1
|
Hanson KA, Mauland BA, Shastri A, Wisenden BD. Yellowtail damselfish Chrysiptera parasema can associate predation risk with the acoustic call of a heterospecific damselfish following pairing with conspecific alarm cues. JOURNAL OF FISH BIOLOGY 2024; 104:1579-1586. [PMID: 38417911 DOI: 10.1111/jfb.15706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 03/01/2024]
Abstract
The ability to detect and respond to the presence of predation risk is under intense selection, especially for small-bodied fishes. Damselfishes (Pomacentridae) use auditory vocalizations during inter- and intrasexual interactions, but it is not known if they can use vocalizations in the context of predator-prey interactions. Here, we test if yellowtail damselfish, Chrysiptera parasema, can learn to associate the territorial vocalization of heterospecific humbug damselfish Dascyllus aruanus with predation risk. In conditioning trials yellowtail damselfish were presented with the territorial call of humbug damselfish while either blank water (control treatment) or chemical alarm cue derived from damaged skin of conspecific yellowtail damselfish was introduced. In conditioning trials, fish exposed to alarm cue exhibited increased activity and spent more time in the water column relative to fish that received the control treatment. After a single conditioning trial, conditioned fish were exposed again to the territorial call of humbug damselfish. Fish conditioned with the call + alarm cue showed increased activity and spent more time in the water column relative to fish that had been conditioned with the control treatment. These data indicate associative learning of an auditory stimulus with predation risk in a species that regularly uses auditory signalling in other contexts. Recordings of conditioning and test trials failed to detect any acoustic calls produced by test fish in response to the perception of predation risk. Thus, although yellowtail damselfish can associate risk with auditory stimuli, we found no evidence that they produce an alarm call.
Collapse
Affiliation(s)
- Kathryn A Hanson
- Biosciences Department, Minnesota State University Moorhead, Moorhead, Minnesota, USA
| | - Brooke A Mauland
- Biosciences Department, Minnesota State University Moorhead, Moorhead, Minnesota, USA
| | - Ananda Shastri
- Department of Physics and Astronomy, Minnesota State University Moorhead, Moorhead, Minnesota, USA
| | - Brian D Wisenden
- Biosciences Department, Minnesota State University Moorhead, Moorhead, Minnesota, USA
| |
Collapse
|
2
|
Fakan EP, Allan BJM, Illing B, Hoey AS, McCormick MI. Habitat complexity and predator odours impact on the stress response and antipredation behaviour in coral reef fish. PLoS One 2023; 18:e0286570. [PMID: 37379294 DOI: 10.1371/journal.pone.0286570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 05/18/2023] [Indexed: 06/30/2023] Open
Abstract
Mass coral bleaching events coupled with local stressors have caused regional-scale loss of corals on reefs globally. Following the loss of corals, the structural complexity of these habitats is often reduced. By providing shelter, obscuring visual information, or physically impeding predators, habitat complexity can influence predation risk and the perception of risk by prey. Yet little is known on how habitat complexity and risk assessment interact to influence predator-prey interactions. To better understand how prey's perception of threats may shift in degraded ecosystems, we reared juvenile Pomacentrus chrysurus in environments of various habitat complexity levels and then exposed them to olfactory risk odours before simulating a predator strike. We found that the fast-start escape responses were enhanced when forewarned with olfactory cues of a predator and in environments of increasing complexity. However, no interaction between complexity and olfactory cues was observed in escape responses. To ascertain if the mechanisms used to modify these escape responses were facilitated through hormonal pathways, we conducted whole-body cortisol analysis. Cortisol concentrations interacted with habitat complexity and risk odours, such that P. chrysurus exhibited elevated cortisol levels when forewarned with predator odours, but only when complexity levels were low. Our study suggests that as complexity is lost, prey may more appropriately assess predation risk, likely as a result of receiving additional visual information. Prey's ability to modify their responses depending on the environmental context suggests that they may be able to partly alleviate the risk of increased predator-prey interactions as structural complexity is reduced.
Collapse
Affiliation(s)
- Eric P Fakan
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, Australia
- College of Sciences and Engineering, James Cook University, Townsville, QLD, Australia
| | - Bridie J M Allan
- Department of Marine Science, University of Otago, Dunedin, New Zealand
| | - Björn Illing
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, Australia
- Thünen Institute of Fisheries Ecology, Bremerhaven, Germany
| | - Andrew S Hoey
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, Australia
- College of Sciences and Engineering, James Cook University, Townsville, QLD, Australia
| | - Mark I McCormick
- Coastal Marine Field Station, School of Science, University of Waikato, Tauranga, New Zealand
| |
Collapse
|
3
|
Living in mixed species groups promotes predator learning in degraded habitats. Sci Rep 2021; 11:19335. [PMID: 34588494 PMCID: PMC8481234 DOI: 10.1038/s41598-021-98224-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 08/17/2021] [Indexed: 11/08/2022] Open
Abstract
Living in mix-species aggregations provides animals with substantive anti-predator, foraging and locomotory advantages while simultaneously exposing them to costs, including increased competition and pathogen exposure. Given each species possess unique morphology, competitive ability, parasite vulnerability and predator defences, we can surmise that each species in mixed groups will experience a unique set of trade-offs. In addition to this unique balance, each species must also contend with anthropogenic changes, a relatively new, and rapidly increasing phenomenon, that adds further complexity to any system. This complex balance of biotic and abiotic factors is on full display in the exceptionally diverse, yet anthropogenically degraded, Great Barrier Reef of Australia. One such example within this intricate ecosystem is the inability of some damselfish to utilize their own chemical alarm cues within degraded habitats, leaving them exposed to increased predation risk. These cues, which are released when the skin is damaged, warn nearby individuals of increased predation risk and act as a crucial associative learning tool. Normally, a single exposure of alarm cues paired with an unknown predator odour facilitates learning of that new odour as dangerous. Here, we show that Ambon damselfish, Pomacentrus amboinensis, a species with impaired alarm responses in degraded habitats, failed to learn a novel predator odour as risky when associated with chemical alarm cues. However, in the same degraded habitats, the same species learned to recognize a novel predator as risky when the predator odour was paired with alarm cues of the closely related, and co-occurring, whitetail damselfish, Pomacentrus chrysurus. The importance of this learning opportunity was underscored in a survival experiment which demonstrated that fish in degraded habitats trained with heterospecific alarm cues, had higher survival than those we tried to train with conspecific alarm cues. From these data, we conclude that redundancy in learning mechanisms among prey guild members may lead to increased stability in rapidly changing environments.
Collapse
|
4
|
Guo D, Ding J, Liu H, Zhou L, Feng J, Luo B, Liu Y. Social calls influence the foraging behavior in wild big-footed myotis. Front Zool 2021; 18:3. [PMID: 33413435 PMCID: PMC7791762 DOI: 10.1186/s12983-020-00384-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 12/21/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Why a variety of social animals emit foraging-associated calls during group foraging remains an open question. These vocalizations may be used to recruit conspecifics to food patches (i.e. food advertisement hypothesis) or defend food resources against competitors (food defence hypothesis), presumably depending on food availability. Insectivorous bats rely heavily on vocalizations for navigation, foraging, and social interactions. In this study, we used free-ranging big-footed myotis (Myotis macrodactylus Temminck, 1840) to test whether social calls produced in a foraging context serve to advertise food patches or to ward off food competitors. Using a combination of acoustic recordings, playback experiments with adult females and dietary monitoring (light trapping and DNA metabarcoding techniques), we investigated the relationship between insect availability and social vocalizations in foraging bats. RESULTS The big-footed myotis uttered low-frequency social calls composed of 7 syllable types during foraging interactions. Although the dietary composition of bats varied across different sampling periods, Diptera, Lepidoptera, and Trichoptera were the most common prey consumed. The number of social vocalizations was primarily predicted by insect abundance, insect species composition, and echolocation vocalizations from conspecifics. The number of conspecific echolocation pulses tended to decrease following the emission of most social calls. Feeding bats consistently decreased foraging attempts and food consumption during playbacks of social calls with distinctive structures compared to control trials. The duration of flight decreased 1.29-1.96 fold in the presence of social calls versus controls. CONCLUSIONS These results support the food defence hypothesis, suggesting that foraging bats employ social calls to engage in intraspecific food competition. This study provides correlative evidence for the role of insect abundance and diversity in influencing the emission of social calls in insectivorous bats. Our findings add to the current knowledge of the function of social calls in echolocating bats.
Collapse
Affiliation(s)
- Dongge Guo
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, 2555 Jingyue Street, Changchun, 130117, China
| | - Jianan Ding
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, 2555 Jingyue Street, Changchun, 130117, China
| | - Heng Liu
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, 2555 Jingyue Street, Changchun, 130117, China
| | - Lin Zhou
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, 2555 Jingyue Street, Changchun, 130117, China
| | - Jiang Feng
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, 2555 Jingyue Street, Changchun, 130117, China.,College of Life Science, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Bo Luo
- Key Laboratory of Southwest China Wildlife Resources Conservation of Ministry of Education, China West Normal University, Nanchong, 637002, China.
| | - Ying Liu
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, 2555 Jingyue Street, Changchun, 130117, China.
| |
Collapse
|
5
|
Ferrari MCO, McCormick MI, Fakan E, Barry R, Chivers DP. The fading of fear effects due to coral degradation is modulated by community composition. Funct Ecol 2020. [DOI: 10.1111/1365-2435.13655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Maud C. O. Ferrari
- Department of Biomedical Sciences WCVMUniversity of Saskatchewan Saskatoon SK Canada
| | - Mark I. McCormick
- Department of Marine Biology and Aquaculture James Cook University Townsville QLD Australia
- ARC Centre of Excellence for Coral Reef Studies James Cook University Townsville QLD Australia
| | - Eric Fakan
- Department of Marine Biology and Aquaculture James Cook University Townsville QLD Australia
| | - Randall Barry
- Department of Marine Biology and Aquaculture James Cook University Townsville QLD Australia
| | | |
Collapse
|
6
|
Habitat degradation and predators have independent trait-mediated effects on prey. Sci Rep 2019; 9:15705. [PMID: 31673067 PMCID: PMC6823502 DOI: 10.1038/s41598-019-51798-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 10/07/2019] [Indexed: 11/13/2022] Open
Abstract
Coral reefs are degrading globally leading to a catastrophic loss of biodiversity. While shifts in the species composition of communities have been well documented associated with habitat change, the mechanisms that underlie change are often poorly understood. Our study experimentally examines the effects of coral degradation on the trait-mediated effects of predators on the morphology, behaviour and performance of a juvenile coral reef fish. Juvenile damselfish were exposed to predators or controls (omnivore or nothing) in seawater that had flowed over either live or dead-degraded coral over a 45d period. No interaction between water source and predator exposure was found. However, fish exposed to degraded water had larger false eyespots relative to the size of their true eyes, and were more active, both of which may lead to a survival advantage. Non-consumptive effects of predators on prey occurred regardless of water source and included longer and deeper bodies, large false eyespots that may distract predator strikes away from the vulnerable head region, and shorter latencies in their response to a simulated predator strike. Research underscores that phenotypic plasticity may assist fishes in coping with habitat degradation and promote greater resilience to habitat change than may otherwise be predicted.
Collapse
|
7
|
Ruhl EJ, Dixson DL. 3D printed objects do not impact the behavior of a coral-associated damselfish or survival of a settling stony coral. PLoS One 2019; 14:e0221157. [PMID: 31419264 PMCID: PMC6697346 DOI: 10.1371/journal.pone.0221157] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 07/31/2019] [Indexed: 11/18/2022] Open
Abstract
3D printing technology offers significant advantages in the development of objects and tools across an array of fields and has been implemented in an increasing number of ecological studies. As rates of degradation or chemical leaching of 3D printed models has not been well documented under environmental conditions, it is essential to examine if these objects will alter the behavior or impact the survivorship of the focal species prior to widespread implementation. Here, we explored the efficacy of using 3D printed models in coral reef behavioral research, an area of study where this form of additive manufacturing could offer significant advantages. Coral-associated blue-green chromis (Chromis viridis) individuals were exposed to natural and 3D printed coral habitats, and larval mustard hill coral (Porites astreoides) were offered 3D printed substrate as a settlement surface. Habitat association and behavioral analyses indicated that C. viridis did not discriminate or display modified behaviors between 3D printed and natural coral skeletons or between 3D printed materials. P. astreoides displayed significantly higher settlement when provided with 3D printed settlement surfaces than when provided with no settlement surface and settled at similar rates between 3D printed surfaces of differing materials. Additionally, growth and mortality of P. astreoides settled on different 3D printed surfaces did not significantly differ. Our results suggest that the 3D printed models used in this study are not inherently harmful to a coral reef fish or species of brooding coral, supporting further exploration of the benefits that these objects and others produced with additive manufacturing may offer as ecological research tools.
Collapse
Affiliation(s)
- Emily J. Ruhl
- School of Marine Science and Policy, University of Delaware, Lewes, DE, United States of America
| | - Danielle L. Dixson
- School of Marine Science and Policy, University of Delaware, Lewes, DE, United States of America
| |
Collapse
|
8
|
Gil MA, Baskett ML, Schreiber SJ. Social information drives ecological outcomes among competing species. Ecology 2019; 100:e02835. [PMID: 31330041 DOI: 10.1002/ecy.2835] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 06/15/2019] [Accepted: 06/25/2019] [Indexed: 11/06/2022]
Abstract
Through its behavior, an organism intentionally or unintentionally produces information. Use of this "social information" by surrounding conspecifics or heterospecifics is a ubiquitous phenomenon that can drive strong correlations in fitness-associated behaviors, such as predator avoidance, enhancing survival within and among competing species. By eliciting indirect positive interactions between competing individuals or species, social information might alter overall competitive outcomes. To test this potential, we present new theory that quantifies the effect of social information, modeled as predator avoidance signals/cues, on the outcomes from intraspecific and interspecific competition. Our analytical and numerical results reveal that social information can rescue populations from extinction and can shift the long-term outcome of competitive interactions from mutual exclusion to coexistence, or vice versa, depending on the relative strengths of intraspecific and interspecific social information and competition. Our findings highlight the importance of social information in determining ecological outcomes.
Collapse
Affiliation(s)
- M A Gil
- Department of Environmental Science and Policy and Center for Population Biology, University of California, Davis, California, 95616, USA.,Institute of Marine Sciences, University of California, Santa Cruz, California, 95060, USA.,Southwest Fisheries Science Center, National Oceanic and Atmospheric Administration, Santa Cruz, California, 95060, USA
| | - M L Baskett
- Department of Environmental Science and Policy and Center for Population Biology, University of California, Davis, California, 95616, USA
| | - S J Schreiber
- Department of Evolution and Ecology and Center for Population Biology, University of California, Davis, California, 95616, USA
| |
Collapse
|
9
|
Benkwitt CE, Wilson SK, Graham NAJ. Seabird nutrient subsidies alter patterns of algal abundance and fish biomass on coral reefs following a bleaching event. GLOBAL CHANGE BIOLOGY 2019; 25:2619-2632. [PMID: 31157944 DOI: 10.1111/gcb.14643] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 04/02/2019] [Accepted: 04/02/2019] [Indexed: 06/09/2023]
Abstract
Cross-ecosystem nutrient subsidies play a key role in the structure and dynamics of recipient communities, but human activities are disrupting these links. Because nutrient subsidies may also enhance community stability, the effects of losing these inputs may be exacerbated in the face of increasing climate-related disturbances. Nutrients from seabirds nesting on oceanic islands enhance the productivity and functioning of adjacent coral reefs, but it is unknown whether these subsidies affect the response of coral reefs to mass bleaching events or whether the benefits of these nutrients persist following bleaching. To answer these questions, we surveyed benthic organisms and fishes around islands with seabirds and nearby islands without seabirds due to the presence of invasive rats. Surveys were conducted in the Chagos Archipelago, Indian Ocean, immediately before the 2015-2016 mass bleaching event and, in 2018, two years following the bleaching event. Regardless of the presence of seabirds, relative coral cover declined by 32%. However, there was a post-bleaching shift in benthic community structure around islands with seabirds, which did not occur around islands with invasive rats, characterized by increases in two types of calcareous algae (crustose coralline algae [CCA] and Halimeda spp.). All feeding groups of fishes were positively affected by seabirds, but only herbivores and piscivores were unaffected by the bleaching event and sustained the greatest difference in biomass between islands with seabirds versus those with invasive rats. By contrast, corallivores and planktivores, both of which are coral-dependent, experienced the greatest losses following bleaching. Even though seabird nutrients did not enhance community-wide resistance to bleaching, they may still promote recovery of these reefs through their positive influence on CCA and herbivorous fishes. More broadly, the maintenance of nutrient subsidies, via strategies including eradication of invasive predators, may be important in shaping the response of ecological communities to global climate change.
Collapse
Affiliation(s)
| | - Shaun K Wilson
- Department of Biodiversity, Conservation and Attractions, Perth, Western Australia, Australia
- Oceans Institute, University of Western Australia, Crawley, Western Australia, Australia
| | | |
Collapse
|
10
|
Chivers DP, McCormick MI, Fakan EP, Barry RP, Edmiston JW, Ferrari MCO. Coral degradation alters predator odour signatures and influences prey learning and survival. Proc Biol Sci 2019; 286:20190562. [PMID: 31138070 DOI: 10.1098/rspb.2019.0562] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Habitat degradation is a key factor leading to the global loss of biodiversity. This problem is particularly acute in coral reef ecosystems. We investigated whether recognition of predator odours by damselfish was influenced by coral degradation and whether these changes altered survival in the wild. We taught whitespot damselfish to recognize the odour of a predator in the presence of live/healthy coral or dead/degraded coral. Fish were tested for a response to predator odours in environments that matched their conditioning environment or in environments that were mismatched. Next, we taught blue damselfish to recognize the odour of three common reef predators in live and degraded coral environments and then stocked them onto live or degraded patch reefs, where we monitored their subsequent response to predator odour along with their survival. Damselfish learned to recognize predator odours in both coral environments, but the intensity of their antipredator response was much greater when the conditioning and test environments matched. Fish released on degraded coral had about 50% higher survival if they had been trained in the presence of degraded coral rather than live coral. Altering the intensity of antipredator responses could have rather profound consequences on population growth.
Collapse
Affiliation(s)
- D P Chivers
- 1 Department of Biology, University of Saskatchewan , Saskatoon, Saskatchewan, Canada S7N 5E2
| | - M I McCormick
- 2 ARC Centre of Excellence for Coral Reef Studies, and College of Marine & Environmental Sciences, James Cook University , Townsville, Queensland 4811 , Australia
| | - E P Fakan
- 2 ARC Centre of Excellence for Coral Reef Studies, and College of Marine & Environmental Sciences, James Cook University , Townsville, Queensland 4811 , Australia
| | - R P Barry
- 2 ARC Centre of Excellence for Coral Reef Studies, and College of Marine & Environmental Sciences, James Cook University , Townsville, Queensland 4811 , Australia
| | - J W Edmiston
- 2 ARC Centre of Excellence for Coral Reef Studies, and College of Marine & Environmental Sciences, James Cook University , Townsville, Queensland 4811 , Australia
| | - M C O Ferrari
- 3 Department of Biomedical Sciences, WCVM, University of Saskatchewan , Saskatoon, Saskatchewan, Canada S7W 5B4
| |
Collapse
|
11
|
Barrett B, Zepeda E, Pollack L, Munson A, Sih A. Counter-Culture: Does Social Learning Help or Hinder Adaptive Response to Human-Induced Rapid Environmental Change? Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00183] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
12
|
Laubenstein TD, Rummer JL, McCormick MI, Munday PL. A negative correlation between behavioural and physiological performance under ocean acidification and warming. Sci Rep 2019; 9:4265. [PMID: 30862781 PMCID: PMC6414711 DOI: 10.1038/s41598-018-36747-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 11/23/2018] [Indexed: 11/16/2022] Open
Abstract
Many studies have examined the average effects of ocean acidification and warming on phenotypic traits of reef fishes, finding variable, but often negative effects on behavioural and physiological performance. Yet the presence and nature of a relationship between these traits is unknown. A negative relationship between phenotypic traits could limit individual performance and even the capacity of populations to adapt to climate change. Here, we examined the relationship between behavioural and physiological performance of a juvenile reef fish under elevated CO2 and temperature in a full factorial design. Behaviourally, the response to an alarm odour was negatively affected by elevated CO2, but not elevated temperature. Physiologically, aerobic scope was significantly diminished under elevated temperature, but not under elevated CO2. At the individual level, there was no relationship between behavioural and physiological traits in the control and single-stressor treatments. However, a statistically significant negative relationship was detected between the traits in the combined elevated CO2 and temperature treatment. Our results demonstrate that trade-offs in performance between behavioural and physiological traits may only be evident when multiple climate change stressors are considered, and suggest that this negative relationship could limit adaptive potential to climate change.
Collapse
Affiliation(s)
- Taryn D Laubenstein
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia.
| | - Jodie L Rummer
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia
| | - Mark I McCormick
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia.,College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia
| | - Philip L Munday
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia
| |
Collapse
|
13
|
|
14
|
Gil MA, Hein AM, Spiegel O, Baskett ML, Sih A. Social Information Links Individual Behavior to Population and Community Dynamics. Trends Ecol Evol 2018; 33:535-548. [DOI: 10.1016/j.tree.2018.04.010] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 04/13/2018] [Accepted: 04/16/2018] [Indexed: 11/17/2022]
|
15
|
Pratchett MS, Thompson CA, Hoey AS, Cowman PF, Wilson SK. Effects of Coral Bleaching and Coral Loss on the Structure and Function of Reef Fish Assemblages. ECOLOGICAL STUDIES 2018. [DOI: 10.1007/978-3-319-75393-5_11] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
16
|
Natt M, Lönnstedt OM, McCormick MI. Coral reef fish predator maintains olfactory acuity in degraded coral habitats. PLoS One 2017; 12:e0179300. [PMID: 28658295 PMCID: PMC5489151 DOI: 10.1371/journal.pone.0179300] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Accepted: 05/26/2017] [Indexed: 11/30/2022] Open
Abstract
Coral reefs around the world are rapidly degrading due to a range of environmental stressors. Habitat degradation modifies the sensory landscape within which predator-prey interactions occur, with implications for olfactory-mediated behaviours. Predator naïve settlement-stage damselfish rely on conspecific damage-released odours (i.e., alarm odours) to inform risk assessments. Yet, species such as the Ambon damselfish, Pomacentrus amboinensis, become unable to respond appropriately to these cues when living in dead-degraded coral habitats, leading to increased mortality through loss of vigilance. Reef fish predators also rely on odours from damaged prey to locate, assess prey quality and engage in prey-stealing, but it is unknown whether their responses are also modified by the change to dead-degraded coral habitats. Implications for prey clearly depend on how their predatory counterparts are affected, therefore the present study tested whether olfactory-mediated foraging responses in the dusky dottyback, Pseudochromis fuscus, a common predator of P. amboinensis, were similarly affected by coral degradation. A y-maze was used to measure the ability of Ps. fuscus to detect and move towards odours, against different background water sources. Ps. fuscus were exposed to damage-released odours from juvenile P. amboinensis, or a control cue of seawater, against a background of seawater treated with either healthy or dead-degraded hard coral. Predators exhibited an increased time allocation to the chambers of y-mazes injected with damage-released odours, with comparable levels of response in both healthy and dead-degraded coral treated waters. In control treatments, where damage-released odours were replaced with a control seawater cue, fish showed no increased preference for either chamber of the y-maze. Our results suggest that olfactory-mediated foraging behaviours may persist in Ps. fuscus within dead-degraded coral habitats. Ps. fuscus may consequently gain a sensory advantage over P. amboinensis, potentially altering the outcome of predator-prey interactions.
Collapse
Affiliation(s)
- Michael Natt
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia
- Department of Marine Biology and Aquaculture, James Cook University, Townsville, Queensland, Australia
| | - Oona M. Lönnstedt
- Department of Ecology and Genetics, Limnology, Uppsala University, Uppsala, Sweden
| | - Mark I. McCormick
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia
- Department of Marine Biology and Aquaculture, James Cook University, Townsville, Queensland, Australia
- * E-mail:
| |
Collapse
|