B and H3/H4. The pentameric domain assists nucleosome assembly and forms a discrete complex with pre-formed nucleosomes; wherein two pentamers bind to a nucleosome.
Collapse
Affiliation(s)
- Ajit Kumar Singh
- Institute of Life Sciences, Nalco Square, Chandrasekharpur, Bhubaneswar 751023, India.,Manipal Academy of Higher Education, Manipal 576104, India
| | - Aritreyee Datta
- Institute of Life Sciences, Nalco Square, Chandrasekharpur, Bhubaneswar 751023, India
| | - Chacko Jobichen
- Department of Biological Sciences, 14 Science Drive 4, National University of Singapore, Singapore 117543
| | - Sheng Luan
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Dileep Vasudevan
- Institute of Life Sciences, Nalco Square, Chandrasekharpur, Bhubaneswar 751023, India
| |
Collapse
|
8
|
Fernandes CFDL, Iglesia RP, Melo-Escobar MI, Prado MB, Lopes MH. Chaperones and Beyond as Key Players in Pluripotency Maintenance. Front Cell Dev Biol 2019; 7:150. [PMID: 31428613 PMCID: PMC6688531 DOI: 10.3389/fcell.2019.00150] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 07/17/2019] [Indexed: 12/21/2022] Open
Abstract
Pluripotency is orchestrated by distinct players and chaperones and their partners have emerged as pivotal molecules in proteostasis control to maintain stemness. The proteostasis network consists of diverse interconnected pathways that function dynamically according to the needs of the cell to quality control and maintain protein homeostasis. The proteostasis machinery of pluripotent stem cells (PSCs) is finely adjusted in response to distinct stimuli during cell fate commitment to determine successful organism development. Growing evidence has shown different classes of chaperones regulating crucial cellular processes in PSCs. Histones chaperones promote proper nucleosome assembly and modulate the epigenetic regulation of factors involved in PSCs’ rapid turnover from pluripotency to differentiation. The life cycle of pluripotency proteins from synthesis and folding, transport and degradation is finely regulated by chaperones and co-factors either to maintain the stemness status or to cell fate commitment. Here, we summarize current knowledge of the chaperone network that govern stemness and present the versatile role of chaperones in stem cells resilience. Elucidation of the intricate regulation of pluripotency, dissecting in detail molecular determinants and drivers, is fundamental to understanding the properties of stem cells in order to provide a reliable foundation for biomedical research and regenerative medicine.
Collapse
Affiliation(s)
- Camila Felix de Lima Fernandes
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Rebeca Piatniczka Iglesia
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Maria Isabel Melo-Escobar
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Mariana Brandão Prado
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Marilene Hohmuth Lopes
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
9
|
Structural insights into the ability of nucleoplasmin to assemble and chaperone histone octamers for DNA deposition. Sci Rep 2019; 9:9487. [PMID: 31263230 PMCID: PMC6602930 DOI: 10.1038/s41598-019-45726-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 06/12/2019] [Indexed: 12/13/2022] Open
Abstract
Nucleoplasmin (NP) is a pentameric histone chaperone that regulates the condensation state of chromatin in different cellular processes. We focus here on the interaction of NP with the histone octamer, showing that NP could bind sequentially the histone components to assemble an octamer-like particle, and crosslinked octamers with high affinity. The three-dimensional reconstruction of the NP/octamer complex generated by single-particle cryoelectron microscopy, revealed that several intrinsically disordered tail domains of two NP pentamers, facing each other through their distal face, encage the histone octamer in a nucleosome-like conformation and prevent its dissociation. Formation of this complex depended on post-translational modification and exposure of the acidic tract at the tail domain of NP. Finally, NP was capable of transferring the histone octamers to DNA in vitro, assembling nucleosomes. This activity may have biological relevance for processes in which the histone octamer must be rapidly removed from or deposited onto the DNA.
Collapse
|
10
|
Cheung CT, Pasquier J, Bouleau A, Nguyen T, Chesnel F, Guiguen Y, Bobe J. Double maternal-effect: duplicated nucleoplasmin 2 genes, npm2a and npm2b, with essential but distinct functions are shared by fish and tetrapods. BMC Evol Biol 2018; 18:167. [PMID: 30419815 PMCID: PMC6233590 DOI: 10.1186/s12862-018-1281-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 10/26/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Nucleoplasmin 2 (npm2) is an essential maternal-effect gene that mediates early embryonic events through its function as a histone chaperone that remodels chromatin. Recently, two npm2 (npm2a and npm2b) genes have been annotated in zebrafish. Thus, we examined the evolution of npm2a and npm2b in a variety of vertebrates, their potential phylogenetic relationships, and their biological functions using knockout models via the CRISPR/cas9 system. RESULTS We demonstrated that the two npm2 duplicates exist in a wide range of vertebrates, including sharks, ray-finned fish, amphibians, and sauropsids, while npm2a was lost in coelacanth and mammals, as well as some specific teleost lineages. Using phylogeny and synteny analyses, we traced their origins to the early stages of vertebrate evolution. Our findings suggested that npm2a and npm2b resulted from an ancient local gene duplication, and their functions diverged although key protein domains were conserved. We then investigated their functions by examining their tissue distribution in a wide variety of species and found that they shared ovarian-specific expression, a key feature of maternal-effect genes. We also demonstrated that both npm2a and npm2b are maternally-inherited transcripts in vertebrates, and that they play essential, but distinct, roles in early embryogenesis using zebrafish knockout models. Both npm2a and npm2b function early during oogenesis and may play a role in cortical granule function that impact egg activation and fertilization, while npm2b is also involved in early embryogenesis. CONCLUSION These novel findings will broaden our knowledge on the evolutionary history of maternal-effect genes and underlying mechanisms that contribute to vertebrate reproductive success. In addition, our results demonstrate the existence of a newly described maternal-effect gene, npm2a, that contributes to egg competence, an area that still requires further comprehension.
Collapse
Affiliation(s)
| | | | | | - Thaovi Nguyen
- INRA LPGP UR1037, Campus de Beaulieu, 35042, Rennes, France
| | - Franck Chesnel
- CNRS/UMR6290, Université de Rennes 1, 35000, Rennes, France
| | - Yann Guiguen
- INRA LPGP UR1037, Campus de Beaulieu, 35042, Rennes, France
| | - Julien Bobe
- INRA LPGP UR1037, Campus de Beaulieu, 35042, Rennes, France. .,Laboratory of fish physiology and genomics (LPGP), National Institute of Agricultural Research (INRA), Campus de Beaulieu, 35042, Rennes Cedex, France.
| |
Collapse
|
11
|
Warren C, Matsui T, Karp JM, Onikubo T, Cahill S, Brenowitz M, Cowburn D, Girvin M, Shechter D. Dynamic intramolecular regulation of the histone chaperone nucleoplasmin controls histone binding and release. Nat Commun 2017; 8:2215. [PMID: 29263320 PMCID: PMC5738438 DOI: 10.1038/s41467-017-02308-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 11/17/2017] [Indexed: 12/21/2022] Open
Abstract
Nucleoplasmin (Npm) is a highly conserved histone chaperone responsible for the maternal storage and zygotic release of histones H2A/H2B. Npm contains a pentameric N-terminal core domain and an intrinsically disordered C-terminal tail domain. Though intrinsically disordered regions are common among histone chaperones, their roles in histone binding and chaperoning remain unclear. Using an NMR-based approach, here we demonstrate that the Xenopus laevis Npm tail domain controls the binding of histones at its largest acidic stretch (A2) via direct competition with both the C-terminal basic stretch and basic nuclear localization signal. NMR and small-angle X-ray scattering (SAXS) structural analyses allowed us to construct models of both the tail domain and the pentameric complex. Functional analyses demonstrate that these competitive intramolecular interactions negatively regulate Npm histone chaperone activity in vitro. Together these data establish a potentially generalizable mechanism of histone chaperone regulation via dynamic and specific intramolecular shielding of histone interaction sites.
Collapse
Affiliation(s)
- Christopher Warren
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Tsutomu Matsui
- Department of Chemistry, Stanford University, Stanford Synchrotron Radiation Lightsource, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - Jerome M Karp
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Takashi Onikubo
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
- Laboratory of Biochemistry and Molecular Biology, Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Sean Cahill
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Michael Brenowitz
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - David Cowburn
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Mark Girvin
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - David Shechter
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA.
| |
Collapse
|
12
|
Warren C, Shechter D. Fly Fishing for Histones: Catch and Release by Histone Chaperone Intrinsically Disordered Regions and Acidic Stretches. J Mol Biol 2017; 429:2401-2426. [PMID: 28610839 DOI: 10.1016/j.jmb.2017.06.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 06/05/2017] [Accepted: 06/06/2017] [Indexed: 01/21/2023]
Abstract
Chromatin is the complex of eukaryotic DNA and proteins required for the efficient compaction of the nearly 2-meter-long human genome into a roughly 10-micron-diameter cell nucleus. The fundamental repeating unit of chromatin is the nucleosome: 147bp of DNA wrapped about an octamer of histone proteins. Nucleosomes are stable enough to organize the genome yet must be dynamically displaced and reassembled to allow access to the underlying DNA for transcription, replication, and DNA damage repair. Histone chaperones are a non-catalytic group of proteins that are central to the processes of nucleosome assembly and disassembly and thus the fluidity of the ever-changing chromatin landscape. Histone chaperones are responsible for binding the highly basic histone proteins, shielding them from non-specific interactions, facilitating their deposition onto DNA, and aiding in their eviction from DNA. Although most histone chaperones perform these common functions, recent structural studies of many different histone chaperones reveal that there are few commonalities in their folds. Importantly, sequence-based predictions show that histone chaperones are highly enriched in intrinsically disordered regions (IDRs) and acidic stretches. In this review, we focus on the molecular mechanisms underpinning histone binding, selectivity, and regulation of these highly dynamic protein regions. We highlight new evidence suggesting that IDRs are often critical for histone chaperone function and play key roles in chromatin assembly and disassembly pathways.
Collapse
Affiliation(s)
- Christopher Warren
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - David Shechter
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA.
| |
Collapse
|
13
|
Hanley ML, Yoo TY, Sonnett M, Needleman DJ, Mitchison TJ. Chromosomal passenger complex hydrodynamics suggests chaperoning of the inactive state by nucleoplasmin/nucleophosmin. Mol Biol Cell 2017; 28:1444-1456. [PMID: 28404751 PMCID: PMC5449145 DOI: 10.1091/mbc.e16-12-0860] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/27/2017] [Accepted: 04/04/2017] [Indexed: 01/30/2023] Open
Abstract
The chromosomal passenger complex (CPC) is a conserved, essential regulator of cell division. As such, significant anti-cancer drug development efforts have been focused on targeting it, most notably by inhibiting its AURKB kinase subunit. The CPC is activated by AURKB-catalyzed autophosphorylation on multiple subunits, but how this regulates CPC interactions with other mitotic proteins remains unclear. We investigated the hydrodynamic behavior of the CPC in Xenopus laevis egg cytosol using sucrose gradient sedimentation and in HeLa cells using fluorescence correlation spectroscopy. We found that autophosphorylation of the CPC decreases its sedimentation coefficient in egg cytosol and increases its diffusion coefficient in live cells, indicating a decrease in mass. Using immunoprecipitation coupled with mass spectrometry and immunoblots, we discovered that inactive, unphosphorylated CPC interacts with nucleophosmin/nucleoplasmin proteins, which are known to oligomerize into pentamers and decamers. Autophosphorylation of the CPC causes it to dissociate from nucleophosmin/nucleoplasmin. We propose that nucleophosmin/nucleoplasmin complexes serve as chaperones that negatively regulate the CPC and/or stabilize its inactive form, preventing CPC autophosphorylation and recruitment to chromatin and microtubules in mitosis.
Collapse
Affiliation(s)
- Mariah L Hanley
- Department of Systems Biology, Harvard Medical School, Boston, MA 02114-5701.,Department of Chemistry, Harvard University, Cambridge, MA 02138-2902
| | - Tae Yeon Yoo
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138-2902
| | - Matthew Sonnett
- Department of Systems Biology, Harvard Medical School, Boston, MA 02114-5701
| | - Daniel J Needleman
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138-2902.,Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138-2902
| | - Timothy J Mitchison
- Department of Systems Biology, Harvard Medical School, Boston, MA 02114-5701
| |
Collapse
|
14
|
Hammond CM, Strømme CB, Huang H, Patel DJ, Groth A. Histone chaperone networks shaping chromatin function. Nat Rev Mol Cell Biol 2017; 18:141-158. [PMID: 28053344 DOI: 10.1038/nrm.2016.159] [Citation(s) in RCA: 353] [Impact Index Per Article: 44.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The association of histones with specific chaperone complexes is important for their folding, oligomerization, post-translational modification, nuclear import, stability, assembly and genomic localization. In this way, the chaperoning of soluble histones is a key determinant of histone availability and fate, which affects all chromosomal processes, including gene expression, chromosome segregation and genome replication and repair. Here, we review the distinct structural and functional properties of the expanding network of histone chaperones. We emphasize how chaperones cooperate in the histone chaperone network and via co-chaperone complexes to match histone supply with demand, thereby promoting proper nucleosome assembly and maintaining epigenetic information by recycling modified histones evicted from chromatin.
Collapse
Affiliation(s)
- Colin M Hammond
- Biotech Research and Innovation Centre (BRIC) and Centre for Epigenetics, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark
| | - Caroline B Strømme
- Biotech Research and Innovation Centre (BRIC) and Centre for Epigenetics, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark
| | - Hongda Huang
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
| | - Dinshaw J Patel
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
| | - Anja Groth
- Biotech Research and Innovation Centre (BRIC) and Centre for Epigenetics, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark
| |
Collapse
|