1
|
Rhodes JD, Goldenring JR, Lee SH. Regulation of metaplasia and dysplasia in the stomach by the stromal microenvironment. Exp Mol Med 2024; 56:1322-1330. [PMID: 38825636 PMCID: PMC11263556 DOI: 10.1038/s12276-024-01240-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/03/2024] [Accepted: 03/03/2024] [Indexed: 06/04/2024] Open
Abstract
Research on the microenvironment associated with gastric carcinogenesis has focused on cancers of the stomach and often underestimates premalignant stages such as metaplasia and dysplasia. Since epithelial interactions with T cells, macrophages, and type 2 innate lymphoid cells (ILC2s) are indispensable for the formation of precancerous lesions in the stomach, understanding the cellular interactions that promote gastric precancer warrants further investigation. Although various types of immune cells have been shown to play important roles in gastric carcinogenesis, it remains unclear how stromal cells such as fibroblasts influence epithelial transformation in the stomach, especially during precancerous stages. Fibroblasts exist as distinct populations across tissues and perform different functions depending on the expression patterns of cell surface markers and secreted factors. In this review, we provide an overview of known microenvironmental components in the stroma with an emphasis on fibroblast subpopulations and their roles during carcinogenesis in tissues including breast, pancreas, and stomach. Additionally, we offer insights into potential targets of tumor-promoting fibroblasts and identify open areas of research related to fibroblast plasticity and the modulation of gastric carcinogenesis.
Collapse
Affiliation(s)
- Jared D Rhodes
- Program in Cancer Biology, Nashville, TN, USA
- Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - James R Goldenring
- Program in Cancer Biology, Nashville, TN, USA.
- Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, TN, USA.
- Section of Surgical Sciences, Nashville, TN, USA.
- Department of Cell and Developmental Biology, Nashville, TN, USA.
- Nashville VA Medical Center, Nashville, TN, USA.
| | - Su-Hyung Lee
- Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, TN, USA.
- Section of Surgical Sciences, Nashville, TN, USA.
| |
Collapse
|
2
|
Tong QY, Pang MJ, Hu XH, Huang XZ, Sun JX, Wang XY, Burclaff J, Mills JC, Wang ZN, Miao ZF. Gastric intestinal metaplasia: progress and remaining challenges. J Gastroenterol 2024; 59:285-301. [PMID: 38242996 DOI: 10.1007/s00535-023-02073-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 12/26/2023] [Indexed: 01/21/2024]
Abstract
Most gastric cancers arise in the setting of chronic inflammation which alters gland organization, such that acid-pumping parietal cells are lost, and remaining cells undergo metaplastic change in differentiation patterns. From a basic science perspective, recent progress has been made in understanding how atrophy and initial pyloric metaplasia occur. However, pathologists and cancer biologists have long been focused on the development of intestinal metaplasia patterns in this setting. Arguably, much less progress has been made in understanding the mechanisms that lead to the intestinalization seen in chronic atrophic gastritis and pyloric metaplasia. One plausible explanation for this disparity lies in the notable absence of reliable and reproducible small animal models within the field, which would facilitate the investigation of the mechanisms underlying the development of gastric intestinal metaplasia (GIM). This review offers an in-depth exploration of the current state of research in GIM, shedding light on its pivotal role in tumorigenesis. We delve into the histological subtypes of GIM and explore their respective associations with tumor formation. We present the current repertoire of biomarkers utilized to delineate the origins and progression of GIM and provide a comprehensive survey of the available, albeit limited, mouse lines employed for modeling GIM and engage in a discussion regarding potential cell lineages that serve as the origins of GIM. Finally, we expound upon the myriad signaling pathways recognized for their activity in GIM and posit on their potential overlap and interactions that contribute to the ultimate manifestation of the disease phenotype. Through our exhaustive review of the progression from gastric disease to GIM, we aim to establish the groundwork for future research endeavors dedicated to elucidating the etiology of GIM and developing strategies for its prevention and treatment, considering its potential precancerous nature.
Collapse
Affiliation(s)
- Qi-Yue Tong
- Department of Surgical Oncology and General Surgery, The First Affiliated Hospital of China Medical University, 155 N. Nanjing Street, Shenyang, 110001, Liaoning, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, 155 N. Nanjing Street, Shenyang, 110001, Liaoning, China
| | - Min-Jiao Pang
- Department of Surgical Oncology and General Surgery, The First Affiliated Hospital of China Medical University, 155 N. Nanjing Street, Shenyang, 110001, Liaoning, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, 155 N. Nanjing Street, Shenyang, 110001, Liaoning, China
| | - Xiao-Hai Hu
- Department of Surgical Oncology and General Surgery, The First Affiliated Hospital of China Medical University, 155 N. Nanjing Street, Shenyang, 110001, Liaoning, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, 155 N. Nanjing Street, Shenyang, 110001, Liaoning, China
| | - Xuan-Zhang Huang
- Department of Surgical Oncology and General Surgery, The First Affiliated Hospital of China Medical University, 155 N. Nanjing Street, Shenyang, 110001, Liaoning, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, 155 N. Nanjing Street, Shenyang, 110001, Liaoning, China
| | - Jing-Xu Sun
- Department of Surgical Oncology and General Surgery, The First Affiliated Hospital of China Medical University, 155 N. Nanjing Street, Shenyang, 110001, Liaoning, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, 155 N. Nanjing Street, Shenyang, 110001, Liaoning, China
| | - Xin-Yu Wang
- Department of Surgical Oncology and General Surgery, The First Affiliated Hospital of China Medical University, 155 N. Nanjing Street, Shenyang, 110001, Liaoning, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, 155 N. Nanjing Street, Shenyang, 110001, Liaoning, China
| | - Joseph Burclaff
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina, USA
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina, USA
| | - Jason C Mills
- Section of Gastroenterology and Hepatology, Department of Medicine, Departments of Pathology and Immunology, Molecular and Cellular Biology, Baylor College of Medicine, Houston, USA
| | - Zhen-Ning Wang
- Department of Surgical Oncology and General Surgery, The First Affiliated Hospital of China Medical University, 155 N. Nanjing Street, Shenyang, 110001, Liaoning, China.
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, 155 N. Nanjing Street, Shenyang, 110001, Liaoning, China.
| | - Zhi-Feng Miao
- Department of Surgical Oncology and General Surgery, The First Affiliated Hospital of China Medical University, 155 N. Nanjing Street, Shenyang, 110001, Liaoning, China.
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, 155 N. Nanjing Street, Shenyang, 110001, Liaoning, China.
| |
Collapse
|
3
|
Tsubosaka A, Komura D, Kakiuchi M, Katoh H, Onoyama T, Yamamoto A, Abe H, Seto Y, Ushiku T, Ishikawa S. Stomach encyclopedia: Combined single-cell and spatial transcriptomics reveal cell diversity and homeostatic regulation of human stomach. Cell Rep 2023; 42:113236. [PMID: 37819756 DOI: 10.1016/j.celrep.2023.113236] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/05/2023] [Accepted: 09/24/2023] [Indexed: 10/13/2023] Open
Abstract
The stomach is an important digestive organ with various biological functions. However, because of the complexity of its cellular and glandular composition, its precise cellular biology has yet to be elucidated. In this study, we conducted single-cell RNA sequencing (scRNA-seq) and subcellular-level spatial transcriptomics analysis of the human stomach and constructed the largest dataset to date: a stomach encyclopedia. This dataset consists of approximately 380,000 cells from scRNA-seq and the spatial transcriptome, enabling integrated analyses of transcriptional and spatial information of gastric and metaplastic cells. This analysis identified LEFTY1 as an uncharacterized stem cell marker, which was confirmed through lineage tracing analysis. A wide variety of cell-cell interactions between epithelial and stromal cells, including PDGFRA+BMP4+WNT5A+ fibroblasts, was highlighted in the developmental switch of intestinal metaplasia. Our extensive dataset will function as a fundamental resource in investigations of the stomach, including studies of development, aging, and carcinogenesis.
Collapse
Affiliation(s)
- Ayumu Tsubosaka
- Department of Preventive Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku 1130033, Tokyo, Japan
| | - Daisuke Komura
- Department of Preventive Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku 1130033, Tokyo, Japan
| | - Miwako Kakiuchi
- Department of Preventive Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku 1130033, Tokyo, Japan
| | - Hiroto Katoh
- Department of Preventive Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku 1130033, Tokyo, Japan
| | - Takumi Onoyama
- Department of Preventive Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku 1130033, Tokyo, Japan; Division of Gastroenterology and Nephrology, Department of Multidisciplinary Internal Medicine, School of Medicine, Faculty of Medicine, Tottori University, 36-1, Nishicho, Yonago 683-8504, Tottori, Japan
| | - Asami Yamamoto
- Department of Preventive Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku 1130033, Tokyo, Japan
| | - Hiroyuki Abe
- Dpartment of Pathology, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku 1130033, Tokyo, Japan
| | - Yasuyuki Seto
- Department of Gastrointestinal Surgery, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-kyu 1130033, Tokyo, Japan
| | - Tetsuo Ushiku
- Dpartment of Pathology, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku 1130033, Tokyo, Japan
| | - Shumpei Ishikawa
- Department of Preventive Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku 1130033, Tokyo, Japan; Division of Pathology, National Cancer Center Exploratory Oncology Research & Clinical Trial Center, 6-5-1, Kashiwanoha, Kashiwa 277-8577, Chiba, Japan.
| |
Collapse
|
4
|
Pomerleau V, Nicolas VR, Jurkovic CM, Faucheux N, Lauzon MA, Boisvert FM, Perreault N. FOXL1+ Telocytes in mouse colon orchestrate extracellular matrix biodynamics and wound repair resolution. J Proteomics 2023; 271:104755. [PMID: 36272709 DOI: 10.1016/j.jprot.2022.104755] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 10/06/2022] [Accepted: 10/10/2022] [Indexed: 11/07/2022]
Abstract
Recent studies have identified FoxL1+-telocytes (TCFoxL1+) as key players in gut epithelial-mesenchymal interactions which can determine the colonic microenvironment. Bone morphogenetic protein signaling disruption in TCFoxL1+ alters the physical and cellular microenvironment and leads to colon pathophysiology. This suggests a role for TCFoxL1+ in stromagenesis, but it is hard to identify the specific contribution of TCFoxL1+ when analyzing whole tissue profiling studies. We performed ex vivo deconstruction of control and BmpR1a△FoxL1+ colon samples, isolated the mesenchyme-enriched fractions, and determined the protein composition of the in vivo extracellular matrix (ECM) to analyze microenvironment variation. Matrisomic analysis of mesenchyme fractions revealed modulations in ECM proteins with functions associated with innate immunity, epithelial wound healing, and the collagen network. These results show that TCFoxL1+ is critical in orchestrating the biodynamics of the colon ECM. TCFoxL1+ disfunction reprograms the gut's microenvironment and drives the intestinal epithelium toward colonic pathologies. SIGNIFICANCE: In this study, the method that was elected to isolate ECM proteins might not encompass the full extent of ECM proteins in a tissue, due to the protocol chosen, as this protocol by Naba et al., targets more the insoluble part of the matrisome and eliminates the more soluble components in the first steps. However, this ECM-enrichment strategy represents an improvement and interesting avenue to study ECM proteins in the colon compared to total tissue analysis with a background of abundant cellular protein. Thus, the matrisomic approach presented in this study, and its target validation delivered a broader evaluation of the matrix remodeling occurring in the colonic sub-epithelial mesenchyme of the BmpR1a△FoxL1+ mouse model.
Collapse
Affiliation(s)
- Véronique Pomerleau
- Département d'Immunologie et Biologie Cellulaire, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada.
| | - Vilcy Reyes Nicolas
- Département d'Immunologie et Biologie Cellulaire, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada.
| | - Carla-Marie Jurkovic
- Département d'Immunologie et Biologie Cellulaire, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada.
| | - Nathalie Faucheux
- Département de génie chimique et de génie biotechnologique, Faculté de Génie, Université de Sherbrooke, Sherbrooke, QC, Canada.
| | - Marc-Antoine Lauzon
- Département de génie chimique et de génie biotechnologique, Faculté de Génie, Université de Sherbrooke, Sherbrooke, QC, Canada.
| | - François-Michel Boisvert
- Département d'Immunologie et Biologie Cellulaire, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada.
| | - Nathalie Perreault
- Département d'Immunologie et Biologie Cellulaire, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada.
| |
Collapse
|
5
|
Loss of bone morphogenetic protein signaling in fibroblasts results in CXCL12-driven serrated polyp development. J Gastroenterol 2023; 58:25-43. [PMID: 36326956 PMCID: PMC9825358 DOI: 10.1007/s00535-022-01928-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 09/21/2022] [Indexed: 11/06/2022]
Abstract
Mutations in Bone Morphogenetic Protein (BMP) Receptor (BMPR)1A and SMAD4 are detected in 50% of juvenile polyposis syndrome (JPS) patients, who develop stroma-rich hamartomatous polyps. The established role of stromal cells in regulating BMP activity in the intestine implies a role for stromal cells in polyp development. We used conditional Cre-LoxP mice to investigate how specific loss of BMPR1A in endothelial cells, fibroblasts, or myofibroblasts/smooth muscle cells affects intestinal homeostasis. Selective loss of BMPR1A in fibroblasts causes severe histological changes in the intestines with a significant increase in stromal cell content and epithelial cell hyperproliferation, leading to numerous serrated polyps. This phenotype suggests that crucial changes occur in the fibroblast secretome that influences polyp development. Analyses of publicly available RNA expression databases identified CXCL12 as a potential candidate. RNAscope in situ hybridization showed an evident increase of Cxcl12-expressing fibroblasts. In vitro, stimulation of fibroblasts with BMPs resulted in downregulation of CXCL12, while inhibition of the BMP pathway resulted in gradual upregulation of CXCL12 over time. Moreover, neutralization of CXCL12 in vivo in the fibroblast-specific BMPR1A KO mice resulted in a significant decrease in polyp formation. Finally, in CRC patient specimens, mRNA-expression data showed that patients with high GREMLIN1 and CXCL12 expression had a significantly poorer overall survival. Significantly higher GREMLIN1, NOGGIN, and CXCL12 expression were detected in the Consensus Molecular Subtype 4 (CMS4) colorectal cancers, which are thought to arise from serrated polyps. Taken together, these data imply that fibroblast-specific BMP signaling-CXCL12 interaction could have a role in the etiology of serrated polyp formation.
Collapse
|
6
|
Alfonso AB, Pomerleau V, Nicolás VR, Raisch J, Jurkovic CM, Boisvert FM, Perreault N. Comprehensive Profiling of Early Neoplastic Gastric Microenvironment Modifications and Biodynamics in Impaired BMP-Signaling FoxL1 +-Telocytes. Biomedicines 2022; 11:biomedicines11010019. [PMID: 36672527 PMCID: PMC9856000 DOI: 10.3390/biomedicines11010019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/13/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
FoxL1+telocytes (TCFoxL1+) are novel gastrointestinal subepithelial cells that form a communication axis between the mesenchyme and epithelium. TCFoxL1+ are strategically positioned to be key contributors to the microenvironment through production and secretion of growth factors and extracellular matrix (ECM) proteins. In recent years, the alteration of the bone morphogenetic protein (BMP) signaling in TCFoxL1+ was demonstrated to trigger a toxic microenvironment with ECM remodeling that leads to the development of pre-neoplastic gastric lesions. However, a comprehensive analysis of variations in the ECM composition and its associated proteins in gastric neoplasia linked to TCFoxL1+ dysregulation has never been performed. This study provides a better understanding of how TCFoxL1+ defective BMP signaling participates in the gastric pre-neoplastic microenvironment. Using a proteomic approach, we determined the changes in the complete matrisome of BmpR1a△FoxL1+ and control mice, both in total antrum as well as in isolated mesenchyme-enriched antrum fractions. Comparative proteomic analysis revealed that the deconstruction of the gastric antrum led to a more comprehensive analysis of the ECM fraction of gastric tissues microenvironment. These results show that TCFoxL1+ are key members of the mesenchymal cell population and actively participate in the establishment of the matrisomic fraction of the microenvironment, thus influencing epithelial cell behavior.
Collapse
|
7
|
Adkins-Threats M, Mills JC. Cell plasticity in regeneration in the stomach and beyond. Curr Opin Genet Dev 2022; 75:101948. [PMID: 35809361 PMCID: PMC10378711 DOI: 10.1016/j.gde.2022.101948] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/29/2022] [Accepted: 06/01/2022] [Indexed: 11/30/2022]
Abstract
Recent studies using cell lineage-tracing techniques, organoids, and single-cell RNA sequencing analyses have revealed: 1) adult organs use cell plasticity programs to recruit progenitor cells to regenerate tissues after injury, and 2) plasticity is far more common than previously thought, even in homeostasis. Here, we focus on the complex interplay of normal stem cell differentiation and plasticity in homeostasis and after injury, using the gastric epithelium as a touchstone. We also examine common features of regenerative programs and discuss the evolutionarily conserved, stepwise process of paligenosis which reprograms mature cells into progenitors that can repair damaged tissue. Finally, we discuss how conserved plasticity programs may help us better understand pathological processes like metaplasia.
Collapse
Affiliation(s)
- Mahliyah Adkins-Threats
- Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, USA. https://twitter.com/@madkinsthreats
| | - Jason C Mills
- Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, USA; Department of Pathology & Immunology, Baylor College of Medicine, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, USA.
| |
Collapse
|
8
|
Puri P, Grimmett G, Faraj R, Gibson L, Gilbreath E, Yoder BK. Elevated Protein Kinase A Activity in Stomach Mesenchyme Disrupts Mesenchymal-epithelial Crosstalk and Induces Preneoplasia. Cell Mol Gastroenterol Hepatol 2022; 14:643-668.e1. [PMID: 35690337 PMCID: PMC9421585 DOI: 10.1016/j.jcmgh.2022.06.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 12/11/2022]
Abstract
BACKGROUND & AIMS Mesenchymal-epithelial crosstalk (MEC) in the stomach is executed by pathways such as bone morphogenetic protein (BMP) and extracellular signal-regulated kinase (ERK). Mis-regulation of MEC disrupts gastric homeostasis and causes tumorigenesis. Protein Kinase A (PKA) crosstalks with BMP and ERK signaling; however, PKA function(s) in stomach development and homeostasis remains undefined. METHODS We generated a novel Six2-Cre+/-PKAcαRfl/wt (CA-PKA) mouse in which expression of constitutive-active PKAcαR was induced in gastric mesenchyme progenitors. Lineage tracing determined spatiotemporal activity of Six2-Cre in the stomach. For phenotyping CA-PKA mice histological, co-immunofluorescence, immunoblotting, mRNA sequencing, and bioinformatics analyses were performed. RESULTS Lineage tracing showed that Six2-Cre activity in the stomach is restricted to the mesenchymal compartment. CA-PKA mice showed disruption of gastric homeostasis characterized by aberrant mucosal development and epithelial hyperproliferation; ultimately developing multiple features of gastric corpus preneoplasia including decreased parietal cells, mucous cell hyperplasia, spasmolytic peptide expressing metaplasia with intestinal characteristics, and dysplastic and invasive cystic glands. Furthermore, mutant corpus showed marked chronic inflammation characterized by infiltration of lymphocytes and myeloid-derived suppressor cells along with the upregulation of innate and adaptive immune system components. Striking upregulation of inflammatory mediators and STAT3 activation was observed. Mechanistically, we determined there is an activation of ERK1/2 and downregulation of BMP/SMAD signaling characterized by marked upregulation of BMP inhibitor gremlin 1. CONCLUSIONS We report a novel role of PKA signaling in gastric MEC execution and show that PKA activation in the gastric mesenchyme drives preneoplasia by creating a proinflammatory and proproliferative microenvironment associated with the downregulation of BMP/SMAD signaling and activation of ERK1/2.
Collapse
Affiliation(s)
- Pawan Puri
- Department of Biomedical Sciences, Tuskegee University College of Veterinary Medicine, Tuskegee, Alabama,Correspondence Address correspondence to: Pawan Puri, DVM, PhD, Department of Biomedical Sciences, Tuskegee University College of Veterinary Medicine, A310 Patterson Hall, Tuskegee, AL 36088; tel. (334) 724-4486; fax: (334) 727-8177.
| | - Garfield Grimmett
- Department of Biomedical Sciences, Tuskegee University College of Veterinary Medicine, Tuskegee, Alabama
| | - Rawah Faraj
- Department of Biomedical Sciences, Tuskegee University College of Veterinary Medicine, Tuskegee, Alabama
| | - Laurielle Gibson
- Department of Biomedical Sciences, Tuskegee University College of Veterinary Medicine, Tuskegee, Alabama
| | - Ebony Gilbreath
- Department of Pathobiology, College of Veterinary Medicine, Tuskegee University, Tuskegee, Alabama
| | - Bradley K. Yoder
- Department of Cell, Developmental, and Integrative Biology, Heersink School of Medicine, University of Alabama, Birmingham, Alabama
| |
Collapse
|
9
|
Hoffmann W. Self-Renewal and Cancers of the Gastric Epithelium: An Update and the Role of the Lectin TFF1 as an Antral Tumor Suppressor. Int J Mol Sci 2022; 23:ijms23105377. [PMID: 35628183 PMCID: PMC9141172 DOI: 10.3390/ijms23105377] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 11/16/2022] Open
Abstract
In 2020, gastric cancer was the fourth leading cause of cancer deaths globally. About 90% of gastric cancers are sporadic and the vast majority are correlated with Helicobacter pylori infection; whereas familial clustering is observed in about 10% of cases. Gastric cancer is now considered to be a disease originating from dysregulated self-renewal of the gastric glands in the setting of an inflammatory environment. The human stomach contains two types of gastric units, which show bi-directional self-renewal from a complex variety of stem cells. This review focuses on recent progress concerning the characterization of the different stem cell populations and the mainly mesenchymal signals triggering their stepwise differentiation as well as the genesis of pre-cancerous lesions and carcinogenesis. Furthermore, a model is presented (Lectin-triggered Receptor Blocking Hypothesis) explaining the role of the lectin TFF1 as an antral tumor suppressor possibly regulating Lgr5+ antral stem cells in a paracrine or maybe autocrine fashion, with neighboring antral gland cells having a role as niche cells.
Collapse
Affiliation(s)
- Werner Hoffmann
- Institute of Molecular Biology and Medicinal Chemistry, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| |
Collapse
|
10
|
Morphogen Signals Shaping the Gastric Glands in Health and Disease. Int J Mol Sci 2022; 23:ijms23073632. [PMID: 35408991 PMCID: PMC8998987 DOI: 10.3390/ijms23073632] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 12/17/2022] Open
Abstract
The adult gastric mucosa is characterised by deep invaginations of the epithelium called glands. These tissue architectural elements are maintained with the contribution of morphogen signals. Morphogens are expressed in specific areas of the tissue, and their diffusion generates gradients in the microenvironment. Cells at different positions in the gland sense a specific combination of signals that instruct them to differentiate, proliferate, regenerate, or migrate. Differentiated cells perform specific functions involved in digestion, such as the production of protective mucus and the secretion of digestive enzymes or gastric acid. Biopsies from gastric precancerous conditions usually display tissue aberrations and change the shape of the glands. Alteration of the morphogen signalling microenvironment is likely to underlie those conditions. Furthermore, genes involved in morphogen signalling pathways are found to be frequently mutated in gastric cancer. We summarise the most recent findings regarding alterations of morphogen signalling during gastric carcinogenesis, and we highlight the new stem cell technologies that are improving our understanding of the regulation of human tissue shape.
Collapse
|
11
|
Kapalczynska M, Lin M, Maertzdorf J, Heuberger J, Muellerke S, Zuo X, Vidal R, Shureiqi I, Fischer AS, Sauer S, Berger H, Kidess E, Mollenkopf HJ, Tacke F, Meyer TF, Sigal M. BMP feed-forward loop promotes terminal differentiation in gastric glands and is interrupted by H. pylori-driven inflammation. Nat Commun 2022; 13:1577. [PMID: 35332152 PMCID: PMC8948225 DOI: 10.1038/s41467-022-29176-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 02/19/2022] [Indexed: 12/13/2022] Open
Abstract
Helicobacter pylori causes gastric inflammation, gland hyperplasia and is linked to gastric cancer. Here, we studied the interplay between gastric epithelial stem cells and their stromal niche under homeostasis and upon H. pylori infection. We find that gastric epithelial stem cell differentiation is orchestrated by subsets of stromal cells that either produce BMP inhibitors in the gland base, or BMP ligands at the surface. Exposure to BMP ligands promotes a feed-forward loop by inducing Bmp2 expression in the epithelial cells themselves, enforcing rapid lineage commitment to terminally differentiated mucous pit cells. H. pylori leads to a loss of stromal and epithelial Bmp2 expression and increases expression of BMP inhibitors, promoting self-renewal of stem cells and accumulation of gland base cells, which we mechanistically link to IFN-γ signaling. Mice that lack IFN-γ signaling show no alterations of BMP gradient upon infection, while exposure to IFN-γ resembles H. pylori-driven mucosal responses. Helicobacter pylori causes gastric inflammation, gland hyperplasia and is linked to gastric cancer. Here the authors identify a BMP feedback loop between the stomach epithelium and surrounding stroma that controls gland homeostasis and demonstrate its interruption upon infection with H. pylori.
Collapse
Affiliation(s)
- Marta Kapalczynska
- Department of Hepatology and Gastroenterology, Charité University Medicine, 13353, Berlin, Germany.,Department of Molecular Biology, Max Planck Institute for Infection Biology, 10117, Berlin, Germany
| | - Manqiang Lin
- Department of Hepatology and Gastroenterology, Charité University Medicine, 13353, Berlin, Germany.,Department of Molecular Biology, Max Planck Institute for Infection Biology, 10117, Berlin, Germany
| | - Jeroen Maertzdorf
- Department of Immunology, Max Planck Institute for Infection Biology, 10117, Berlin, Germany
| | - Julian Heuberger
- Department of Hepatology and Gastroenterology, Charité University Medicine, 13353, Berlin, Germany.,Department of Molecular Biology, Max Planck Institute for Infection Biology, 10117, Berlin, Germany
| | - Stefanie Muellerke
- Department of Hepatology and Gastroenterology, Charité University Medicine, 13353, Berlin, Germany
| | - Xiangsheng Zuo
- Departments of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ramon Vidal
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine, 10115, Berlin, Germany
| | - Imad Shureiqi
- Departments of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anne-Sophie Fischer
- Department of Hepatology and Gastroenterology, Charité University Medicine, 13353, Berlin, Germany
| | - Sascha Sauer
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine, 10115, Berlin, Germany
| | - Hilmar Berger
- Department of Hepatology and Gastroenterology, Charité University Medicine, 13353, Berlin, Germany.,Department of Molecular Biology, Max Planck Institute for Infection Biology, 10117, Berlin, Germany
| | - Evelyn Kidess
- Department of Hepatology and Gastroenterology, Charité University Medicine, 13353, Berlin, Germany
| | - Hans-Joachim Mollenkopf
- Department of Molecular Biology, Max Planck Institute for Infection Biology, 10117, Berlin, Germany
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Charité University Medicine, 13353, Berlin, Germany
| | - Thomas F Meyer
- Department of Molecular Biology, Max Planck Institute for Infection Biology, 10117, Berlin, Germany.,Laboratory of Infection Oncology, Institute of Clinical Molecular Biology (IKMB), Christian Albrechts University of Kiel, Kiel, Germany
| | - Michael Sigal
- Department of Hepatology and Gastroenterology, Charité University Medicine, 13353, Berlin, Germany. .,Department of Molecular Biology, Max Planck Institute for Infection Biology, 10117, Berlin, Germany. .,Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine, 10115, Berlin, Germany. .,Berlin Institute of Health, 10117, Berlin, Germany.
| |
Collapse
|
12
|
Imagawa K, Morita A, Fukushima H, Tagawa M, Takada H. A novel BMPR1A mutation affects mRNA splicing in juvenile polyposis syndrome. Pediatr Int 2022; 64:e15041. [PMID: 34699658 DOI: 10.1111/ped.15041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 09/26/2021] [Accepted: 10/25/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Juvenile polyposis syndrome (JPS) is one of the hereditary polyposis syndromes caused by abnormal regulation of transforming growth factor β signaling because of mutations in BMPR1A and SMAD4. Juvenile polyposis syndrome patients with SMAD4 mutations develop cardiovascular events, whereas those with BMPR1A usually do not. Analysis of genetic mutations in JPS patients can be helpful in devising suitable strategies for medical management. In this study, we demonstrate the pathogenicity of a novel intronic mutation in BMPR1A using mRNA extracted from colonic mucosa of a boy with JPS. METHODS Genomic DNA extracted from peripheral blood and total RNA isolated from the colonic mucosa were used for DNA sequencing and reverse transcription polymerase chain reaction (RT-PCR) analyses, respectively. RESULTS A 13-year-old boy, with no previous medical history, presented to the hospital complaining of bloody stools. Colonoscopy revealed multiple polyps in the colon, and the resected polyps were compatible with juvenile polyps. Sequencing analysis revealed a novel intronic mutation (c.778+5G>C) in BMPR1A. Reverse transcription polymerase chain reaction analysis of RNA extracted from the colonic mucosa showed an aberrant splicing form of BMPR1A. Trio analysis showed that his mother also had the same BMPR1A mutation. She was diagnosed with cancer of the cecum and polyposis of the colon at the age of 41. CONCLUSION We demonstrate the presence of a novel BMPR1A intronic mutation that exhibits splicing abnormality in a family with JPS. Further research and development will help elucidate the genotype-phenotype relationship in JPS.
Collapse
Affiliation(s)
- Kazuo Imagawa
- Department of Child Health, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan.,Department of Pediatrics, University of Tsukuba Hospital, Ibaraki, Japan
| | - Atsushi Morita
- Department of Pediatrics, University of Tsukuba Hospital, Ibaraki, Japan
| | - Hiroko Fukushima
- Department of Child Health, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan.,Department of Pediatrics, University of Tsukuba Hospital, Ibaraki, Japan
| | - Manabu Tagawa
- Department of Child Health, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan.,Department of Pediatrics, University of Tsukuba Hospital, Ibaraki, Japan
| | - Hidetoshi Takada
- Department of Child Health, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan.,Department of Pediatrics, University of Tsukuba Hospital, Ibaraki, Japan
| |
Collapse
|
13
|
Reyes Nicolás V, Allaire JM, Alfonso AB, Pupo Gómez D, Pomerleau V, Giroux V, Boudreau F, Perreault N. Altered Mucus Barrier Integrity and Increased Susceptibility to Colitis in Mice upon Loss of Telocyte Bone Morphogenetic Protein Signalling. Cells 2021; 10:2954. [PMID: 34831177 PMCID: PMC8616098 DOI: 10.3390/cells10112954] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/13/2021] [Accepted: 10/25/2021] [Indexed: 02/07/2023] Open
Abstract
FoxL1+-Telocytes (TCFoxL1+) are subepithelial cells that form a network underneath the epithelium. We have shown that without inflammatory stress, mice with loss of function in the BMP signalling pathway in TCFoxL1+ (BmpR1aΔFoxL1+) initiated colonic neoplasia. Although TCFoxL1+ are modulated in IBD patients, their specific role in this pathogenesis remains unclear. Thus, we investigated how the loss of BMP signalling in TCFoxL1+ influences the severity of inflammation and fosters epithelial recovery after inflammatory stress. BmpR1a was genetically ablated in mouse colonic TCFoxL1+. Experimental colitis was performed using a DSS challenge followed by recovery steps to assess wound healing. Physical barrier properties, including mucus composition and glycosylation, were assessed by alcian blue staining, immunofluorescences and RT-qPCR. We found that BmpR1aΔFoxL1+ mice had impaired mucus quality, and upon exposure to inflammatory challenges, they had increased susceptibility to experimental colitis and delayed healing. In addition, defective BMP signalling in TCFoxL1+ altered the functionality of goblet cells, thereby affecting mucosal structure and promoting bacterial invasion. Following inflammatory stress, TCFoxL1+ with impaired BMP signalling lose their homing signal for optimal distribution along the epithelium, which is critical in tissue regeneration after injury. Overall, our findings revealed key roles of BMP signalling in TCFoxL1+ in IBD pathogenesis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Nathalie Perreault
- Département d’Immunologie et Biologie Cellulaire, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada; (V.R.N.); (J.M.A.); (A.B.A.); (D.P.G.); (V.P.); (V.G.); (F.B.)
| |
Collapse
|
14
|
Li FS, Huang J, Cui MZ, Zeng JR, Li PP, Li L, Deng Y, Hu Y, He BC, Shu DZ. BMP9 mediates the anticancer activity of evodiamine through HIF‑1α/p53 in human colon cancer cells. Oncol Rep 2019; 43:415-426. [PMID: 31894286 PMCID: PMC6967201 DOI: 10.3892/or.2019.7427] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 10/22/2019] [Indexed: 12/13/2022] Open
Abstract
Colon cancer is one of the most common malignancies. Although there has been great development in treatment regimens over the last few decades, its prognosis remains poor. There is still a clinical need to find new drugs for colon cancer. Evodiamine (Evo) is a quinolone alkaloid extracted from the traditional herbal medicine plant Evodia rutaecarpa. In the present study, CCK-8, flow cytometry, reverse transcription quantitative polymerase chain reaction, western blot analysis and a xenograft tumor model were used to evaluate the anti-cancer activity of Evo in human colon cancer cells and determine the possible mechanism underlying this process. It was revealed that Evo exhibited prominent anti-proliferation and apoptosis-inducing effects in HCT116 cells. Bone morphogenetic protein 9 (BMP9) was notably upregulated by Evo in HCT116 cells. Exogenous BMP9 potentiated the anti-cancer activity of Evo, and BMP9 silencing reduced this effect. In addition, HIF-1α was also upregulated by Evo. The anticancer activity of Evo was enhanced by HIF-1α, but was reduced by HIF-1α silencing. BMP9 potentiated the effect of Evo on the upregulation of HIF-1α, and enhanced the antitumor effect of Evo in colon cancer, which was clearly reduced by HIF-1α silencing. In HCT116 cells, Evo increased the phosphorylation of p53, which was enhanced by BMP9 but reduced by BMP9 silencing. Furthermore, the effect of Evo on p53 was potentiated by HIF-1α and reduced by HIF-1α silencing. The present findings therefore strongly indicated that the anticancer activity of Evo may be partly mediated by BMP9 upregulation, which can activate p53 through upregulation of HIF-1α, at least in human colon cancer.
Collapse
Affiliation(s)
- Fu-Shu Li
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Jun Huang
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Mao-Zhi Cui
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Jin-Ru Zeng
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Pei-Pei Li
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Ling Li
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Yan Deng
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Ying Hu
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Bai-Cheng He
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400016, P.R. China
| | - De-Zhong Shu
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
15
|
Langlois MJ, Servant R, Reyes Nicolás V, Jones C, Roy SA, Paquet M, Carrier JC, Rivard N, Boudreau F, Perreault N. Loss of PTEN Signaling in Foxl1 + Mesenchymal Telocytes Initiates Spontaneous Colonic Neoplasia in Mice. Cell Mol Gastroenterol Hepatol 2019; 8:530-533.e5. [PMID: 31146066 PMCID: PMC6819895 DOI: 10.1016/j.jcmgh.2019.05.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 05/16/2019] [Accepted: 05/21/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Marie-Josée Langlois
- Département d’Anatomie et Biologie Cellulaire, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Raphaëlle Servant
- Département d’Anatomie et Biologie Cellulaire, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Vilcy Reyes Nicolás
- Département d’Anatomie et Biologie Cellulaire, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Christine Jones
- Département d’Anatomie et Biologie Cellulaire, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Sébastien A.B. Roy
- Département d’Anatomie et Biologie Cellulaire, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Marilène Paquet
- Département de Pathologie et de Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, St-Hyacinthe, Quebec, Canada
| | - Julie C. Carrier
- Département de Médecine, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Nathalie Rivard
- Département d’Anatomie et Biologie Cellulaire, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Francois Boudreau
- Département d’Anatomie et Biologie Cellulaire, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Nathalie Perreault
- Département d’Anatomie et Biologie Cellulaire, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada,Correspondence Corresponding author:
| |
Collapse
|