1
|
Hao Y, Hu J, Wang H, Wang C. Gold nanoparticles regulate the antitumor secretome and have potent cytotoxic effects against prostate cancer cells. J Appl Toxicol 2020; 41:1286-1303. [PMID: 33355407 DOI: 10.1002/jat.4117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 09/16/2020] [Accepted: 11/04/2020] [Indexed: 12/28/2022]
Abstract
The specific cytotoxic effects of nanoparticles on tumor cells may be used in future antitumor clinical applications. Gold nanoparticles (AuNPs) have been reported to produce potent cytotoxic effects; however, the precise mechanism is unclear. In this study, AuNPs were synthesized; the average size of the particles was 62.2 ± 6 nm with smooth surface and multiple shapes, which were determined using transmission electron microscopy and field emission scanning electron microscopy. The selected area electron diffraction patterns suggested that the synthesized AuNPs were crystalline. The X-ray photoelectron spectroscopy (XPS) spectrum of the synthesized AuNPs has presented an intense peak at 100 eV, signifying the entire composition of Au in the developed AuNPs. This synthesized AuNPs showed the most potent efficacy in prostate cancer cells, regardless of whether or not they were androgen dependent. Secretome determinations using two-dimensional difference in-gel electrophoresis (2D-DIGE), followed by enzyme-linked immunosorbent assay and quantitative reverse transcriptase-polymerase chain reaction validations, have identified a series of secretory proteins that were dysregulated by AuNP treatment in prostate cancer cells, many of which are highly involved in cytokine-chemokine functions, including CXCL3, interleukin-10, CCL2, and matrix metalloproteinase 9 (MMP9). Further research on molecular mechanism has indicated that AuNPs can trigger the secretion of anticancer factors and myeloid cell-polarizing factors from tumor cells through MMP9 inhibition. These results have clearly signified the cytotoxic potential of AuNPs for treating prostate cancer and may provide a novel direction for prostate cancer therapy in the future.
Collapse
Affiliation(s)
- Yuanyuan Hao
- Department of Urology, The First Hospital of Jilin University, Changchun, China
| | - Jinghai Hu
- Department of Urology, The First Hospital of Jilin University, Changchun, China
| | - Hao Wang
- Department of Oncology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, China
| | - Chunxi Wang
- Department of Urology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
2
|
Li Y, Chen X, Cui Y, Wei Q, Chen S, Wang X. Effects of SIRT1 silencing on viability, invasion and metastasis of human glioma cell lines. Oncol Lett 2019; 17:3701-3708. [PMID: 30930981 PMCID: PMC6425349 DOI: 10.3892/ol.2019.10063] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 01/21/2019] [Indexed: 01/12/2023] Open
Abstract
Silent information regulator 1 (SIRT1), a member of the sirtuin family, is involved in the development of various types of tumor. Previous studies have revealed that SIRT1 has dual functions, as a promoter and an inhibitor, in certain tumors. However, the role of SIRT1 in invasion and metastasis of glioma cells and its associated signaling pathway remain unclear. The aim of the present study was to determine the effects of SIRT1 on these processes and on the epithelial-mesenchymal transition (EMT) in human glioma and adjacent tissues, and in the human glioma cell lines U87 and U251. SIRT1 expression in tissues was investigated using the reverse transcription-quantitative polymerase chain reaction, western blotting and immunohistochemistry. The U87 and U251 cell lines were divided into control and SIRT1-small interfering RNA (siRNA) groups. The Cell Counting Kit-8, cell invasion assays were used to evaluate the effects of SIRT1 silencing on cell viability, invasion and EMT. Results indicated that SIRT1 was highly expressed in glioma tissues compared with in adjacent brain tissues. In addition, SIRT1-siRNA significantly inhibited the viability and invasion of U87 and U251 cells. Furthermore, EMT analysis revealed that the expression levels of the mesenchymal markers fibronectin and vimentin were significantly lower in the SIRT1-siRNA group compared with in the control group. Conversely, expression levels of the epithelial markers epithelial cadherin and β-catenin were significantly higher in the SIRT1-siRNA group compared with in the control group. In conclusion, the results of the present study indicated that SIRT1 was positively associated with viability and invasion of U87 cells, potentially through EMT. These results suggested that SIRT1 may serve a crucial role in the proliferation and development of glioma.
Collapse
Affiliation(s)
- Yu Li
- School of Life Sciences, Yunnan University, Kunming, Yunnan 650091, P.R. China
| | - Xin Chen
- Department of Orthopedics, The Third People's Hospital of Yunnan Province, Kunming, Yunnan 650011, P.R. China
| | - Yong Cui
- School of Agriculture and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan 650091, P.R. China
| | - Qun Wei
- Department of Pathology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Suiyun Chen
- School of Life Sciences, Yunnan University, Kunming, Yunnan 650091, P.R. China.,Biocontrol Engineering Research Center of Plant Disease & Pest, Yunnan University, Kunming, Yunnan 650091, P.R. China
| | - Xiaofang Wang
- Department of Pathology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| |
Collapse
|
3
|
Liu Y, Li B, Yang X, Zhang C. MiR-99a-5p inhibits bladder cancer cell proliferation by directly targeting mammalian target of rapamycin and predicts patient survival. J Cell Biochem 2018; 120:19330-19337. [PMID: 30560585 DOI: 10.1002/jcb.27318] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 06/27/2018] [Indexed: 12/14/2022]
Abstract
Bladder cancer is a common malignancy and miR-99a-5p has been reported to be downregulated in bladder cancer, but its function and the underlying mechanism in bladder cancer development remains largely unclear. Here, we report that miR-99a-5p expression was decreased in bladder cancer compared with the adjacent normal tissues. Receiver operating characteristic curve revealed that miR-99a-5p expression signature had area under curve value of 0.7989 in differing bladder cancer from the adjacent normal tissues. Bladder cancer patients with low expression of miR-99a-5p had a poor survival rate. Gain-of-function and loss-of-function approaches demonstrated that miR-99a-5p inhibited bladder cell proliferation and cell cycle. Furthermore, we identified that mammalian target of rapamycin (mTOR) was a direct target of miR-99a-5p and mTOR restore could rescue the proliferative ability of bladder cancer cells. Moreover, miR-99a-5p/mTOR axis regulated S6K1 phosphorylation. These suggested that miR-99a-5p/mTOR axis might be a therapeutic target for bladder cancer.
Collapse
Affiliation(s)
- Yan Liu
- Department of Urinary Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Bingxun Li
- Department of Urinary Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Xianxu Yang
- Department of Urinary Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Chenglong Zhang
- Department of Urinary Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| |
Collapse
|
4
|
MicroRNAs in Smoking-Related Carcinogenesis: Biomarkers, Functions, and Therapy. J Clin Med 2018; 7:jcm7050098. [PMID: 29723992 PMCID: PMC5977137 DOI: 10.3390/jcm7050098] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 04/21/2018] [Accepted: 04/25/2018] [Indexed: 12/11/2022] Open
Abstract
Long-term heavy cigarette smoking is a well-known high-risk factor for carcinogenesis in various organs such as the head and neck, lungs, and urinary bladder. Furthermore, cigarette smoking can systemically accelerate aging, and as the result, promoting carcinogenesis via changing the host microenvironment. Various inflammatory factors, hormones, and chemical mediators induced by smoking mediate carcinoma-related molecules and induce carcinogenesis. MicroRNAs (miRNAs) are a family of short noncoding RNA molecules that bind to mRNAs and inhibit their expression. Cigarette smoke induces the expression of various miRNAs, many of which are known to function in the post-transcriptional silencing of anticancer molecules, thereby leading to smoking-induced carcinogenesis. Analysis of expression profiles of smoking-induced miRNAs can help identify biomarkers for the diagnosis and prognosis of smoking-related cancers and prediction of therapeutic responses, as well as revealing promising therapeutic targets. Here, we introduce the most recent and useful findings of miRNA analyses focused on lung cancer and urinary bladder cancer, which are strongly associated with cigarette smoking, and discuss the utility of miRNAs as clinical biomarkers.
Collapse
|
5
|
Shi Z, Zhou H, Pan B, Lu L, Kang Y, Liu L, Wei Z, Feng S. Exploring the key genes and pathways in enchondromas using a gene expression microarray. Oncotarget 2018; 8:43967-43977. [PMID: 28410203 PMCID: PMC5546454 DOI: 10.18632/oncotarget.16700] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 03/06/2017] [Indexed: 02/03/2023] Open
Abstract
Enchondromas are the most common primary benign osseous neoplasms that occur in the medullary bone; they can undergo malignant transformation into chondrosarcoma. However, enchondromas are always undetected in patients, and the molecular mechanism is unclear. To identify key genes and pathways associated with the occurrence and development of enchondromas, we downloaded the gene expression dataset GSE22855 and obtained the differentially expressed genes (DEGs) by analyzing high-throughput gene expression in enchondromas. In total, 635 genes were identified as DEGs. Of these, 225 genes (35.43%) were up-regulated, and the remaining 410 genes (64.57%) were down-regulated. We identified the predominant gene ontology (GO) categories and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways that were significantly over-represented in the enchondromas samples compared with the control samples. Subsequently the top 10 core genes were identified from the protein-protein interaction (PPI) network. The enrichment analyses of the genes mainly involved in two significant modules showed that the DEGs were principally related to ribosomes, protein digestion and absorption, ECM-receptor interaction, focal adhesion, amoebiasis and the PI3K-Akt signaling pathway.Together, these data elucidate the molecular mechanisms underlying the occurrence and development of enchondromas and provide promising candidates for therapeutic intervention and prognostic evaluation. However, further experimental studies are needed to confirm these results.
Collapse
Affiliation(s)
- Zhongju Shi
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, PR China
| | - Hengxing Zhou
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, PR China
| | - Bin Pan
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, PR China
| | - Lu Lu
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, PR China
| | - Yi Kang
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, PR China
| | - Lu Liu
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, PR China
| | - Zhijian Wei
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, PR China
| | - Shiqing Feng
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, PR China
| |
Collapse
|
6
|
Gao JM, Huang LZ, Huang ZG, He RQ. Clinical value and potential pathways of miR-183-5p in bladder cancer: A study based on miRNA-seq data and bioinformatics analysis. Oncol Lett 2018; 15:5056-5070. [PMID: 29616090 DOI: 10.3892/ol.2018.7967] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 01/29/2018] [Indexed: 02/06/2023] Open
Abstract
The clinicopathological value and exploration of the potential molecular mechanism of microRNA-183-5p (miR-183-5p) have been investigated in various cancers; however, to the best of the author's knowledge, no similar research has been reported for bladder cancer. In the present study, it was revealed that the expression level of miR-183-5p was notably increased in bladder cancer tissues compared with adjacent non-cancerous tissues (P=0.001) and was markedly increased in the tissue samples of papillary, pathological T stage (T0-T2) and pathological stage (I-II) compared with tissue samples of their counterparts (P=0.05), according to data from The Cancer Genome Atlas. Receiver operating characteristic analysis revealed the robust diagnostic value of miR-183-5p for distinguishing bladder cancer from non-cancerous bladder tissues (area under curve=0.948; 95% confidence interval: 0.919-0.977). Amplification and deep deletion of miR-183-5p were indicated by cBioPortal, accounting for 1% (4/412) of bladder cancer cases. Data from YM500v3 demonstrated that compared with other cancers, bladder cancer exhibited high expression levels of miR-183-5p, and miR-183-5p expression in primary solid tumors was much higher compared with solid normal tissues. A meta-analysis indicated that miR-183-5p was more highly expressed in bladder cancer samples compared with normal counterparts. A total of 88 potential target genes of miR-183-5p were identified, 13 of which were discerned as hub genes by protein-protein interaction. The epithelial-to-mesenchymal transition pathway was the most significantly enriched pathway by FunRich (P=0.0001). In summary, miR-183-5p may participate in the tumorigenesis and development of bladder cancer via certain signaling pathways, particularly the epithelial-to-mesenchymal transition pathway. However, the exact molecular mechanism of miR-183-5p in bladder cancer must be validated by in vitro and in vivo experiments.
Collapse
Affiliation(s)
- Jia-Min Gao
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China.,Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China.,Department of Biochemistry, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China.,Guangxi Key Laboratory for Genomic and Personalized Medicine, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Lin-Zhen Huang
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China.,Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China.,Guangxi Key Laboratory for Genomic and Personalized Medicine, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China.,Guangxi Collaborative Innovation Center for Biomedicine, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Zhi-Guang Huang
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China.,Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China.,Guangxi Key Laboratory for Genomic and Personalized Medicine, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China.,Guangxi Collaborative Innovation Center for Biomedicine, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Rong-Quan He
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China.,Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China.,Department of Biochemistry, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China.,Guangxi Key Laboratory for Genomic and Personalized Medicine, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| |
Collapse
|
7
|
Wong JP, Wei R, Lyu P, Tong OL, Zhang SD, Wen Q, Yuen HF, El-Tanani M, Kwok HF. Clinical and in vitro analysis of Osteopontin as a prognostic indicator and unveil its potential downstream targets in bladder cancer. Int J Biol Sci 2017; 13:1373-1386. [PMID: 29209142 PMCID: PMC5715521 DOI: 10.7150/ijbs.21457] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 09/21/2017] [Indexed: 12/12/2022] Open
Abstract
Osteopontin (OPN) plays an important role in cancer progression, however its prognostic significance and its downstream factors are largely elusive. In this study, we have shown that expression of OPN was significantly higher in bladder cancer specimens with higher T-stage or tumor grades. In addition, a high level of OPN was significantly associated with poorer survival in two independent bladder cancer patient cohorts totaling 389 bladder cancer patients with available survival data. We further identified Matrix metallopeptidase 9 (MMP9) and S100 calcium-binding protein A8 (S100A8) were both downstream factors for OPN in bladder cancer specimens and bladder cancer cell lines. Expression of OPN was significantly positively associated with that of MMP9 and S100A8, while overexpression of OPN resulted in upregulation of MMP9 and S100A8, and knockdown of OPN showed consistent downregulation of MMP9 and S100A8 expression levels. Importantly, expression levels of both MMP9 and S100A8 were significantly associated with higher T-stage, higher tumor grade and a shorter survival time in the bladder cancer patients. Interestingly, OPN expression only predicted survival in MMP9-high, but not MMP9-low subgroups, and in S100A8-low but not S100A8-high subgroups. Our results suggest that OPN, MMP9 and S100A8 all play a significant role in bladder cancer progression and are potential prognostic markers and therapeutic targets in bladder cancer. The mechanistic link between these three genes and bladder cancer progression warrants further investigation.
Collapse
Affiliation(s)
- Janet P.C. Wong
- Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau
| | - Ran Wei
- Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau
| | - Peng Lyu
- Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau
| | - Olivia L.H. Tong
- Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau
| | - Shu Dong Zhang
- Northern Ireland Centre for Stratified Medicine, Biomedical Sciences Research Institute, Ulster University, Londonderry, United Kingdom
| | - Qing Wen
- Center for Cancer Research and Cell Biology, Queen's University of Belfast, Belfast, United Kingdom
| | - Hiu Fung Yuen
- Institute of Molecular and Cell Biology, A*STAR, Singapore
| | - Mohamed El-Tanani
- Institute of Cancer Therapeutics, University of Bradford, Bradford, United Kingdom
| | - Hang Fai Kwok
- Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau
| |
Collapse
|
8
|
Yu S, Xie H, Zhang J, Wang D, Song Y, Zhang S, Zheng S, Wang J. MicroRNA‑663 suppresses the proliferation and invasion of colorectal cancer cells by directly targeting FSCN1. Mol Med Rep 2017; 16:9707-9714. [PMID: 29039557 DOI: 10.3892/mmr.2017.7794] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 08/02/2017] [Indexed: 11/05/2022] Open
Abstract
Colorectal cancer (CRC) is the most frequently diagnosed malignancy of the gastrointestinal tract. The dysregulation of microRNAs (miRNAs/miRs) has been reported in the majority of types of human cancer, and is correlated with tumorigenesis and tumor development. Abnormal expression of miR‑663 has been observed in various types of human cancer. However, little is known about its role in CRC. Therefore, the aim of the present study was to clarify the expression and potential role of miR‑663, and its underlying molecular mechanism in CRC. It was observed that miR‑663 was markedly downregulated in CRC tissues and cell lines. Decreased miR‑663 expression levels in CRC tissues were correlated with tumor, node, metastasis stage and lymph node metastasis. Functional assays revealed that upregulation of miR‑663 inhibited cell proliferation and invasion in CRC. Further molecular mechanism assays demonstrated the fascin (FSCN1) was a target gene of miR‑663. In addition, FSCN1 was increased and negatively correlated with miR‑663 expression in CRC tissues. FSCN1 underexpression mimicked the tumor suppressive functions induced by miR‑663 overexpression on CRC cell proliferation and invasion. Collectively, the present study presented evidence that miR‑663 may act as a tumor suppressor in CRC by directly targeting FSCN1, which may lead to a potential therapeutic strategy focusing on miR‑663 and FSCN1 for patients with this disease.
Collapse
Affiliation(s)
- Shaojun Yu
- Department of Surgical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Haiting Xie
- Department of Surgical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Jingjing Zhang
- Department of Surgical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Da Wang
- Department of Surgical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Yongmao Song
- Department of Surgical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Suzhan Zhang
- Department of Surgical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Shu Zheng
- Department of Surgical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Jian Wang
- Department of Surgical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| |
Collapse
|