1
|
Szomek M, Akkerman V, Lauritsen L, Walther HL, Juhl AD, Thaysen K, Egebjerg JM, Covey DF, Lehmann M, Wessig P, Foster AJ, Poolman B, Werner S, Schneider G, Müller P, Wüstner D. Ergosterol promotes aggregation of natamycin in the yeast plasma membrane. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184350. [PMID: 38806103 DOI: 10.1016/j.bbamem.2024.184350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/11/2024] [Accepted: 05/24/2024] [Indexed: 05/30/2024]
Abstract
Polyene macrolides are antifungal substances, which interact with cells in a sterol-dependent manner. While being widely used, their mode of action is poorly understood. Here, we employ ultraviolet-sensitive (UV) microscopy to show that the antifungal polyene natamycin binds to the yeast plasma membrane (PM) and causes permeation of propidium iodide into cells. Right before membrane permeability became compromised, we observed clustering of natamycin in the PM that was independent of PM protein domains. Aggregation of natamycin was paralleled by cell deformation and membrane blebbing as revealed by soft X-ray microscopy. Substituting ergosterol for cholesterol decreased natamycin binding and caused a reduced clustering of natamycin in the PM. Blocking of ergosterol synthesis necessitates sterol import via the ABC transporters Aus1/Pdr11 to ensure natamycin binding. Quantitative imaging of dehydroergosterol (DHE) and cholestatrienol (CTL), two analogues of ergosterol and cholesterol, respectively, revealed a largely homogeneous lateral sterol distribution in the PM, ruling out that natamycin binds to pre-assembled sterol domains. Depletion of sphingolipids using myriocin increased natamycin binding to yeast cells, likely by increasing the ergosterol fraction in the outer PM leaflet. Importantly, binding and membrane aggregation of natamycin was paralleled by a decrease of the dipole potential in the PM, and this effect was enhanced in the presence of myriocin. We conclude that ergosterol promotes binding and aggregation of natamycin in the yeast PM, which can be synergistically enhanced by inhibitors of sphingolipid synthesis.
Collapse
Affiliation(s)
- Maria Szomek
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Vibeke Akkerman
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Line Lauritsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Hanna-Loisa Walther
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Alice Dupont Juhl
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Katja Thaysen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Jacob Marcus Egebjerg
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Douglas F Covey
- Department of Developmental Biology, Washington University in St. Louis, St. Louis, MO 63110, USA; Taylor Family Institute for Innovative Psychiatric Research, USA
| | - Max Lehmann
- Institute for Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, D-14476 Potsdam, Germany
| | - Pablo Wessig
- Institute for Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, D-14476 Potsdam, Germany
| | - Alexander J Foster
- Department of Biochemistry, University of Groningen, Nijenborgh 4, 9747 Groningen, the Netherlands
| | - Bert Poolman
- Department of Biochemistry, University of Groningen, Nijenborgh 4, 9747 Groningen, the Netherlands
| | - Stephan Werner
- Department of X-Ray Microscopy, Helmholtz-Zentrum Berlin, Albert-Einstein-Str. 15, 12489 Berlin, Germany
| | - Gerd Schneider
- Department of X-Ray Microscopy, Helmholtz-Zentrum Berlin, Albert-Einstein-Str. 15, 12489 Berlin, Germany
| | - Peter Müller
- Department of Biology, Humboldt University Berlin, Invalidenstr. 43, D-10115 Berlin, Germany
| | - Daniel Wüstner
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark.
| |
Collapse
|
2
|
Augis L, Nguyễn CH, Ciseran C, Wacha A, Mercier-Nomé F, Domenichini S, Sizun C, Fourmentin S, Legrand FX. Hydrophobic binary mixtures containing amphotericin B as lipophilic solutions for the treatment of cutaneous leishmaniasis. Int J Pharm 2024; 662:124486. [PMID: 39033940 DOI: 10.1016/j.ijpharm.2024.124486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 07/06/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
Cutaneous leishmaniasis, caused by Leishmania parasites, requires treatments with fewer side effects than those currently available. The development of a topical solution based on amphotericin B (AmB) was pursued. The considerable interest in deep eutectic solvents (DESs) and their remarkable advantages inspired the search for a suitable hydrophobic excipient. Various mixtures based on commonly used hydrogen bond donors (HBDs) and acceptors (HBAs) for DES preparations were explored. Initial physical and in-vitro screenings showed the potential of quaternary phosphonium salt-based mixtures. Through thermal analysis, it was determined that most of these mixtures did not exhibit eutectic behavior. X-ray scattering studies revealed a sponge-like nanoscale structure. The most promising formulation, based on a combination of trihexyl(tetradecyl)phosphonium chloride and 1-oleoyl-rac-glycerol, showed no deleterious effects through histological evaluation. AmB was fully solubilized at concentrations between 0.5 and 0.8 mg·mL-1, depending on the formulation. The monomeric state of AmB was observed by circular dichroism. In-vitro irritation tests demonstrated acceptable viability for AmB-based formulations up to 0.5 mg·mL-1. Additionally, an ex-vivo penetration study on pig ear skin revealed no transcutaneous passage, confirming AmB retention in healthy, unaffected skin.
Collapse
Affiliation(s)
- Luc Augis
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400 Orsay, France
| | - Cảnh Hưng Nguyễn
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400 Orsay, France; Department of Pharmaceutics, Hanoi University of Pharmacy, 13-15 Le Thanh Tong, Hoan Kiem, Hanoi, Viet Nam
| | - Cécile Ciseran
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400 Orsay, France
| | - András Wacha
- Research Centre for Natural Sciences, Institute of Materials and Environmental Chemistry, Magyar tudósok körútja 2, Budapest H-1117, Hungary
| | - Françoise Mercier-Nomé
- Université Paris-Saclay, Inserm, CNRS, Ingénierie et Plateformes au Service de l'Innovation Thérapeutique, 91400 Orsay, France; Université Paris-Saclay, Inserm, Inflammation, Microbiome et Immunosurveillance, 91400 Orsay, France
| | - Séverine Domenichini
- Université Paris-Saclay, Inserm, CNRS, Ingénierie et Plateformes au Service de l'Innovation Thérapeutique, 91400 Orsay, France
| | - Christina Sizun
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198 Gif-sur-Yvette, France
| | - Sophie Fourmentin
- Univ. Littoral Côte d'Opale, UR 4492, UCEIV, Unité de Chimie Environnementale et Interactions sur le Vivant, 59140 Dunkerque, France
| | | |
Collapse
|
3
|
Pamungkas KKP, Fureraj I, Assies L, Sakai N, Mercier V, Chen XX, Vauthey E, Matile S. Core-Alkynylated Fluorescent Flippers: Altered Ultrafast Photophysics to Track Thick Membranes. Angew Chem Int Ed Engl 2024; 63:e202406204. [PMID: 38758302 DOI: 10.1002/anie.202406204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/06/2024] [Accepted: 05/16/2024] [Indexed: 05/18/2024]
Abstract
Fluorescent flippers have been introduced as small-molecule probes to image membrane tension in living systems. This study describes the design, synthesis, spectroscopic and imaging properties of flippers that are elongated by one and two alkynes inserted between the push and the pull dithienothiophene domains. The resulting mechanophores combine characteristics of flippers, reporting on physical compression in the ground state, and molecular rotors, reporting on torsional motion in the excited state, to take their photophysics to new level of sophistication. Intensity ratios in broadened excitation bands from differently twisted conformers of core-alkynylated flippers thus report on mechanical compression. Lifetime boosts from ultrafast excited-state planarization and lifetime drops from competitive intersystem crossing into triplet states report on viscosity. In standard lipid bilayer membranes, core-alkynylated flippers are too long for one leaflet and tilt or extend into disordered interleaflet space, which preserves rotor-like torsional disorder and thus weak, blue-shifted fluorescence. Flipper-like planarization occurs only in highly ordered membranes of matching leaflet thickness, where they light up and selectively report on these thick membranes with red-shifted, sharpened excitation maxima, high intensity and long lifetime.
Collapse
Affiliation(s)
| | - Ina Fureraj
- Department of Physical Chemistry, University of Geneva, Geneva, Switzerland
| | - Lea Assies
- Department of Organic Chemistry, University of Geneva, Geneva, Switzerland
| | - Naomi Sakai
- Department of Organic Chemistry, University of Geneva, Geneva, Switzerland
| | | | - Xiao-Xiao Chen
- Department of Organic Chemistry, University of Geneva, Geneva, Switzerland
| | - Eric Vauthey
- Department of Physical Chemistry, University of Geneva, Geneva, Switzerland
| | - Stefan Matile
- Department of Organic Chemistry, University of Geneva, Geneva, Switzerland
| |
Collapse
|
4
|
Janik S, Luchowski R, Grela E, Grudzinski W, Gruszecki WI. How Does the Antibiotic Amphotericin B Enter Membranes and What Does It Do There? J Phys Chem Lett 2024; 15:4823-4827. [PMID: 38668706 PMCID: PMC11089563 DOI: 10.1021/acs.jpclett.4c00496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/29/2024] [Accepted: 04/22/2024] [Indexed: 05/15/2024]
Abstract
Amphotericin B is a popular antifungal antibiotic, but the exact way it works is still a matter of debate. Here, we used monolayers composed of phosphatidylcholine with ergosterol as a model of fungal lipid membranes to study drug incorporation from the aqueous phase and analyze the molecular reorganization of membranes underlying the biological activity of the antibiotic. The results show that the internalization of antibiotic molecules into membranes occurs only in the presence of ergosterol in the lipid phase. Comparison of images of solid-supported monolayers obtained by atomic force microscopy and lifetime imaging fluorescence microscopy shows the formation of intramembrane clusters of various sizes in the lipid phase, consisting mainly of antibiotic dimers and relatively large membrane pores (∼15 nm in diameter). The results reveal multiple modes of action of amphotericin B, acting simultaneously, each of which adversely affects the structural properties of the lipid membranes and their physiological functionality.
Collapse
Affiliation(s)
- Sebastian Janik
- Department
of Biophysics, Institute of Physics, Maria
Curie-Sklodowska University, 20-031 Lublin, Poland
| | - Rafal Luchowski
- Department
of Biophysics, Institute of Physics, Maria
Curie-Sklodowska University, 20-031 Lublin, Poland
- Department
of Biophysics, Medical University of Lublin, 20-059 Lublin, Poland
| | - Ewa Grela
- Department
of Biophysics, Institute of Physics, Maria
Curie-Sklodowska University, 20-031 Lublin, Poland
- Division
of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-093 Warsaw, Poland
| | - Wojciech Grudzinski
- Department
of Biophysics, Institute of Physics, Maria
Curie-Sklodowska University, 20-031 Lublin, Poland
| | - Wieslaw I. Gruszecki
- Department
of Biophysics, Institute of Physics, Maria
Curie-Sklodowska University, 20-031 Lublin, Poland
| |
Collapse
|
5
|
Zadeh Mehrizi T, Mosaffa N, Vodjgani M, Ebrahimi Shahmabadi H. Advances in nanotechnology for improving the targeted delivery and activity of amphotericin B (2011-2023): a systematic review. Nanotoxicology 2024; 18:231-258. [PMID: 38646931 DOI: 10.1080/17435390.2024.2340467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/02/2024] [Indexed: 04/25/2024]
Abstract
Amphotericin B (AmB) is a broad-spectrum therapeutic and effective drug, but it has serious side effects of toxicity and solubility. Therefore, reducing its toxicity should be considered in therapeutic applications. Nanotechnology has paved the way to improve drug delivery systems and reduce toxicity. The present study, for the first time, comprehensively reviews the studies from 2011 to 2023 on reducing the in vitro toxicity of AmB. The findings showed that loading AmB with micellar structures, nanostructured lipid carriers, liposomes, emulsions, poly lactide-co-glycolide acid, chitosan, dendrimers, and other polymeric nanoparticles increases the biocompatibility and efficacy of the drug and significantly reduces toxicity. In addition, modified carbon nanoparticles (including graphene, carbon nanotubes, and carbon dots) with positively charged amine groups, PEI, and other components showed favorable drug delivery properties. Uncoated and coated magnetic nanoparticles and silver NPs-AmB composites had less cytotoxicity and more antifungal activity than free AmB. Citrate-reduced GNPs and lipoic acid-functionalized GNPs were also effective nanocarriers to reduce AmB cytotoxicity and improve anti-leishmania efficacy. In addition, zinc oxide-NPs and PEGylated zinc oxide-NPs showed favorable antifungal activity and negligible toxicity. According to a review study, carbon-based nanoparticles, metal nanoparticles, and especially polymer nanoparticles caused some reduction in the toxicity and improved solubility of AmB in water. Overall, considering the discussed nanocarriers, further research on the application of nanotechnology as a cost-effective candidate to improve the efficiency and reduce the cytotoxicity of AmB is recommended.
Collapse
Affiliation(s)
| | - Nariman Mosaffa
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Vodjgani
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hasan Ebrahimi Shahmabadi
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| |
Collapse
|
6
|
Akkerman V, Scheidt HA, Reinholdt P, Bashawat M, Szomek M, Lehmann M, Wessig P, Covey DF, Kongsted J, Müller P, Wüstner D. Natamycin interferes with ergosterol-dependent lipid phases in model membranes. BBA ADVANCES 2023; 4:100102. [PMID: 37691996 PMCID: PMC10482743 DOI: 10.1016/j.bbadva.2023.100102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023] Open
Abstract
Natamycin is an antifungal polyene macrolide that is used as a food preservative but also to treat fungal keratitis and other yeast infections. In contrast to other polyene antimycotics, natamycin does not form ion pores in the plasma membrane, but its mode of action is poorly understood. Using nuclear magnetic resonance (NMR) spectroscopy of deuterated sterols, we find that natamycin slows the mobility of ergosterol and cholesterol in liquid-ordered (Lo) membranes to a similar extent. This is supported by molecular dynamics (MD) simulations, which additionally reveal a strong impact of natamycin dimers on sterol dynamics and water permeability. Interference with sterol-dependent lipid packing is also reflected in a natamycin-mediated increase in membrane accessibility for dithionite, particularly in bilayers containing ergosterol. NMR experiments with deuterated sphingomyelin (SM) in sterol-containing membranes reveal that natamycin reduces phase separation and increases lipid exchange in bilayers with ergosterol. In ternary lipid mixtures containing monounsaturated phosphatidylcholine, saturated SM, and either ergosterol or cholesterol, natamycin interferes with phase separation into Lo and liquid-disordered (Ld) domains, as shown by NMR spectroscopy. Employing the intrinsic fluorescence of natamycin in ultraviolet-sensitive microscopy, we can visualize the binding of natamycin to giant unilamellar vesicles (GUVs) and find that it has the highest affinity for the Lo phase in GUVs containing ergosterol. Our results suggest that natamycin specifically interacts with the sterol-induced ordered phase, in which it disrupts lipid packing and increases solvent accessibility. This property is particularly pronounced in ergosterol containing membranes, which could underlie the selective antifungal activity of natamycin.
Collapse
Affiliation(s)
- Vibeke Akkerman
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230, Odense M, Denmark
| | - Holger A. Scheidt
- Institute for Medical Physics and Biophysics, Leipzig University, Härtelstr. 16-18, D-04107, Leipzig, Germany
| | - Peter Reinholdt
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, DK-5230, Odense M, Denmark
| | - Mohammad Bashawat
- Department of Biology, Humboldt University Berlin, Invalidenstr. 43, D-10115, Berlin, Germany
| | - Maria Szomek
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230, Odense M, Denmark
| | - Max Lehmann
- Institute for Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, D-14476, Potsdam, Germany
| | - Pablo Wessig
- Institute for Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, D-14476, Potsdam, Germany
| | - Douglas F. Covey
- Department of Developmental Biology, Washington University, St. Louis, MO, 63110, USA
- Taylor Family Institute for Innovative Psychiatric Research, St. Louis, Missouri, USA
| | - Jacob Kongsted
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, DK-5230, Odense M, Denmark
| | - Peter Müller
- Department of Biology, Humboldt University Berlin, Invalidenstr. 43, D-10115, Berlin, Germany
| | - Daniel Wüstner
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230, Odense M, Denmark
| |
Collapse
|
7
|
Widomska J, Subczynski WK, Welc-Stanowska R, Luchowski R. An Overview of Lutein in the Lipid Membrane. Int J Mol Sci 2023; 24:12948. [PMID: 37629129 PMCID: PMC10454802 DOI: 10.3390/ijms241612948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/10/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Lutein, zeaxanthin, and meso-zeaxanthin (a steroisomer of zeaxanthin) are macular pigments. They modify the physical properties of the lipid bilayers in a manner similar to cholesterol. It is not clear if these pigments are directly present in the lipid phase of the membranes, or if they form complexes with specific membrane proteins that retain them in high amounts in the correct place in the retina. The high content of macular pigments in the Henle fiber layer indicates that a portion of the lutein and zeaxanthin should not only be bound to the specific proteins but also directly dissolved in the lipid membranes. This high concentration in the prereceptoral region of the retina is effective for blue-light filtration. Understanding the basic mechanisms of these actions is necessary to better understand the carotenoid-membrane interaction and how carotenoids affect membrane physical properties-such as fluidity, polarity, and order-in relation to membrane structure and membrane dynamics. This review focuses on the properties of lutein.
Collapse
Affiliation(s)
- Justyna Widomska
- Department of Biophysics, Medical University of Lublin, 20-090 Lublin, Poland
| | - Witold K. Subczynski
- Department of Biophysics, Medical College on Wisconsin, Milwaukee, WI 53226, USA;
| | | | - Rafal Luchowski
- Department of Biophysics, Institute of Physics, Maria Curie-Sklodowska University, 20-031 Lublin, Poland;
| |
Collapse
|
8
|
Janik S, Grela E, Stączek S, Zdybicka-Barabas A, Luchowski R, Gruszecki WI, Grudzinski W. Amphotericin B-Silver Hybrid Nanoparticles Help to Unveil the Mechanism of Biological Activity of the Antibiotic: Disintegration of Cell Membranes. Molecules 2023; 28:4687. [PMID: 37375242 DOI: 10.3390/molecules28124687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/05/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Amphotericin B is a popular antifungal antibiotic, and despite decades of pharmacological application, the exact mode of its biological activity is still a matter of debate. Amphotericin B-silver hybrid nanoparticles (AmB-Ag) have been reported to be an extremely effective form of this antibiotic to combat fungi. Here, we analyze the interaction of AmB-Ag with C. albicans cells with the application of molecular spectroscopy and imaging techniques, including Raman scattering and Fluorescence Lifetime Imaging Microscopy. The results lead to the conclusion that among the main molecular mechanisms responsible for the antifungal activity of AmB is the disintegration of the cell membrane, which occurs on a timescale of minutes.
Collapse
Affiliation(s)
- Sebastian Janik
- Department of Biophysics, Institute of Physics, Maria Curie-Sklodowska University, 20-031 Lublin, Poland
| | - Ewa Grela
- Department of Biophysics, Institute of Physics, Maria Curie-Sklodowska University, 20-031 Lublin, Poland
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-093 Warsaw, Poland
| | - Sylwia Stączek
- Department of Immunobiology, Faculty of Biology and Biotechnology, Institute of Biological Sciences, Maria Curie-Sklodowska University, 20-031 Lublin, Poland
| | - Agnieszka Zdybicka-Barabas
- Department of Immunobiology, Faculty of Biology and Biotechnology, Institute of Biological Sciences, Maria Curie-Sklodowska University, 20-031 Lublin, Poland
| | - Rafal Luchowski
- Department of Biophysics, Institute of Physics, Maria Curie-Sklodowska University, 20-031 Lublin, Poland
| | - Wieslaw I Gruszecki
- Department of Biophysics, Institute of Physics, Maria Curie-Sklodowska University, 20-031 Lublin, Poland
| | - Wojciech Grudzinski
- Department of Biophysics, Institute of Physics, Maria Curie-Sklodowska University, 20-031 Lublin, Poland
| |
Collapse
|
9
|
Moraes DCDE. Recent developments on the anti-Candida effect of amphotericin B combined with a second drug - a mini-review. AN ACAD BRAS CIENC 2023; 95:e20220033. [PMID: 37162085 DOI: 10.1590/0001-3765202320220033] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 05/10/2022] [Indexed: 05/11/2023] Open
Abstract
Invasive Candida infections threaten human health due to the increasing incidence of resistance to the currently available antifungal agents. Amphotericin B (AMB) is the gold standard therapy to treat these infections. Nevertheless, the use of such substance in the clinic is aggravated by its toxicity. Since AMB binds to membrane sterols, it forms pores on human plasma membranes, mainly in kidney cells, leading to nephrotoxicity. The combination of this drug to a second substance could allow for the use of smaller concentrations of AMB, consequently lowering the probability of adverse effects. This mini-review summarizes information regarding an array of substances that enhance AMB antifungal activity. It may be noticed that several of these compounds target plasma membrane. Interestingly, substances approved for human use also presented combinatory anti-Candida activity with AMB. These data reinforce the potential of associating AMB to another drug as a promising therapeutical alternative to treat Candida infections. Further studies, regarding mechanism of action, pharmacokinetics and toxicity parameters must be conducted to confirm the role of these substances as adjuvant agents in candidiasis therapy.
Collapse
Affiliation(s)
- Daniel C DE Moraes
- Universidade Estácio de Sá, Bolsista do Programa de Pesquisa e Produtividade UNESA, Rua Eduardo Luiz Gomes 134, Centro, 24020-340 Niterói, RJ, Brazil
| |
Collapse
|
10
|
Frézard F, Aguiar MMG, Ferreira LAM, Ramos GS, Santos TT, Borges GSM, Vallejos VMR, De Morais HLO. Liposomal Amphotericin B for Treatment of Leishmaniasis: From the Identification of Critical Physicochemical Attributes to the Design of Effective Topical and Oral Formulations. Pharmaceutics 2022; 15:pharmaceutics15010099. [PMID: 36678729 PMCID: PMC9864876 DOI: 10.3390/pharmaceutics15010099] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/19/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
The liposomal amphotericin B (AmB) formulation, AmBisome®, still represents the best therapeutic option for cutaneous and visceral leishmaniasis. However, its clinical efficacy depends on the patient's immunological status, the clinical manifestation and the endemic region. Moreover, the need for parenteral administration, its side effects and high cost significantly limit its use in developing countries. This review reports the progress achieved thus far toward the understanding of the mechanism responsible for the reduced toxicity of liposomal AmB formulations and the factors that influence their efficacy against leishmaniasis. It also presents the recent advances in the development of more effective liposomal AmB formulations, including topical and oral liposome formulations. The critical role of the AmB aggregation state and release rate in the reduction of drug toxicity and in the drug efficacy by non-invasive routes is emphasized. This paper is expected to guide future research and development of innovative liposomal formulations of AmB.
Collapse
Affiliation(s)
- Frédéric Frézard
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
- Correspondence: ; Tel.: +55-31-34092940
| | - Marta M. G. Aguiar
- Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Lucas A. M. Ferreira
- Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Guilherme S. Ramos
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Thais T. Santos
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Gabriel S. M. Borges
- Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Virgínia M. R. Vallejos
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Helane L. O. De Morais
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| |
Collapse
|
11
|
Yoda T. Charged Lipids Influence Phase Separation in Cell-Sized Liposomes Containing Cholesterol or Ergosterol. MEMBRANES 2022; 12:membranes12111121. [PMID: 36363676 PMCID: PMC9697951 DOI: 10.3390/membranes12111121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/06/2022] [Accepted: 11/07/2022] [Indexed: 05/14/2023]
Abstract
Positively charged ion species and charged lipids play specific roles in biochemical processes, especially those involving cell membranes. The cell membrane and phase separation domains are attractive research targets to study signal transduction. The phase separation structure and functions of cell-sized liposomes containing charged lipids and cholesterol have been investigated earlier, and the domain structure has also been studied in a membrane model, containing the yeast sterol ergosterol. The present study investigates phase-separated domain structure alterations in membranes containing charged lipids when cholesterol is substituted with ergosterol. This study finds that ergosterol increases the homogeneity of membranes containing charged lipids. Cholesterol-containing membranes are more sensitive to a charged state, and ergosterol-containing liposomes show lower responses to charged lipids. These findings may improve our understanding of the differences in both yeast and mammalian cells, as well as the interactions of proteins with lipids during signal transduction.
Collapse
Affiliation(s)
- Tsuyoshi Yoda
- Hachinohe Industrial Research Institute, Aomori Prefectural Industrial Technology Research Center, 1-4-43 Kita-inter-kogyodanchi, Hachinohe City 039-2245, Aomori, Japan; ; Tel.: +81-178-21-2100
- The United Graduate School of Agricultural Sciences, Iwate University, 3-18-8 Ueda, Morioka City 020-8550, Iwate, Japan
| |
Collapse
|
12
|
Szomek M, Reinholdt P, Walther HL, Scheidt HA, Müller P, Obermaier S, Poolman B, Kongsted J, Wüstner D. Natamycin sequesters ergosterol and interferes with substrate transport by the lysine transporter Lyp1 from yeast. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:184012. [PMID: 35914570 DOI: 10.1016/j.bbamem.2022.184012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/30/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
Natamycin is a polyene macrolide, widely employed to treat fungal keratitis and other yeast infections as well as to protect food products against fungal molds. In contrast to other polyene macrolides, such as nystatin or amphotericin B, natamycin does not form pores in yeast membranes, and its mode of action is not well understood. Here, we have employed a variety of spectroscopic methods, computational modeling, and membrane reconstitution to study the molecular interactions of natamycin underlying its antifungal activity. We find that natamycin forms aggregates in an aqueous solution with strongly altered optical properties compared to monomeric natamycin. Interaction of natamycin with model membranes results in a concentration-dependent fluorescence increase which is more pronounced for ergosterol- compared to cholesterol-containing membranes up to 20 mol% sterol. Evidence for formation of specific ergosterol-natamycin complexes in the bilayer is provided. Using nuclear magnetic resonance (NMR) and electron spin resonance (ESR) spectroscopy, we find that natamycin sequesters sterols, thereby interfering with their well-known ability to order acyl chains in lipid bilayers. This effect is more pronounced for membranes containing the sterol of fungi, ergosterol, compared to those containing mammalian cholesterol. Natamycin interferes with ergosterol-dependent transport of lysine by the yeast transporter Lyp1, which we propose to be due to the sequestering of ergosterol, a mechanism that also affects other plasma membrane proteins. Our results provide a mechanistic explanation for the selective antifungal activity of natamycin, which can set the stage for rational design of novel polyenes in the future.
Collapse
Affiliation(s)
- Maria Szomek
- Department of Biochemistry and Molecular Biology, PhyLife, Physical Life Sciences, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Peter Reinholdt
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Hanna-Loisa Walther
- Department of Biochemistry and Molecular Biology, PhyLife, Physical Life Sciences, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Holger A Scheidt
- Institute for Medical Physics and Biophysics, University of Leipzig, Härtelstr. 16-18, 04107 Leipzig, Germany
| | - Peter Müller
- Department of Biology, Humboldt University Berlin, Invalidenstr. 43, 10115 Berlin, Germany
| | - Sebastian Obermaier
- Department of Biochemistry, University of Groningen, Nijenborgh 4, 9747 Groningen, the Netherlands
| | - Bert Poolman
- Department of Biochemistry, University of Groningen, Nijenborgh 4, 9747 Groningen, the Netherlands
| | - Jacob Kongsted
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Daniel Wüstner
- Department of Biochemistry and Molecular Biology, PhyLife, Physical Life Sciences, University of Southern Denmark, DK-5230 Odense M, Denmark.
| |
Collapse
|
13
|
Kuzma BA, Pence IJ, Greenfield DA, Ho A, Evans CL. Visualizing and quantifying antimicrobial drug distribution in tissue. Adv Drug Deliv Rev 2021; 177:113942. [PMID: 34437983 DOI: 10.1016/j.addr.2021.113942] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/11/2021] [Accepted: 08/18/2021] [Indexed: 12/15/2022]
Abstract
The biodistribution and pharmacokinetics of drugs are vital to the mechanistic understanding of their efficacy. Measuring antimicrobial drug efficacy has been challenging as plasma drug concentration is used as a surrogate for tissue drug concentration, yet typically does not reflect that at the intended site(s) of action. Utilizing an image-guided approach, it is feasible to accurately quantify the biodistribution and pharmacokinetics within the desired site(s) of action. We outline imaging modalities used in visualizing drug distribution with examples ranging from in vitro cellular drug uptake to clinical treatment of microbial infections. The imaging modalities of interest are: radio-labeling, magnetic resonance, mass spectrometry imaging, computed tomography, fluorescence, and Raman spectroscopy. We outline the progress, limitations, and future outlook for each methodology. Further advances in these optical approaches would benefit patients and researchers alike, as non-invasive imaging could yield more profound insights with a lower clinical burden than invasive measurement approaches used today.
Collapse
Affiliation(s)
- Benjamin A Kuzma
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston 02114, USA
| | - Isaac J Pence
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston 02114, USA
| | - Daniel A Greenfield
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston 02114, USA
| | - Alexander Ho
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston 02114, USA
| | - Conor L Evans
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston 02114, USA.
| |
Collapse
|
14
|
Borzyszkowska-Bukowska J, Górska J, Szczeblewski P, Laskowski T, Gabriel I, Jurasz J, Kozłowska-Tylingo K, Szweda P, Milewski S. Quest for the Molecular Basis of Improved Selective Toxicity of All-Trans Isomers of Aromatic Heptaene Macrolide Antifungal Antibiotics. Int J Mol Sci 2021; 22:ijms221810108. [PMID: 34576271 PMCID: PMC8468583 DOI: 10.3390/ijms221810108] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 12/25/2022] Open
Abstract
Three aromatic heptaene macrolide antifungal antibiotics, Candicidin D, Partricin A (Gedamycin) and Partricin B (Vacidin) were subjected to controlled cis-trans→ all trans photochemical isomerization. The obtained all-trans isomers demonstrated substantially improved in vitro selective toxicity in the Candida albicans cells: human erythrocytes model. This effect was mainly due to the diminished hemotoxicity. The molecular modeling studies on interactions between original antibiotics and their photoisomers with ergosterol and cholesterol revealed some difference in free energy profiles of formation of binary antibiotic/sterol complexes in respective membrane environments. Moreover, different geometries of heptaene: sterol complexes and variations in polyene macrolide molecule alignment in cholesterol-and ergosterol-containing membranes were found. None of these effects are of the crucial importance for the observed improvement of selective toxicity of aromatic heptaene antifungals but each seems to provide a partial contribution.
Collapse
|
15
|
Quattrini F, Berrecoso G, Crecente-Campo J, Alonso MJ. Asymmetric flow field-flow fractionation as a multifunctional technique for the characterization of polymeric nanocarriers. Drug Deliv Transl Res 2021; 11:373-395. [PMID: 33521866 PMCID: PMC7987708 DOI: 10.1007/s13346-021-00918-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2021] [Indexed: 12/28/2022]
Abstract
The importance of polymeric nanocarriers in the field of drug delivery is ever-increasing, and the accurate characterization of their properties is paramount to understand and predict their behavior. Asymmetric flow field-flow fractionation (AF4) is a fractionation technique that has gained considerable attention for its gentle separation conditions, broad working range, and versatility. AF4 can be hyphenated to a plurality of concentration and size detectors, thus permitting the analysis of the multifunctionality of nanomaterials. Despite this potential, the practical information that can be retrieved by AF4 and its possible applications are still rather unfamiliar to the pharmaceutical scientist. This review was conceived as a primer that clearly states the "do's and don'ts" about AF4 applied to the characterization of polymeric nanocarriers. Aside from size characterization, AF4 can be beneficial during formulation optimization, for drug loading and drug release determination and for the study of interactions among biomaterials. It will focus mainly on the advances made in the last 5 years, as well as indicating the problematics on the consensus, which have not been reached yet. Methodological recommendations for several case studies will be also included.
Collapse
Affiliation(s)
- Federico Quattrini
- Center for Research in Molecular Medicine and Chronic Diseases, Singular Research Centers, 15782, Santiago de Compostela, Spain
| | - Germán Berrecoso
- Center for Research in Molecular Medicine and Chronic Diseases, Singular Research Centers, 15782, Santiago de Compostela, Spain
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), IDIS Research Institute, 15706, Santiago de Compostela, Spain
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - José Crecente-Campo
- Center for Research in Molecular Medicine and Chronic Diseases, Singular Research Centers, 15782, Santiago de Compostela, Spain.
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), IDIS Research Institute, 15706, Santiago de Compostela, Spain.
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain.
| | - María José Alonso
- Center for Research in Molecular Medicine and Chronic Diseases, Singular Research Centers, 15782, Santiago de Compostela, Spain.
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), IDIS Research Institute, 15706, Santiago de Compostela, Spain.
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain.
| |
Collapse
|
16
|
Adler-Moore J, Lewis RE, Brüggemann RJM, Rijnders BJA, Groll AH, Walsh TJ. Preclinical Safety, Tolerability, Pharmacokinetics, Pharmacodynamics, and Antifungal Activity of Liposomal Amphotericin B. Clin Infect Dis 2020; 68:S244-S259. [PMID: 31222254 PMCID: PMC6495008 DOI: 10.1093/cid/ciz064] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The improved safety profile and antifungal efficacy of liposomal amphotericin B (LAmB) compared to conventional amphotericin B deoxycholate (DAmB) is due to several factors including, its chemical composition, rigorous manufacturing standards, and ability to target and transit through the fungal cell wall. Numerous preclinical studies have shown that LAmB administered intravenously distributes to tissues frequently infected by fungi at levels above the minimum inhibitory concentration (MIC) for many fungi. These concentrations can be maintained from one day to a few weeks, depending upon the tissue. Tissue accumulation is dose-dependent with drug clearance occurring most rapidly from the brain and slowest from the liver and spleen. LAmB localizes in lung epithelial lining fluid, within liver and splenic macrophages and in kidney distal tubules. LAmB has been used successfully in therapeutic and prophylactic animal models to treat many different fungal pathogens, significantly increasing survival and reducing tissue fungal burden.
Collapse
Affiliation(s)
- Jill Adler-Moore
- Department of Biological Sciences, California State Polytechnic University, Pomona
| | - Russell E Lewis
- Unit of Infectious Diseases, Policlinico Sant'Orsola-Malpighi, Department of Medical Sciences and Surgery, University of Bologna, Italy
| | - Roger J M Brüggemann
- Department of Pharmacy, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Bart J A Rijnders
- Department of Internal Medicine, Section of Infectious Diseases, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Andreas H Groll
- Infectious Disease Research Program, Department of Pediatric Hematology and Oncology and Center for Bone Marrow Transplantation, University Children's Hospital Muenster, Germany
| | - Thomas J Walsh
- Departments of Medicine, Pediatrics, and Microbiology & Immunology, Weill Cornell Medicine of Cornell University, New York, New York
| |
Collapse
|
17
|
Taghi-zada TP, Kasumov KM. The Properties of Ion Channels in Lipid Membranes Modified by the Aromatic Antibiotic Levorin А2. Biophysics (Nagoya-shi) 2020. [DOI: 10.1134/s0006350920040235] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
18
|
Rivera-Toledo E, Jiménez-Delgadillo AU, Manzano-Gayosso P. Antifúngicos poliénicos. Mecanismo de acción y aplicaciones. REVISTA DE LA FACULTAD DE MEDICINA 2020. [DOI: 10.22201/fm.24484865e.2020.63.2.02] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The first compounds with specific antifungal activity were identified in the middle of the last century as a product of the secondary metabolism of bacteria of the order Actinomycetales, and their clinical use significantly diminished the morbidity and mortality associated with severe fungal infections. Many of such biosynthetic compounds are characterized by a chemical polygenic structure, with a variable number of carbon-carbon double bonds. Currently, besides polygenic antimycotics, there are other antifungal agents, such as the azole compounds, that have less toxicity in patients; however,
cases of therapeutic failure with such compounds have been documented, therefore, the use of polygenics is still the best alternative in such cases. This review presents data about the properties and applications of antifungal-polygenic compounds using amphotericin B as a model.
Key words: Amphotericin B; antifungal polyenes; ergosterol
Collapse
Affiliation(s)
- Evelyn Rivera-Toledo
- Universidad Nacional Autónoma de México (UNAM). Facultad de Medicina. Departamento de Microbiología y Parasitología. Laboratorio de Inmunomodulación y Agentes Patógenos. Ciudad de México. México
| | - Alan Uriel Jiménez-Delgadillo
- Universidad Nacional Autónoma de México (UNAM). Facultad de Medicina. Departamento de Microbiología y Parasitología. Laboratorio de Inmunomodulación y Agentes Patógenos. Ciudad de México. México
| | - Patricia Manzano-Gayosso
- niversidad Nacional Autónoma de México (UNAM). Facultad de Medicina. Departamento de Microbiología y Parasitología. Unidad de Micología. Ciudad de México. México
| |
Collapse
|
19
|
Faustino C, Pinheiro L. Lipid Systems for the Delivery of Amphotericin B in Antifungal Therapy. Pharmaceutics 2020; 12:pharmaceutics12010029. [PMID: 31906268 PMCID: PMC7023008 DOI: 10.3390/pharmaceutics12010029] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/17/2019] [Accepted: 12/19/2019] [Indexed: 12/31/2022] Open
Abstract
Amphotericin B (AmB), a broad-spectrum polyene antibiotic in the clinic for more than fifty years, remains the gold standard in the treatment of life-threatening invasive fungal infections and visceral leishmaniasis. Due to its poor water solubility and membrane permeability, AmB is conventionally formulated with deoxycholate as a micellar suspension for intravenous administration, but severe infusion-related side effects and nephrotoxicity hamper its therapeutic potential. Lipid-based formulations, such as liposomal AmB, have been developed which significantly reduce the toxic side effects of the drug. However, their high cost and the need for parenteral administration limit their widespread use. Therefore, delivery systems that can retain or even enhance antimicrobial efficacy while simultaneously reducing AmB adverse events are an active area of research. Among those, lipid systems have been extensively investigated due to the high affinity of AmB for binding lipids. The development of a safe and cost-effective oral formulation able to improve drug accessibility would be a major breakthrough, and several lipid systems for the oral delivery of AmB are currently under development. This review summarizes recent advances in lipid-based systems for targeted delivery of AmB focusing on non-parenteral nanoparticulate formulations mainly investigated over the last five years and highlighting those that are currently in clinical trials.
Collapse
Affiliation(s)
| | - Lídia Pinheiro
- Correspondence: ; Tel.: +351-21-7946-400; Fax: +351-21-7946-470
| |
Collapse
|
20
|
Wu A, Grela E, Wójtowicz K, Filipczak N, Hamon Y, Luchowski R, Grudziński W, Raducka-Jaszul O, Gagoś M, Szczepaniak A, Chimini G, Gruszecki WI, Trombik T. ABCA1 transporter reduces amphotericin B cytotoxicity in mammalian cells. Cell Mol Life Sci 2019; 76:4979-4994. [PMID: 31134303 PMCID: PMC6881254 DOI: 10.1007/s00018-019-03154-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 05/07/2019] [Accepted: 05/16/2019] [Indexed: 01/20/2023]
Abstract
Amphotericin B (AmB) belongs to a group of polyene antibiotics commonly used in the treatment of systemic mycotic infections. A widely accepted mechanism of action of AmB is based on the formation of an oligomeric pore structure within the plasma membrane (PM) by interaction with membrane sterols. Although AmB binds preferentially to ergosterol, it can also bind to cholesterol in the mammalian PM and cause severe cellular toxicity. The lipid content and its lateral organization at the cell PM appear to be significant for AmB binding. Several ATP-binding cassette (ABC) transporters, including ABCA1, play a crucial role in lipid translocation, cholesterol redistribution and efflux. Here, we demonstrate that cells expressing ABCA1 are more resistant to AmB treatment, while cells lacking ABCA1 expression or expressing non-active ABCA1MM mutant display increased sensitivity. Further, a FLIM analysis of AmB-treated cells reveals a fraction of the antibiotic molecules, characterized by relatively high fluorescence lifetimes (> 6 ns), involved in formation of bulk cholesterol-AmB structures at the surface of ABCA1-expressing cells. Finally, lowering the cellular cholesterol content abolishes resistance of ABCA1-expressing cells to AmB. Therefore, we propose that ABCA1-mediated cholesterol efflux from cells induces formation of bulk cholesterol-AmB structures at the cell surface, preventing AmB cytotoxicity.
Collapse
Affiliation(s)
- A Wu
- Faculty of Biotechnology, University of Wroclaw, 50-383, Wrocław, Poland
| | - E Grela
- Department of Biophysics, Institute of Physics, Maria Curie-Sklodowska University, 20-031, Lublin, Poland
| | - K Wójtowicz
- Faculty of Biotechnology, University of Wroclaw, 50-383, Wrocław, Poland
| | - N Filipczak
- Faculty of Biotechnology, University of Wroclaw, 50-383, Wrocław, Poland
| | - Y Hamon
- Aix Marseille University, CNRS, INSERM, CIML, Marseille, France
| | - R Luchowski
- Department of Biophysics, Institute of Physics, Maria Curie-Sklodowska University, 20-031, Lublin, Poland
| | - W Grudziński
- Department of Biophysics, Institute of Physics, Maria Curie-Sklodowska University, 20-031, Lublin, Poland
| | - O Raducka-Jaszul
- Faculty of Biotechnology, University of Wroclaw, 50-383, Wrocław, Poland
| | - M Gagoś
- Department of Cell Biology, Maria Curie-Skłodowska University, 20-033, Lublin, Poland
| | - A Szczepaniak
- Faculty of Biotechnology, University of Wroclaw, 50-383, Wrocław, Poland
| | - G Chimini
- Aix Marseille University, CNRS, INSERM, CIML, Marseille, France
| | - W I Gruszecki
- Department of Biophysics, Institute of Physics, Maria Curie-Sklodowska University, 20-031, Lublin, Poland
| | - T Trombik
- Faculty of Biotechnology, University of Wroclaw, 50-383, Wrocław, Poland.
| |
Collapse
|
21
|
Modes of the antibiotic activity of amphotericin B against Candida albicans. Sci Rep 2019; 9:17029. [PMID: 31745151 PMCID: PMC6864243 DOI: 10.1038/s41598-019-53517-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 10/28/2019] [Indexed: 02/07/2023] Open
Abstract
Amphotericin B is an antibiotic used as the “gold standard” in the treatment of life-threatening fungal infections. Several molecular mechanisms have been proposed to explain exceptionally high effectiveness of amphotericin B in combating fungi. In the present work, we apply fluorescence lifetime imaging microscopy to track, step by step, modes of the toxic activity of amphotericin B towards a clinical strain of Candida albicans. The images recorded reveal that the antibiotic binds to cells in the form of the small aggregates characterized by a relatively short fluorescence lifetime (0.2 ns). Amphotericin B binds preferentially to the cell walls of mature cells but also to the plasma membranes of the daughter cells at the budding stage. The images recorded with the application of a scanning electron microscopy show that the antibiotic interferes with the formation of functional cell walls of such young cells. The results of imaging reveal the formation of the amphotericin B-rich extramembranous structures and also binding of the drug molecules into the cell membranes and penetration into the cells. These two modes of action of amphotericin B are observed in the time scale of minutes.
Collapse
|
22
|
Lanza JS, Pomel S, Loiseau PM, Frézard F. Recent advances in amphotericin B delivery strategies for the treatment of leishmaniases. Expert Opin Drug Deliv 2019; 16:1063-1079. [DOI: 10.1080/17425247.2019.1659243] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Juliane S. Lanza
- Faculty of Pharmacy, Antiparasite Chemotherapy, UMR 8076 CNRS BioCIS, University Paris-Saclay, Chatenay-Malabry, France
| | - Sébastien Pomel
- Faculty of Pharmacy, Antiparasite Chemotherapy, UMR 8076 CNRS BioCIS, University Paris-Saclay, Chatenay-Malabry, France
| | - Philippe M. Loiseau
- Faculty of Pharmacy, Antiparasite Chemotherapy, UMR 8076 CNRS BioCIS, University Paris-Saclay, Chatenay-Malabry, France
| | - Frédéric Frézard
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| |
Collapse
|
23
|
Van Haute D, Jiang W, Mudalige T. Evaluation of size-based distribution of drug and excipient in amphotericin B liposomal formulation. Int J Pharm 2019; 569:118603. [PMID: 31401296 DOI: 10.1016/j.ijpharm.2019.118603] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/10/2019] [Accepted: 08/05/2019] [Indexed: 12/15/2022]
Abstract
Conventional quantitation of drug content in the liposome formulation involves the breakdown of bulk liposomes, which ignores details on the distribution of the active pharmaceutical ingredient (API) and excipients in liposomes of different sizes. The objective of this study is to develop an analytical method which can separate the liposomes into different sizes and obtain information of the drug and excipient distribution in the different sized liposomes. We developed an asymmetric flow field-flow fractionation (AF4) method for size-based separation of AmBisome, an amphotericin B liposomal formulation, and a high-performance liquid chromatography ultraviolet-visible and charged aerosol detection (HPLC-UV-CAD) method for simultaneous quantitation of the API (Amphotericin B) and the lipid excipients [1,2-Distearoyl-sn-glycero-3-phosphoglycerol (DSPG), hydrogenated soy phosphatidylcholine (HSPC), and cholesterol]. The measured drug content in the bulk liposome formulation was consistent with the drug product labeling. Liposomes were separated using AF4 into eleven size fractions and the liposomes particles sizes of each fraction were measured with nanoparticle tracking analysis. The drug to total lipid ratios in fractionated liposomes increased from 0.1 to 0.45 when the liposome size increased from 75 nm to 124 nm, while the lipid composition remained constant throughout the fractioned size range (cholesterol:DSPG, 0.7 and HSPC:DSPG, 0.3). These study results suggest that, for liposomal formulations of Amphotericin B in liposomes, the drug to lipid ratio increases with the size of the liposomes. This new analytical method provided a more in-depth characterization of liposomes, i.e., determining drug and excipient distributions in different sizes of liposomes, in a more efficient manner with more specific size-based composition information.
Collapse
Affiliation(s)
- Desiree Van Haute
- Arkansas Laboratory, Office of Regulatory Science, Office of Regulatory Affairs, US Food and Drug Administration, Jefferson, AR 72079, United States
| | - Wenlei Jiang
- Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD 20993, United States.
| | - Thilak Mudalige
- Arkansas Laboratory, Office of Regulatory Science, Office of Regulatory Affairs, US Food and Drug Administration, Jefferson, AR 72079, United States.
| |
Collapse
|
24
|
Critical process parameters in manufacturing of liposomal formulations of amphotericin B. Int J Pharm 2019; 565:447-457. [DOI: 10.1016/j.ijpharm.2019.04.052] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 04/11/2019] [Accepted: 04/18/2019] [Indexed: 12/27/2022]
|
25
|
Walsh TJ, Lewis RE, Adler-Moore J. Pharmacology of Liposomal Amphotericin B: An Introduction to Preclinical and Clinical Advances for Treatment of Life-threatening Invasive Fungal Infections. Clin Infect Dis 2019; 68:S241-S243. [PMID: 31222252 PMCID: PMC6495006 DOI: 10.1093/cid/ciz091] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Thomas J Walsh
- Departments of Medicine, Pediatrics, and Microbiology & Immunology, Weill Cornell Medicine of Cornell University, New York, New York
| | - Russell E Lewis
- Unit of Infectious Diseases, Policlinico Sant’Orsola-Malpighi, Department of Medical Sciences and Surgery, University of Bologna, Italy
| | - Jill Adler-Moore
- Department of Biological Sciences, California State Polytechnic University, Pomona
| |
Collapse
|
26
|
Yamamoto T, Umegawa Y, Yamagami M, Suzuki T, Tsuchikawa H, Hanashima S, Matsumori N, Murata M. The Perpendicular Orientation of Amphotericin B Methyl Ester in Hydrated Lipid Bilayers Supports the Barrel-Stave Model. Biochemistry 2019; 58:2282-2291. [PMID: 30973009 DOI: 10.1021/acs.biochem.9b00180] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The clinically important antibiotic amphotericin B (AmB) is a membrane-active natural product that targets membrane sterol. The antimicrobial activity of AmB is generally attributed to its membrane permeabilization, which occurs when a pore is formed across a lipid bilayer. In this study, the molecular orientation of AmB was investigated using solid-state nuclear magnetic resonance (NMR) to better understand the mechanism of antifungal activity. The methyl ester of AmB (AME) labeled with NMR isotopes, d3-AME, and its fluorinated and/or 13C-labeled derivatives were prepared. All of the AmB derivatives showed similar membrane-disrupting activities and ultraviolet spectra in phospholipid liposomes, suggesting that their molecular assemblies in membranes closely mimic those of AmB. Solid-state 2H NMR measurements of d3-AME in a hydrated membrane showed that the mobility of AME molecules depends on concentration and temperature. At a 1:5:45 AME:Erg:dimyristoylphosphatidylcholine ratio, AME became sufficiently mobilized to observe the motional averaging of quadrupole coupling. On the basis of the rotational averaging effect of 19F chemical shift anisotropy, 2H quadrupolar splitting, and 13C-19F dipolar coupling of 14β-F-AMEs, we deduced that the molecular axis of AME is predominantly parallel to the normal of a lipid bilayer. This result supports the barrel-stave model as a molecular assembly of AmB in membranes.
Collapse
Affiliation(s)
- Tomoya Yamamoto
- Department of Chemistry, Graduate School of Science , Osaka University , 1-1 Machikaneyama , Toyonaka , Osaka 560-0043 , Japan.,JST-ERATO Lipid Active Structure Project, Graduate School of Science , Osaka University , 1-1 Machikaneyama , Toyonaka , Osaka 560-0043 , Japan
| | - Yuichi Umegawa
- Department of Chemistry, Graduate School of Science , Osaka University , 1-1 Machikaneyama , Toyonaka , Osaka 560-0043 , Japan.,JST-ERATO Lipid Active Structure Project, Graduate School of Science , Osaka University , 1-1 Machikaneyama , Toyonaka , Osaka 560-0043 , Japan.,Fundamental Science Research Center, Graduate School of Science , Osaka University , 1-1 Machikaneyama , Toyonaka , Osaka 560-0043 , Japan
| | - Masaki Yamagami
- Department of Chemistry, Graduate School of Science , Osaka University , 1-1 Machikaneyama , Toyonaka , Osaka 560-0043 , Japan
| | - Taiga Suzuki
- Department of Chemistry, Graduate School of Science , Osaka University , 1-1 Machikaneyama , Toyonaka , Osaka 560-0043 , Japan
| | - Hiroshi Tsuchikawa
- Department of Chemistry, Graduate School of Science , Osaka University , 1-1 Machikaneyama , Toyonaka , Osaka 560-0043 , Japan
| | - Shinya Hanashima
- Department of Chemistry, Graduate School of Science , Osaka University , 1-1 Machikaneyama , Toyonaka , Osaka 560-0043 , Japan
| | - Nobuaki Matsumori
- Department of Chemistry, Graduate School of Science , Osaka University , 1-1 Machikaneyama , Toyonaka , Osaka 560-0043 , Japan.,Department of Chemistry, Graduate School of Sciences , Kyushu University , Fukuoka 819-0395 , Japan
| | - Michio Murata
- Department of Chemistry, Graduate School of Science , Osaka University , 1-1 Machikaneyama , Toyonaka , Osaka 560-0043 , Japan.,JST-ERATO Lipid Active Structure Project, Graduate School of Science , Osaka University , 1-1 Machikaneyama , Toyonaka , Osaka 560-0043 , Japan.,Fundamental Science Research Center, Graduate School of Science , Osaka University , 1-1 Machikaneyama , Toyonaka , Osaka 560-0043 , Japan
| |
Collapse
|
27
|
Mondal D, Dutta R, Banerjee P, Mukherjee D, Maiti TK, Sarkar N. Modulation of Membrane Fluidity Performed on Model Phospholipid Membrane and Live Cell Membrane: Revealing through Spatiotemporal Approaches of FLIM, FAIM, and TRFS. Anal Chem 2019; 91:4337-4345. [PMID: 30821145 DOI: 10.1021/acs.analchem.8b04044] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have elucidated the role of unsaturated fatty acid in the in vitro model phospholipid membrane and in vivo live cell membrane. Fluorescence microscopy and time-resolved fluorescence spectroscopy have been employed to uncover how modulation of vesicle bilayer fluidity persuades structural transformation. This unsaturation induced structural transformation due to packing disorder in bilayer has been delineated through spatially resolved fluorescence lifetime imaging microscopy (FLIM) and fluorescence polarization or anisotropy imaging microscopy (FPIM/FAIM). Structure-function relationship of phospholipid vesicle is also investigated by monitoring intervesicular water dynamics behavior, which has been demonstrated by temporally resolved fluorescence spectroscopy (TRFS) techniques. Nevertheless, it has also been manifested from this study that loss of rigidity in bilayer breaks down the strong hydrogen bond (H-bond) network around the charged lipid head groups. The disruption of this H-bond network increases the bilayer elasticity, which helps to evolve various kinds of vesicular structure. Furthermore, the significant influence of unsaturated fatty acid on membrane bilayer has been ratified through in vivo live cell imaging.
Collapse
Affiliation(s)
- Dipankar Mondal
- Department of Chemistry , Indian Institute of Technology , Kharagpur 721302 , West Bengal , India
| | - Rupam Dutta
- Department of Chemistry , Indian Institute of Technology , Kharagpur 721302 , West Bengal , India
| | - Pavel Banerjee
- Department of Chemistry , Indian Institute of Technology , Kharagpur 721302 , West Bengal , India
| | - Devdeep Mukherjee
- Department of Biotechnology , Indian Institute of Technology , Kharagpur 721302 , West Bengal , India
| | - Tapas Kumar Maiti
- Department of Biotechnology , Indian Institute of Technology , Kharagpur 721302 , West Bengal , India
| | - Nilmoni Sarkar
- Department of Chemistry , Indian Institute of Technology , Kharagpur 721302 , West Bengal , India
| |
Collapse
|
28
|
Widomska J, Welc R, Gruszecki WI. The effect of carotenoids on the concentration of singlet oxygen in lipid membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:845-851. [PMID: 30689980 DOI: 10.1016/j.bbamem.2019.01.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 01/20/2019] [Accepted: 01/23/2019] [Indexed: 10/27/2022]
Abstract
An effect of β-carotene and its polar derivative, zeaxanthin, on a concentration of singlet oxygen in lipid membranes was studied in a model system. The carotenoids were incorporated into the membranes of small unilamellar liposomes at a concentration of 0.15 mol% with respect to lipid. Singlet oxygen was generated in a liposome suspension via photosensitization of toluidine blue, and its concentration in a membrane was detected with application of a specific fluorescence probe (singlet oxygen sensor green reagent) located in the lipid bilayer. The results show the carotenoid-dependent decrease in the concentration of singlet oxygen in the membranes formed with unsaturated lipids (egg yolk phosphatidylcholine and digalactosyldiacylglycerol) but not in the case of the membranes formed with a saturated lipid (dimyristoylphosphatidylcholine). The effect of carotenoids was about twice as high as in the case of cholesterol present in liposomes at the same concentration. The results suggest that carotenoids protect membranes formed with unsaturated lipids against singlet oxygen through combined activity of different mechanisms: modification of structural properties of the lipid bilayers, physical quenching of singlet oxygen and chemical reactions leading to the pigment oxidation. The latter conclusion is based on the analysis of the absorption spectra of liposomes before and after light exposure. An importance of the different modes of protection by carotenoids against single oxygen toxicity towards biomembranes is discussed.
Collapse
Affiliation(s)
- Justyna Widomska
- Department of Biophysics, Medical University of Lublin, Lublin, Poland.
| | - Renata Welc
- Department of Biophysics, Institute of Physics, Maria Curie-Sklodowska University, Lublin, Poland
| | - Wieslaw I Gruszecki
- Department of Biophysics, Institute of Physics, Maria Curie-Sklodowska University, Lublin, Poland
| |
Collapse
|
29
|
Singla P, Dalal P, Kaur M, Arya G, Nimesh S, Singh R, Salunke DB. Bile Acid Oligomers and Their Combination with Antibiotics To Combat Bacterial Infections. J Med Chem 2018; 61:10265-10275. [DOI: 10.1021/acs.jmedchem.8b01433] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Poonam Singla
- Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Priyanka Dalal
- Department of Microbial Biotechnology, Panjab University, Chandigarh 160014, India
| | - Mahaldeep Kaur
- Department of Microbial Biotechnology, Panjab University, Chandigarh 160014, India
| | - Geeta Arya
- Department of Biotechnology, Central University of Rajasthan, Ajmer 305817, India
| | - Surendra Nimesh
- Department of Biotechnology, Central University of Rajasthan, Ajmer 305817, India
| | - Rachna Singh
- Department of Microbial Biotechnology, Panjab University, Chandigarh 160014, India
| | - Deepak B. Salunke
- Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| |
Collapse
|
30
|
Imaging of human cells exposed to an antifungal antibiotic amphotericin B reveals the mechanisms associated with the drug toxicity and cell defence. Sci Rep 2018; 8:14067. [PMID: 30218099 PMCID: PMC6138690 DOI: 10.1038/s41598-018-32301-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 09/05/2018] [Indexed: 11/08/2022] Open
Abstract
Amphotericin B is an antibiotic used in pharmacotherapy of life-threatening mycotic infections. Unfortunately, the applicability of this antibiotic is associated with highly toxic side effects. In order to understand molecular mechanisms underlying toxicity of amphotericin B to patients, two cell lines, human normal colon epithelial cells (CCD 841 CoTr) and human colon adenocarcinoma cells (HT-29) were cultured in the presence of the drug and imaged with the application of fluorescence lifetime imaging microscopy and Raman scattering microscopy. The results of the cell viability assays confirm high toxicity of amphotericin B towards human cells. The images recorded demonstrate effective binding of amphotericin B to biomembranes. Analysis of the images reveals the operation of a defence mechanism based upon the elimination of molecules of the drug from living cells via formation of small amphotericin B-containing lipid vesicles. The fact that exosomes formed are devoid of cholesterol, as concluded on the basis of the results of Raman analysis, suggests that sequestration of sterols from the lipid phase of biomembranes is not a sole mechanism responsible for the toxic side effects of amphotericin B. Alternatively, the results imply that molecules of the drug present directly within the hydrophobic membrane core disturb the lipid membrane structure and affect their biological functions.
Collapse
|
31
|
Grela E, Wieczór M, Luchowski R, Zielinska J, Barzycka A, Grudzinski W, Nowak K, Tarkowski P, Czub J, Gruszecki WI. Mechanism of Binding of Antifungal Antibiotic Amphotericin B to Lipid Membranes: An Insight from Combined Single-Membrane Imaging, Microspectroscopy, and Molecular Dynamics. Mol Pharm 2018; 15:4202-4213. [PMID: 30081640 DOI: 10.1021/acs.molpharmaceut.8b00572] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Amphotericin B is a lifesaving polyene antibiotic used in the treatment of systemic mycoses. Unfortunately, the pharmacological applicability of this drug is limited because of its severe toxic side effects. At the same time, the lack of a well-defined mechanism of selectivity hampers the efforts to rationally design safer derivatives. As the drug primarily targets the biomembranes of both fungi and humans, new insights into the binding of amphotericin B to lipid membranes can be helpful in unveiling the molecular mechanisms underlying both its pharmacological activity and toxicity. We use fluorescence-lifetime-imaging microscopy combined with fluorescence-emission spectroscopy in the microscale to study the interaction of amphotericin B with single lipid bilayers, using model systems based on giant unilamellar liposomes formed with three lipids: dipalmitoylphosphatidylcholine (DPPC), dimirystoylphosphatidylcholine (DMPC), and 1-palmitoyl-2-oleoylphosphatidylcholine (POPC). The results show that amphotericin B introduced into the water phase as a DMSO solution binds to the membrane as dimers and small-molecular aggregates that we identify as tetramers and trimers. Fluorescence-detected linear-dichroism measurements revealed high orientational freedom of all the molecular-organization forms with respect to the membrane plane, which suggests that the drug partially binds to the membrane surface. The presence of sterols in the lipid phase (cholesterol but particularly ergosterol at 30 mol %) promotes the penetration of drug molecules into the lipid membrane, as concluded on the basis of the decreased orientation angle of amphotericin B molecules with respect to the axis normal to the membrane plane. Moreover, ergosterol facilitates the association of amphotericin B dimers into aggregated structures that can play a role in membrane destabilization or permeabilization. The presence of cholesterol inhibits the formation of small aggregates in the lipid phase of liposomes, making this system a promising candidate for a low-toxicity antibiotic-delivery system. Our conclusions are supported with molecular simulations that reveal the conformational properties of AmB oligomers in both aqueous solution and lipid bilayers of different compositions.
Collapse
Affiliation(s)
- Ewa Grela
- Department of Biophysics, Institute of Physics , Maria Curie-Sklodowska University , 20-031 Lublin , Poland.,Department of Biophysics, Institute of Biology , Maria Curie-Sklodowska University , 20-031 Lublin , Poland
| | - Miłosz Wieczór
- Department of Physical Chemistry , Gdansk University of Technology , 80-233 Gdansk , Poland
| | - Rafał Luchowski
- Department of Biophysics, Institute of Physics , Maria Curie-Sklodowska University , 20-031 Lublin , Poland
| | - Joanna Zielinska
- Department of Pharmaceutical Chemistry , Medical University of Gdansk , 80-416 Gdansk , Poland
| | - Angelika Barzycka
- Department of Biophysics, Institute of Physics , Maria Curie-Sklodowska University , 20-031 Lublin , Poland
| | - Wojciech Grudzinski
- Department of Biophysics, Institute of Physics , Maria Curie-Sklodowska University , 20-031 Lublin , Poland
| | - Katarzyna Nowak
- Department of Natural Environment Biogeochemistry, Institute of Agrophysics , Polish Academy of Sciences , 20-290 Lublin , Poland
| | | | - Jacek Czub
- Department of Physical Chemistry , Gdansk University of Technology , 80-233 Gdansk , Poland
| | - Wieslaw I Gruszecki
- Department of Biophysics, Institute of Physics , Maria Curie-Sklodowska University , 20-031 Lublin , Poland
| |
Collapse
|
32
|
Pawlikowska-Pawlega B, Kapral J, Gawron A, Stochmal A, Zuchowski J, Pecio L, Luchowski R, Grudzinski W, Gruszecki WI. Interaction of a quercetin derivative - lensoside Aβ with liposomal membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:292-299. [DOI: 10.1016/j.bbamem.2017.10.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 10/25/2017] [Accepted: 10/25/2017] [Indexed: 01/02/2023]
|
33
|
Grudzinski W, Nierzwicki L, Welc R, Reszczynska E, Luchowski R, Czub J, Gruszecki WI. Localization and Orientation of Xanthophylls in a Lipid Bilayer. Sci Rep 2017; 7:9619. [PMID: 28852075 PMCID: PMC5575131 DOI: 10.1038/s41598-017-10183-7] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 08/07/2017] [Indexed: 02/05/2023] Open
Abstract
Xanthophylls (polar carotenoids) play diverse biological roles, among which are modulation of the physical properties of lipid membranes and protection of biomembranes against oxidative damage. Molecular mechanisms underlying these functions are intimately related to the localization and orientation of xanthophyll molecules in lipid membranes. In the present work, we address the problem of localization and orientation of two xanthophylls present in the photosynthetic apparatus of plants and in the retina of the human eye, zeaxanthin and lutein, in a single lipid bilayer membrane formed with dimyristoylphosphatidylcholine. By using fluorescence microscopic analysis and Raman imaging of giant unilamellar vesicles, as well as molecular dynamics simulations, we show that lutein and zeaxanthin adopt a very similar transmembrane orientation within a lipid membrane. In experimental and computational approach, the average tilt angle of xanthophylls relative to the membrane normal is independently found to be ~40 deg, and results from hydrophobic mismatch between the membrane thickness and the distance between the terminal hydroxyl groups of the xanthophylls. Consequences of such a localization and orientation for biological activity of xanthophylls are discussed.
Collapse
Affiliation(s)
- Wojciech Grudzinski
- Department of Biophysics, Institute of Physics, Maria Curie-Sklodowska University, 20-031, Lublin, Poland
| | - Lukasz Nierzwicki
- Department of Physical Chemistry, Gdansk University of Technology, Narutowicza 11/12, 80-233, Gdansk, Poland
| | - Renata Welc
- Department of Biophysics, Institute of Physics, Maria Curie-Sklodowska University, 20-031, Lublin, Poland
| | - Emilia Reszczynska
- Department of Biophysics, Institute of Physics, Maria Curie-Sklodowska University, 20-031, Lublin, Poland
| | - Rafal Luchowski
- Department of Biophysics, Institute of Physics, Maria Curie-Sklodowska University, 20-031, Lublin, Poland
| | - Jacek Czub
- Department of Physical Chemistry, Gdansk University of Technology, Narutowicza 11/12, 80-233, Gdansk, Poland.
| | - Wieslaw I Gruszecki
- Department of Biophysics, Institute of Physics, Maria Curie-Sklodowska University, 20-031, Lublin, Poland.
| |
Collapse
|
34
|
Arczewska M, Czernel G, Gagoś M. Effect of the Amphotericin B and Its Copper Complex on a Model of the Outer Leaflet of Human Erythrocyte Membrane. J Phys Chem B 2016; 120:11191-11204. [DOI: 10.1021/acs.jpcb.6b08555] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Marta Arczewska
- Department
of Biophysics, University of Life Sciences in Lublin, 20-950 Lublin, Poland
| | - Grzegorz Czernel
- Department
of Biophysics, University of Life Sciences in Lublin, 20-950 Lublin, Poland
| | - Mariusz Gagoś
- Department of Cell
Biology, Institute of Biology and Biotechnology, Maria Curie- Skłodowska of University, 20-033 Lublin, Poland
| |
Collapse
|