1
|
Li C, Chen X, Ke X, Cheng Y, Zhang Q, Liao X, Xia H, Shi T, Jin C, Huang Y, Chen H. Comparison of the effectiveness of different corneal curvature measurement methods for IOL implantation in traumatic aphakic eyes with corneal injury. Int Ophthalmol 2024; 44:248. [PMID: 38907133 DOI: 10.1007/s10792-024-03172-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 06/15/2024] [Indexed: 06/23/2024]
Abstract
BACKGROUND/AIM To assess the refractive outcomes of secondary intraocular lenses (IOL) in patients with traumatic aphakic eyes with corneal penetrating injury and compare different corneal curvature measurement methods. METHODS Patients with unilateral penetrating eye injuries underwent corneal wound repair and cataract extraction, followed by secondary IOL implantation. Corneal curvature measurements were taken on the contralateral healthy eye (Group A), from the affected eye before removing corneal sutures (Group B), or after suture removal (Group C). The refractive outcomes were compared among the three groups. RESULTS The study included 261 eyes. The Mean Absolute Error (MAE) in Group C (0.99 ± 0.85 D) was significantly smaller than that in Group A (1.87 ± 1.71 D) and Group B (1.37 ± 1.20 D) (both P < 0.001). Moreover, the percentage of eyes with IOL prediction errors within ± 0.50 D in Group C (40%) was higher than that in group A (21.7%) (OR = 2.364, 95%CI: 1.272-4.392, P = 0.006) and group B (28.0%) (OR = 1.714, 95%CI: 0.948-3.099, P = 0.073), and the percentage of eyes with IOL prediction errors within ± 1.0 D in Group C (90.9%) was higher than that in group A (67.9%) (OR = 4.758, 95%CI: 2.131-10.626, P < 0.001) and group B (75.0%) (OR = 3.370, 95%CI: 1.483-7.660, P = 0.003) as well. CONCLUSIONS In traumatic aphakic eyes with corneal sutures, IOL power calculation based on the corneal curvature of the injured eye after removing the corneal sutures yields the best refractive outcomes.
Collapse
Affiliation(s)
- Cuilian Li
- Joint Shantou International Eye Center, Shantou University & The Chinese University of Hong Kong, North Dongxia Road, Shantou, 515041, China
| | - Xiaolin Chen
- Joint Shantou International Eye Center, Shantou University & The Chinese University of Hong Kong, North Dongxia Road, Shantou, 515041, China
| | - Xixuan Ke
- Joint Shantou International Eye Center, Shantou University & The Chinese University of Hong Kong, North Dongxia Road, Shantou, 515041, China
| | - Yinglin Cheng
- Joint Shantou International Eye Center, Shantou University & The Chinese University of Hong Kong, North Dongxia Road, Shantou, 515041, China
| | - Qi Zhang
- Joint Shantou International Eye Center, Shantou University & The Chinese University of Hong Kong, North Dongxia Road, Shantou, 515041, China
| | - Xulong Liao
- Joint Shantou International Eye Center, Shantou University & The Chinese University of Hong Kong, North Dongxia Road, Shantou, 515041, China
| | - Honghe Xia
- Joint Shantou International Eye Center, Shantou University & The Chinese University of Hong Kong, North Dongxia Road, Shantou, 515041, China
| | - Tingkun Shi
- Joint Shantou International Eye Center, Shantou University & The Chinese University of Hong Kong, North Dongxia Road, Shantou, 515041, China
| | - Chuang Jin
- Joint Shantou International Eye Center, Shantou University & The Chinese University of Hong Kong, North Dongxia Road, Shantou, 515041, China
| | - Yuqiang Huang
- Joint Shantou International Eye Center, Shantou University & The Chinese University of Hong Kong, North Dongxia Road, Shantou, 515041, China
| | - Haoyu Chen
- Joint Shantou International Eye Center, Shantou University & The Chinese University of Hong Kong, North Dongxia Road, Shantou, 515041, China.
| |
Collapse
|
2
|
Recent Advancements in Molecular Therapeutics for Corneal Scar Treatment. Cells 2022; 11:cells11203310. [PMID: 36291182 PMCID: PMC9600986 DOI: 10.3390/cells11203310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 11/17/2022] Open
Abstract
The process of corneal wound healing is complex and induces scar formation. Corneal scarring is a leading cause of blindness worldwide. The fibrotic healing of a major ocular wound disrupts the highly organized fibrillar collagen arrangement of the corneal stroma, rendering it opaque. The process of regaining this organized extracellular matrix (ECM) arrangement of the stromal layer to restore corneal transparency is complicated. The surface retention capacity of ocular drugs is poor, and there is a large gap between suitable corneal donors and clinical requirements. Therefore, a more efficient way of treating corneal scarring is needed. The eight major classes of interventions targeted as therapeutic tools for healing scarred corneas include those based on exosomes, targeted gene therapy, microRNAs, recombinant viral vectors, histone deacetylase inhibitors, bioactive molecules, growth factors, and nanotechnology. This review highlights the recent advancements in molecular therapeutics to restore a cornea without scarring. It also provides a scope to overcome the limitations of present studies and perform robust clinical research using these strategies.
Collapse
|
4
|
Zhang Y, Ling Y, Zhang D, Wang M, Purslow C, Yang Y, Li C, Huang Z. Quantitative measurement of mechanical properties in wound healing processes in a corneal stroma model by using vibrational optical coherence elastography (OCE). BIOMEDICAL OPTICS EXPRESS 2021; 12:588-603. [PMID: 33659091 PMCID: PMC7899504 DOI: 10.1364/boe.404096] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 05/11/2023]
Abstract
Corneal wound healing, caused by frequent traumatic injury to the cornea and increasing numbers of refractive surgeries, has become a vital clinical problem. In the cornea, wound healing is an extremely complicated process. However, little is known about how the biomechanical changes in wound healing response of the cornea. Collagen-based hydrogels incorporating corneal cells are suitable for replicating a three-dimensional (3D) equivalent of the cornea in-vitro. In this study, the mechanical properties of corneal stroma models were quantitatively monitored by a vibrational optical coherence elastography (OCE) system during continuous culture periods. Specifically, human corneal keratocytes were seeded at 5 × 105 cells/mL in the hydrogels with a collagen concentration of 3.0 mg/mL. The elastic modulus of the unwounded constructs increased from 2.950 ± 0.2 kPa to 11.0 ± 1.4 kPa, and the maximum thickness decreased from 1.034 ± 0.1 mm to 0.464 ± 0.09 mm during a 15-day culture period. Furthermore, a traumatic wound in the construct was introduced with a size of 500 µm. The elastic modulus of the neo-tissue in the wound area increased from 1.488 ± 0.4 kPa to 6.639 ± 0.3 kPa over 13 days. This study demonstrates that the vibrational OCE system is capable of quantitative monitoring the changes in mechanical properties of a corneal stroma wound model during continuous culture periods and improves our understanding on corneal wound healing processes.
Collapse
Affiliation(s)
- Yilong Zhang
- School of Science and Engineering, University of Dundee, Dundee DD1 4HN, Scotland, UK
| | - Yuting Ling
- School of Science and Engineering, University of Dundee, Dundee DD1 4HN, Scotland, UK
| | - Duo Zhang
- School of Science and Engineering, University of Dundee, Dundee DD1 4HN, Scotland, UK
| | - Mingkai Wang
- School of Science and Engineering, University of Dundee, Dundee DD1 4HN, Scotland, UK
| | - Christine Purslow
- Thea Pharmaceuticals Ltd, Keele University Science & Innovation Park, Innovation Way, Stoke-on-Trent, ST5 5NT, UK
| | - Ying Yang
- Guy Hilton Research Center, School of Pharmacy and Bioengineering, Keele University, Stoke-on-Trent, ST4 7QB, UK
| | - Chunhui Li
- School of Science and Engineering, University of Dundee, Dundee DD1 4HN, Scotland, UK
| | - Zhihong Huang
- School of Science and Engineering, University of Dundee, Dundee DD1 4HN, Scotland, UK
| |
Collapse
|
5
|
Schlereth SL, Hos D, Matthaei M, Hamrah P, Schmetterer L, O'Leary O, Ullmer C, Horstmann J, Bock F, Wacker K, Schröder H, Notara M, Haagdorens M, Nuijts RMMA, Dunker SL, Dickman MM, Fauser S, Scholl HPN, Wheeler-Schilling T, Cursiefen C. New Technologies in Clinical Trials in Corneal Diseases and Limbal Stem Cell Deficiency: Review from the European Vision Institute Special Interest Focus Group Meeting. Ophthalmic Res 2020; 64:145-167. [PMID: 32634808 DOI: 10.1159/000509954] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 06/30/2020] [Indexed: 11/19/2022]
Abstract
To discuss and evaluate new technologies for a better diagnosis of corneal diseases and limbal stem cell deficiency, the outcomes of a consensus process within the European Vision Institute (and of a workshop at the University of Cologne) are outlined. Various technologies are presented and analyzed for their potential clinical use also in defining new end points in clinical trials. The disease areas which are discussed comprise dry eye and ocular surface inflammation, imaging, and corneal neovascularization and corneal grafting/stem cell and cell transplantation. The unmet needs in the abovementioned disease areas are discussed, and realistically achievable new technologies for better diagnosis and use in clinical trials are outlined. To sum up, it can be said that there are several new technologies that can improve current diagnostics in the field of ophthalmology in the near future and will have impact on clinical trial end point design.
Collapse
Affiliation(s)
- Simona L Schlereth
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany, .,Center for Molecular Medicine (CMMC) University of Cologne, Cologne, Germany,
| | - Deniz Hos
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.,Center for Molecular Medicine (CMMC) University of Cologne, Cologne, Germany
| | - Mario Matthaei
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Pedram Hamrah
- Cornea Service and Center for Translational Ocular Immunology, New England Eye Center, Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Leopold Schmetterer
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore.,SERI-NTU Advanced Ocular Engineering (STANCE), Singapore, Singapore.,Institute for Health Technologies, Nanyang Technological University, Singapore, Singapore.,School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore.,Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria.,Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria.,Academic Clinical Program, Duke-NUS Medical School, Singapore, Singapore.,Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel, Switzerland
| | - Olivia O'Leary
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Christoph Ullmer
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Jens Horstmann
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Felix Bock
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Katrin Wacker
- Eye Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | | | - Maria Notara
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Michel Haagdorens
- Faculty of Medicine and Health Sciences, Department of Ophthalmology, Visual Optics and Visual Rehabilitation, University of Antwerp, Antwerp, Belgium.,Department of Ophthalmology, Antwerp University Hospital, Antwerp, Belgium
| | - Rudy M M A Nuijts
- University Eye Clinic, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Suryan L Dunker
- University Eye Clinic, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Mor M Dickman
- University Eye Clinic, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Sascha Fauser
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Hendrik P N Scholl
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel, Switzerland.,Department of Ophthalmology, University of Basel, Basel, Switzerland.,Wilmer Eye Institute, Johns Hopkins University, Baltimore, Maryland, USA
| | - Thomas Wheeler-Schilling
- European Vision Institute EEIG, Brussels, Belgium.,Institute for Ophthalmic Research, University of Tuebingen, Tuebingen, Germany
| | - Claus Cursiefen
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.,Center for Molecular Medicine (CMMC) University of Cologne, Cologne, Germany
| |
Collapse
|