1
|
Lin S, Feng D, Han X, Li L, Lin Y, Gao H. Microfluidic platform for omics analysis on single cells with diverse morphology and size: A review. Anal Chim Acta 2024; 1294:342217. [PMID: 38336406 DOI: 10.1016/j.aca.2024.342217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/04/2024] [Accepted: 01/04/2024] [Indexed: 02/12/2024]
Abstract
BACKGROUND Microfluidic techniques have emerged as powerful tools in single-cell research, facilitating the exploration of omics information from individual cells. Cell morphology is crucial for gene expression and physiological processes. However, there is currently a lack of integrated analysis of morphology and single-cell omics information. A critical challenge remains: what platform technologies are the best option to decode omics data of cells that are complex in morphology and size? RESULTS This review highlights achievements in microfluidic-based single-cell omics and isolation of cells based on morphology, along with other cell sorting methods based on physical characteristics. Various microfluidic platforms for single-cell isolation are systematically presented, showcasing their diversity and adaptability. The discussion focuses on microfluidic devices tailored to the distinct single-cell isolation requirements in plants and animals, emphasizing the significance of considering cell morphology and cell size in optimizing single-cell omics strategies. Simultaneously, it explores the application of microfluidic single-cell sorting technologies to single-cell sequencing, aiming to effectively integrate information about cell shape and size. SIGNIFICANCE AND NOVELTY The novelty lies in presenting a comprehensive overview of recent accomplishments in microfluidic-based single-cell omics, emphasizing the integration of different microfluidic platforms and their implications for cell morphology-based isolation. By underscoring the pivotal role of the specialized morphology of different cells in single-cell research, this review provides robust support for delving deeper into the exploration of single-cell omics data.
Collapse
Affiliation(s)
- Shujin Lin
- Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, China; Central Laboratory at the Second Affiliated Hospital of Fujian University of Traditional Chinese Medicine, Fujian-Macao Science and Technology Cooperation Base of Traditional Chinese Medicine-Oriented Chronic Disease Prevention and Treatment, Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, China
| | - Dan Feng
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiao Han
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China.
| | - Ling Li
- Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, China; The First Clinical Medical College of Fujian Medical University, Fuzhou, 350004, China; Hepatopancreatobiliary Surgery Department, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350004, China.
| | - Yao Lin
- Central Laboratory at the Second Affiliated Hospital of Fujian University of Traditional Chinese Medicine, Fujian-Macao Science and Technology Cooperation Base of Traditional Chinese Medicine-Oriented Chronic Disease Prevention and Treatment, Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, China; Collaborative Innovation Center for Rehabilitation Technology, Fujian University of Traditional Chinese Medicine, China.
| | - Haibing Gao
- Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, China.
| |
Collapse
|
2
|
Yu H, Tai Q, Yang C, Weng L, Gao M, Zhang X. Counting Protein Number in a Single Cell by a Picoliter Liquid Operating Technology. Anal Chem 2022; 94:11925-11933. [PMID: 35980697 DOI: 10.1021/acs.analchem.2c02701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ultra-low-copy number proteins play a crucial role in exploring cellular heterogeneity and the insight of protein biomarkers in a single cell. However, counting ultra-low-copy number target proteins in a single cell remains a grand challenge. Herein, we developed a so-called single-cell picoliter liquid operating technology for counting target proteins in a single cell. An ingenious volume-controllable sampling technique was employed to capture a single cell for subsequent analysis. Remarkably, 50 pL of sample volume was employed for sample preparation, single-cell capture, in-droplet lysis, and target protein immobilization on a functionalized coverslip in a monolayer. Then, target protein antibodies coupled with quantum dots were added and incubated to label those immobilized proteins. After clean-up, a single-view image under 100× objective was taken, and the 80 × 80 μm2 view image was then applied to count the precise copy number of the target proteins in the single cell. Furthermore, good linearity and repeatability were achieved for ultra-low-copy number proteins, ranging from 1 to 1500. Finally, the expression level of human epidermal growth factor receptor 2 in single cells from both MCF-7 and MDA-MB-231 cell lines was also analyzed. In a word, this work stimulated the development of capillary-based single-cell analysis and updated the connotation of counting ultra-low-copy number proteins.
Collapse
Affiliation(s)
- Hailong Yu
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, China
| | - Qunfei Tai
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, China
| | - Chenjie Yang
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, China
| | - Lingxiao Weng
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, China
| | - Mingxia Gao
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, China
| | - Xiangmin Zhang
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, China
| |
Collapse
|
3
|
Xie H, Ding X. The Intriguing Landscape of Single-Cell Protein Analysis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105932. [PMID: 35199955 PMCID: PMC9036017 DOI: 10.1002/advs.202105932] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/27/2022] [Indexed: 05/15/2023]
Abstract
Profiling protein expression at single-cell resolution is essential for fundamental biological research (such as cell differentiation and tumor microenvironmental examination) and clinical precision medicine where only a limited number of primary cells are permitted. With the recent advances in engineering, chemistry, and biology, single-cell protein analysis methods are developed rapidly, which enable high-throughput and multiplexed protein measurements in thousands of individual cells. In combination with single cell RNA sequencing and mass spectrometry, single-cell multi-omics analysis can simultaneously measure multiple modalities including mRNAs, proteins, and metabolites in single cells, and obtain a more comprehensive exploration of cellular signaling processes, such as DNA modifications, chromatin accessibility, protein abundance, and gene perturbation. Here, the recent progress and applications of single-cell protein analysis technologies in the last decade are summarized. Current limitations, challenges, and possible future directions in this field are also discussed.
Collapse
Affiliation(s)
- Haiyang Xie
- State Key Laboratory of Oncogenes and Related GenesInstitute for Personalized MedicineSchool of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200030China
| | - Xianting Ding
- State Key Laboratory of Oncogenes and Related GenesInstitute for Personalized MedicineSchool of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200030China
| |
Collapse
|
4
|
Vistain LF, Tay S. Single-Cell Proteomics. Trends Biochem Sci 2021; 46:661-672. [PMID: 33653632 PMCID: PMC11697639 DOI: 10.1016/j.tibs.2021.01.013] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 01/08/2021] [Accepted: 01/27/2021] [Indexed: 02/06/2023]
Abstract
The inability to make broad, minimally biased measurements of a cell's proteome stands as a major bottleneck for understanding how gene expression translates into cellular phenotype. Unlike sequencing for nucleic acids, there is no dominant method for making single-cell proteomic measurements. Instead, methods typically focus on either absolute quantification of a small number of proteins or highly multiplexed protein measurements. Advances in microfluidics and output encoding have led to major improvements in both aspects. Here, we review the most recent progress that has enabled hundreds of protein measurements and ultrahigh-sensitivity quantification. We also highlight emerging technologies such as single-cell mass spectrometry that may enable unbiased measurement of cellular proteomes.
Collapse
Affiliation(s)
- Luke F Vistain
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA; Institute for Genomics and Systems Biology, University of Chicago, Chicago, IL 60637, USA
| | - Savaş Tay
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA; Institute for Genomics and Systems Biology, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
5
|
Lin X, Fang F, Wang C, Kankala RK, Zhou S. Inkjet printing-assisted single-cell microarray on a hydrophobic surface chip for real-time monitoring of enzyme kinetics at single-cell level. Talanta 2021; 225:122019. [DOI: 10.1016/j.talanta.2020.122019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/25/2020] [Accepted: 12/12/2020] [Indexed: 12/12/2022]
|
6
|
Liu M, Jin M, Li L, Ji Y, Zhu F, Luo Y, Liu T, Lin B, Lu Y. PDMS Microwell Stencil Based Multiplexed Single‐Cell Secretion Analysis. Proteomics 2020; 20:e1900231. [DOI: 10.1002/pmic.201900231] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 11/13/2019] [Indexed: 11/05/2022]
Affiliation(s)
- Meimei Liu
- Department of Materials Science and EngineeringDalian Maritime University Dalian 116026 China
- Department of BiotechnologyDalian Institute of Chemical PhysicsChinese Academy of Sciences Dalian 116023 China
| | - Meihua Jin
- Department of Materials Science and EngineeringDalian Maritime University Dalian 116026 China
| | - Linmei Li
- Department of BiotechnologyDalian Institute of Chemical PhysicsChinese Academy of Sciences Dalian 116023 China
| | - Yahui Ji
- Department of BiotechnologyDalian Institute of Chemical PhysicsChinese Academy of Sciences Dalian 116023 China
| | - Fengjiao Zhu
- Department of BiotechnologyDalian Institute of Chemical PhysicsChinese Academy of Sciences Dalian 116023 China
| | - Yong Luo
- State Key Laboratory of Fine ChemicalsDepartment of Chemical EngineeringDalian University of Technology Dalian 116024 China
| | - Tingjiao Liu
- College of StomatologyDalian Medical University Dalian 116044 China
| | - Bingcheng Lin
- Department of BiotechnologyDalian Institute of Chemical PhysicsChinese Academy of Sciences Dalian 116023 China
| | - Yao Lu
- Department of BiotechnologyDalian Institute of Chemical PhysicsChinese Academy of Sciences Dalian 116023 China
| |
Collapse
|
7
|
Abdullah MAA, Wang J. Ultrasimple Single-Cell Detection of Multiple Cytokines by a Nanowell Chip Integrated with Encoded Microarrays. ACS Sens 2019; 4:2296-2302. [PMID: 31423780 DOI: 10.1021/acssensors.9b00765] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Cytokine production is often regarded as the marker of immune cells' activation status. The spectrum and temporal secretion of cytokines are dramatically varied between cell phenotypes and even within the same phenotype. Multiparameter analysis of individual immune cell's cytokine secretion has always been a challenging and complicated process that needs special facilities in a laboratory setting. Herein, we present an ultrasimple method with high sensitivity and high robustness to quantify cytokine expression at the single-cell resolution. A microchip is developed based on poly(dimethylsiloxane) nanowells on sticky tape, while each nanowell is integrated with a DNA-antibody convertible microarray. Only pipetting is needed for the whole single-cell analysis process. The sensitivity of the assay is evaluated by measuring various concentrations of six recombinant cytokine proteins, which was found comparable to conventional methods. Once single cells are loaded to nanowells and incubated there, a Fluorinert FC-40 is used to isolate nanowells; so, cytokines from those cells are captured by separate microarrays. The rest of the sandwich enzyme-linked immunosorbent assay detection process is also executed simply by pipetting of various reagents. This method is validated by measuring cytokine production from hundreds of single cells. It has simplified a typically sophisticated multiplex single-cell assay into an instrument-free, point-of-detection technology, and thus it may find a broad utility in clinical diagnostics.
Collapse
Affiliation(s)
- Mohammed A. A. Abdullah
- Multiplex Biotechnology Laboratory, Department of Chemistry, University at Albany, State University of New York, Albany, New York 12222, United States
| | - Jun Wang
- Multiplex Biotechnology Laboratory, Department of Chemistry, University at Albany, State University of New York, Albany, New York 12222, United States
- Cancer Research Center, University at Albany, State University of New York, Rensselaer, New York 12144, United States
| |
Collapse
|
8
|
Abstract
Single-cell omics studies provide unique information regarding cellular heterogeneity at various levels of the molecular biology central dogma. This knowledge facilitates a deeper understanding of how underlying molecular and architectural changes alter cell behavior, development, and disease processes. The emerging microchip-based tools for single-cell omics analysis are enabling the evaluation of cellular omics with high throughput, improved sensitivity, and reduced cost. We review state-of-the-art microchip platforms for profiling genomics, epigenomics, transcriptomics, proteomics, metabolomics, and multi-omics at single-cell resolution. We also discuss the background of and challenges in the analysis of each molecular layer and integration of multiple levels of omics data, as well as how microchip-based methodologies benefit these fields. Additionally, we examine the advantages and limitations of these approaches. Looking forward, we describe additional challenges and future opportunities that will facilitate the improvement and broad adoption of single-cell omics in life science and medicine.
Collapse
Affiliation(s)
- Yanxiang Deng
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut 06511, USA; , ,
| | - Amanda Finck
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut 06511, USA; , ,
| | - Rong Fan
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut 06511, USA; , ,
| |
Collapse
|
9
|
Armbrecht L, Müller RS, Nikoloff J, Dittrich PS. Single-cell protein profiling in microchambers with barcoded beads. MICROSYSTEMS & NANOENGINEERING 2019; 5:55. [PMID: 31700673 PMCID: PMC6826046 DOI: 10.1038/s41378-019-0099-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 08/10/2019] [Accepted: 08/12/2019] [Indexed: 05/21/2023]
Abstract
Single-cell profiling provides insights into cellular behaviour that macroscale cell cultures and bulk measurements cannot reveal. In the context of personalized cancer treatment, the profiling of individual tumour cells may lead to higher success rates for therapies by rapidly selecting the most efficacious drugs. Currently, genomic analysis at the single-cell level is available through highly sensitive sequencing approaches. However, the identification and quantification of intracellular or secreted proteins or metabolites remains challenging. Here, we introduce a microfluidic method that facilitates capture, automated data acquisition and the multiplexed quantification of proteins from individual cells. The microfluidic platform comprises 1026 chambers with a volume of 152 pL each, in which single cells and barcoded beads are co-immobilized. We demonstrated multiplexed single-cell protein quantification with three different mammalian cell lines, including two model breast cancer cell lines. We established on-chip immunoassays for glyceraldehyde-3-phosphate dehydrogenase (GAPDH), galectin-3 (Gal-3) and galectin-3 binding protein (Gal-3bp) with detection limits as low as 7.0 × 104, 2.3 × 105 and 1.8 × 103 molecules per cell, respectively. The three investigated cell types had high cytosolic levels of GAPDH and could be clearly differentiated by their expression levels of Gal-3 and Gal-3bp, which are important factors that contribute to cancer metastasis. Because it employed commercially available barcoded beads for this study, our platform could be easily used for the single-cell protein profiling of several hundred different targets. Moreover, this versatile method is applicable to the analysis of bacteria, yeast and mammalian cells and nanometre-sized lipid vesicles.
Collapse
Affiliation(s)
- Lucas Armbrecht
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Rafael Sebastian Müller
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Jonas Nikoloff
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Petra Stephanie Dittrich
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| |
Collapse
|
10
|
Bhowmick S, Wang J. Microchip Cytometry for Multiplexed Single-Cell Protein Detection in a Low-Resource Setting toward Point of Care Diagnosis. ACS Sens 2018; 3:2604-2612. [PMID: 30421607 DOI: 10.1021/acssensors.8b01015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Multiplex measurement of protein expression with the single-cell resolution has been challenging. Although a few conventional approaches including flow cytometry and immunofluorescence-based methods have been developed to detect proteins in individual cells, they are either dependent on bulky instrument or not multiplexed and high-throughput enough. Here we present a portable single-cell analysis system that is operable in a resource-limited environment. A stand-sit microchip housed in a clamp enables simple and instrument-free operation of all necessary steps, and the detection based on immunogold enhancement exonerates the reliance on fluorescence optics and electronics. The quantified sensitivity was found comparable to the conventional fluorescence approaches. We used this system to analyze five immune effector proteins and found the system is equally effective to detect those proteins in hundreds of single cells. Significant increase of cytokine protein production by THP1 monocytes was observed upon stimulation by lipopolysaccharide. Further study showed that a low-end imaging setup with low resolution can also detect signals without much loss of sensitivity. Taken together, this portable multiplex single-cell system may find broad biomedical applications in a field setting.
Collapse
Affiliation(s)
- Sirsendu Bhowmick
- Multiplex Biotechnology Laboratory, Department of Chemistry, University at Albany, State University of New York, Albany, New York 12222, United States
| | - Jun Wang
- Multiplex Biotechnology Laboratory, Department of Chemistry, University at Albany, State University of New York, Albany, New York 12222, United States
- Cancer Research Center, University at Albany, State University of New York, Rensselaer, New York 12144, United States
| |
Collapse
|
11
|
Abstract
Quantification of single-cell proteomics provides key insights in the field of cellular heterogeneity. This chapter discusses the emerging techniques that are being used to measure the protein copy numbers at the single-cell level, which includes flow cytometry, mass cytometry, droplet cytometry, microengraving, and single-cell barcoding microchip. The advantages and limitations of each technique are compared, and future research opportunities are highlighted.
Collapse
|
12
|
Prakadan SM, Shalek AK, Weitz DA. Scaling by shrinking: empowering single-cell 'omics' with microfluidic devices. Nat Rev Genet 2017; 18:345-361. [PMID: 28392571 DOI: 10.1038/nrg.2017.15] [Citation(s) in RCA: 220] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Recent advances in cellular profiling have demonstrated substantial heterogeneity in the behaviour of cells once deemed 'identical', challenging fundamental notions of cell 'type' and 'state'. Not surprisingly, these findings have elicited substantial interest in deeply characterizing the diversity, interrelationships and plasticity among cellular phenotypes. To explore these questions, experimental platforms are needed that can extensively and controllably profile many individual cells. Here, microfluidic structures - whether valve-, droplet- or nanowell-based - have an important role because they can facilitate easy capture and processing of single cells and their components, reducing labour and costs relative to conventional plate-based methods while also improving consistency. In this article, we review the current state-of-the-art methodologies with respect to microfluidics for mammalian single-cell 'omics' and discuss challenges and future opportunities.
Collapse
Affiliation(s)
- Sanjay M Prakadan
- Institute for Medical Engineering &Science (IMES) and Department of Chemistry, MIT, Cambridge, Massachusetts 02139, USA.,Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts 02139, USA.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Alex K Shalek
- Institute for Medical Engineering &Science (IMES) and Department of Chemistry, MIT, Cambridge, Massachusetts 02139, USA.,Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts 02139, USA.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - David A Weitz
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA.,Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
13
|
Affiliation(s)
- Lucas Armbrecht
- Department of Biosystems Science and Engineering, ETH Zurich, CH-8093 Zurich, Switzerland
| | | |
Collapse
|