1
|
Zhou J, Jia F, Chen P, Zhou G, Wang M, Wu J, Yang S. Localisation of the centre of the highest region of muscle spindle abundance of anterior forearm muscles. J Anat 2024; 244:803-814. [PMID: 38155435 PMCID: PMC11021685 DOI: 10.1111/joa.14000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 12/30/2023] Open
Abstract
The centre of the highest region of muscle spindle abundance (CHRMSA) in the intramuscular nerve-dense region has been suggested as the optimal target location for injecting botulinum toxin A to block muscle spasms. The anterior forearm muscles have a high incidence of spasticity. However, the CHRMSA in the intramuscular nerve-dense region of the forearm anterior muscle group has not been defined. This study aimed to accurately define the body surface position and the depth of CHRMSA in an intramuscular nerve-dense region of the anterior forearm muscles. Twenty-four adult cadavers (57.7 ± 11.5 years) were included in this study. The curved line close to the skin connecting the medial and lateral epicondyles of the humerus was designated as the horizontal reference line (H line), and the line connecting the medial epicondyle of the humerus and the ulnar styloid was defined as the longitudinal reference line (L line). Modified Sihler's staining, haematoxylin-eosin staining and computed tomography scanning were employed to determine the projection points (P and P') of the CHRMSAs on the anterior and posterior surfaces of the forearm. The positions (PH and PL) of point P projected onto the H and L lines, and the depth of each CHRMSA, were determined using the Syngo system. The PH of the CHRMSA of the ulnar head of pronator teres, humeral head of pronator teres, flexor carpi radialis, palmaris longus, flexor carpi ulnaris, ulnar part of flexor digitorum superficialis, radial part of flexor digitorum superficialis, flexor pollicis longus, ulnar part of flexor digitorum profundus, radial portion of flexor digitorum profundus and pronator quadratus muscles were located at 42.48%, 45.52%, 41.20%, 19.70%, 7.77%, 25.65%, 47.42%, 53.47%, 12.28%, 38.41% and 51.68% of the H line, respectively; the PL were located at 18.38%, 12.54%, 28.83%, 13.43%, 17.65%, 32.76%, 57.32%, 64.12%, 20.05%, 45.94% and 88.71% of the L line, respectively; the puncture depths were located at 21.92%, 27.25%, 23.76%, 18.04%, 15.49%, 31.36%, 26.59%, 41.28%, 38.72%, 45.14% and 53.58% of the PP' line, respectively. The percentage values are the means of individual values. We recommend that the body surface puncture position and depth of the CHRMSA are the preferred locations for the intramuscular injection of botulinum toxin A to block anterior forearm muscle spasms.
Collapse
Affiliation(s)
- Jiayu Zhou
- Department of AnatomyZunyi Medical UniversityZunyiChina
| | - Fangfang Jia
- Department of AnatomyZunyi Medical UniversityZunyiChina
| | - Peng Chen
- Department of AnatomyZunyi Medical UniversityZunyiChina
| | - Guoyan Zhou
- Department of AnatomyZunyi Medical UniversityZunyiChina
| | - Meng Wang
- Department of AnatomyZunyi Medical UniversityZunyiChina
| | - Junxi Wu
- Department of AnatomyZunyi Medical UniversityZunyiChina
| | - Shengbo Yang
- Department of AnatomyZunyi Medical UniversityZunyiChina
| |
Collapse
|
2
|
Tian M, Ma Z, Yang GZ. Micro/nanosystems for controllable drug delivery to the brain. Innovation (N Y) 2024; 5:100548. [PMID: 38161522 PMCID: PMC10757293 DOI: 10.1016/j.xinn.2023.100548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 11/26/2023] [Indexed: 01/03/2024] Open
Abstract
Drug delivery to the brain is crucial in the treatment for central nervous system disorders. While significant progress has been made in recent years, there are still major challenges in achieving controllable drug delivery to the brain. Unmet clinical needs arise from various factors, including controlled drug transport, handling large drug doses, methods for crossing biological barriers, the use of imaging guidance, and effective models for analyzing drug delivery. Recent advances in micro/nanosystems have shown promise in addressing some of these challenges. These include the utilization of microfluidic platforms to test and validate the drug delivery process in a controlled and biomimetic setting, the development of novel micro/nanocarriers for large drug loads across the blood-brain barrier, and the implementation of micro-intervention systems for delivering drugs through intraparenchymal or peripheral routes. In this article, we present a review of the latest developments in micro/nanosystems for controllable drug delivery to the brain. We also delve into the relevant diseases, biological barriers, and conventional methods. In addition, we discuss future prospects and the development of emerging robotic micro/nanosystems equipped with directed transportation, real-time image guidance, and closed-loop control.
Collapse
Affiliation(s)
- Mingzhen Tian
- Institute of Medical Robotics, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhichao Ma
- Institute of Medical Robotics, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Guang-Zhong Yang
- Institute of Medical Robotics, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
3
|
Qi Z, Han S, Wang S, Gu X, Deng J, Huang C, Yin X. Visual three-dimensional spatial distribution of motor neurons innervating superficial limb muscles in mice. Front Cell Neurosci 2022; 16:904172. [PMID: 35936500 PMCID: PMC9354668 DOI: 10.3389/fncel.2022.904172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 06/29/2022] [Indexed: 11/13/2022] Open
Abstract
The coordination of motor function in the spinal cord depends on selective connections between distinct classes of motor neurons and their target muscles. However, knowledge regarding the anatomical connections between the superficial limb skeletal muscles and the motor neurons that innervate them is limited. In this study, with a combination of the multiple retrograde tracing method with 3DISCO clearing, we explored the spatial distribution of different motor neuron pools targeting specific superficial muscles of the forelimbs or hindlimbs in mouse spinal cords, which were dominated by the radial, median, ulnar, or sciatic nerve. This study reveals the precise interrelationship among different motor neuron pools innervating limb muscles under the same space and time. The data will help to further understand the neural loop and muscular motor coordination.
Collapse
Affiliation(s)
- Zhidan Qi
- Department of Orthopedics and Trauma, Peking University People’s Hospital, Beijing, China
| | - Shuai Han
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
| | - Shen Wang
- Department of Orthopedics and Trauma, Peking University People’s Hospital, Beijing, China
| | - Xinyi Gu
- Department of Orthopedics and Trauma, Peking University People’s Hospital, Beijing, China
| | - Jin Deng
- Department of Orthopedics and Trauma, Peking University People’s Hospital, Beijing, China
| | - Chen Huang
- Department of Orthopedics and Trauma, Peking University People’s Hospital, Beijing, China
| | - Xiaofeng Yin
- Department of Orthopedics and Trauma, Peking University People’s Hospital, Beijing, China
- *Correspondence: Xiaofeng Yin,
| |
Collapse
|
4
|
Nance E, Pun SH, Saigal R, Sellers DL. Drug delivery to the central nervous system. NATURE REVIEWS. MATERIALS 2022; 7:314-331. [PMID: 38464996 PMCID: PMC10923597 DOI: 10.1038/s41578-021-00394-w] [Citation(s) in RCA: 96] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/05/2021] [Indexed: 03/12/2024]
Abstract
Despite the rising global incidence of central nervous system (CNS) disorders, CNS drug development remains challenging, with high costs, long pathways to clinical use and high failure rates. The CNS is highly protected by physiological barriers, in particular, the blood-brain barrier and the blood-cerebrospinal fluid barrier, which limit access of most drugs. Biomaterials can be designed to bypass or traverse these barriers, enabling the controlled delivery of drugs into the CNS. In this Review, we first examine the effects of normal and diseased CNS physiology on drug delivery to the brain and spinal cord. We then discuss CNS drug delivery designs and materials that are administered systemically, directly to the CNS, intranasally or peripherally through intramuscular injections. Finally, we highlight important challenges and opportunities for materials design for drug delivery to the CNS and the anticipated clinical impact of CNS drug delivery.
Collapse
Affiliation(s)
- Elizabeth Nance
- Department of Chemical Engineering, University of Washington, Seattle, WA, USA
- These authors contributed equally: Elizabeth Nance, Suzie H. Pun, Rajiv Saigal, Drew L. Sellers
| | - Suzie H. Pun
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- These authors contributed equally: Elizabeth Nance, Suzie H. Pun, Rajiv Saigal, Drew L. Sellers
| | - Rajiv Saigal
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Department of Neurological Surgery, University of Washington, Seattle, WA, USA
- These authors contributed equally: Elizabeth Nance, Suzie H. Pun, Rajiv Saigal, Drew L. Sellers
| | - Drew L. Sellers
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- These authors contributed equally: Elizabeth Nance, Suzie H. Pun, Rajiv Saigal, Drew L. Sellers
| |
Collapse
|
5
|
Xu J, Xuan A, Liu Z, Li Y, Zhu J, Yao Y, Yu T, Zhu D. An Approach to Maximize Retrograde Transport Based on the Spatial Distribution of Motor Endplates in Mouse Hindlimb Muscles. Front Cell Neurosci 2021; 15:707982. [PMID: 34456685 PMCID: PMC8385196 DOI: 10.3389/fncel.2021.707982] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/16/2021] [Indexed: 11/13/2022] Open
Abstract
Knowledge regarding the relationship between muscles and the corresponding motor neurons would allow therapeutic genes to transport into specific spinal cord segments. Retrograde tracing technique by targeting the motor endplate (MEP), a highly specialized structure that offers direct access to the spinal motor neurons, has been used to elucidate the connectivity between skeletal muscles and the innervating motor neuron pools. However, current injection strategies mainly based on blind injection or the local MEP region might lead to an underestimation of the motor neuron number due to the uneven distribution of MEP in skeletal muscles. In this work, we proposed a novel intramuscular injection strategy based on the 3D distribution of the MEPs in skeletal muscles, applied the 3D intramuscular injection to the gastrocnemius and tibialis anterior for retrograde tracing of the corresponding motor neurons, and compared this with the existing injection strategy. The intramuscular diffusion of the tracer demonstrated that 3D injection could maximize the retrograde transport by ensuring a greater uptake of the tracer by the MEP region. In combination with optical clearing and imaging, we performed 3D mapping and quantification of the labeled motor neurons and confirmed that 3D injection could label more motor neurons than the current injection method. It is expected that 3D intramuscular injection strategy will help elucidate the connective relationship between muscles and motor neurons faithfully and becomes a promising tool in the development of gene therapy strategies for motor neuron diseases.
Collapse
Affiliation(s)
- Jianyi Xu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China.,MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Ang Xuan
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China.,MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Zhang Liu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China.,MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Yusha Li
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China.,MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Jingtan Zhu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China.,MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Yingtao Yao
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China.,MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Tingting Yu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China.,MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Dan Zhu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China.,MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
6
|
Chowdhury EA, Meno-Tetang G, Chang HY, Wu S, Huang HW, Jamier T, Chandran J, Shah DK. Current progress and limitations of AAV mediated delivery of protein therapeutic genes and the importance of developing quantitative pharmacokinetic/pharmacodynamic (PK/PD) models. Adv Drug Deliv Rev 2021; 170:214-237. [PMID: 33486008 DOI: 10.1016/j.addr.2021.01.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 12/17/2022]
Abstract
While protein therapeutics are one of the most successful class of drug molecules, they are expensive and not suited for treating chronic disorders that require long-term dosing. Adeno-associated virus (AAV) mediated in vivo gene therapy represents a viable alternative, which can deliver the genes of protein therapeutics to produce long-term expression of proteins in target tissues. Ongoing clinical trials and recent regulatory approvals demonstrate great interest in these therapeutics, however, there is a lack of understanding regarding their cellular disposition, whole-body disposition, dose-exposure relationship, exposure-response relationship, and how product quality and immunogenicity affects these important properties. In addition, there is a lack of quantitative studies to support the development of pharmacokinetic-pharmacodynamic models, which can support the discovery, development, and clinical translation of this delivery system. In this review, we have provided a state-of-the-art overview of current progress and limitations related to AAV mediated delivery of protein therapeutic genes, along with our perspective on the steps that need to be taken to improve clinical translation of this therapeutic modality.
Collapse
|
7
|
Tosolini AP, Sleigh JN. Intramuscular Delivery of Gene Therapy for Targeting the Nervous System. Front Mol Neurosci 2020; 13:129. [PMID: 32765219 PMCID: PMC7379875 DOI: 10.3389/fnmol.2020.00129] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 06/26/2020] [Indexed: 12/11/2022] Open
Abstract
Virus-mediated gene therapy has the potential to deliver exogenous genetic material into specific cell types to promote survival and counteract disease. This is particularly enticing for neuronal conditions, as the nervous system is renowned for its intransigence to therapeutic targeting. Administration of gene therapy viruses into skeletal muscle, where distal terminals of motor and sensory neurons reside, has been shown to result in extensive transduction of cells within the spinal cord, brainstem, and sensory ganglia. This route is minimally invasive and therefore clinically relevant for gene therapy targeting to peripheral nerve soma. For successful transgene expression, viruses administered into muscle must undergo a series of processes, including host cell interaction and internalization, intracellular sorting, long-range retrograde axonal transport, endosomal liberation, and nuclear import. In this review article, we outline key characteristics of major gene therapy viruses—adenovirus, adeno-associated virus (AAV), and lentivirus—and summarize the mechanisms regulating important steps in the virus journey from binding at peripheral nerve terminals to nuclear delivery. Additionally, we describe how neuropathology can negatively influence these pathways, and conclude by discussing opportunities to optimize the intramuscular administration route to maximize gene delivery and thus therapeutic potential.
Collapse
Affiliation(s)
- Andrew P Tosolini
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - James N Sleigh
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom.,UK Dementia Research Institute, University College London, London, United Kingdom
| |
Collapse
|
8
|
Chen Z, Fan G, Li A, Yuan J, Xu T. rAAV2-Retro Enables Extensive and High-Efficient Transduction of Lower Motor Neurons following Intramuscular Injection. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2019; 17:21-33. [PMID: 31890738 PMCID: PMC6926343 DOI: 10.1016/j.omtm.2019.11.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 11/09/2019] [Indexed: 12/27/2022]
Abstract
The motor system controls muscle movement through lower motor neurons in the spinal cord and brainstem. Lower motor neurons are efferent neurons in the central nervous system (CNS) characterized by axonal projections that reach specific targets in the periphery. Lower motor neuron lesions result in the denervation and dysfunction of peripheral skeletal muscle. Great progress has been made to develop therapeutic strategies to transduce lower motor neurons with genes. However, the widespread distribution of lower motor neurons makes their specific, extensive, and efficient transduction a challenge. In this study, we demonstrated that, compared to the other tested recombinant adeno-associated virus (rAAV) serotypes, rAAV2-retro mediated the most efficient retrograde transduction of lower motor neurons in the spinal cord following intramuscular injection in neonatal mice. A single injection of rAAV2-retro in a single muscle enabled the efficient and extensive transduction of lower motor neurons in the spinal cord and brainstem rather than transducing only the lower motor neurons connected to the injected muscle. rAAV2-retro achieved the extensive transduction of lower motor neurons by the cerebrospinal fluid pathway. Our work suggests that gene delivery via the intramuscular injection of rAAV2-retro represents a promising tool in the development of gene therapy strategies for motor neuron diseases.
Collapse
Affiliation(s)
- Zhilong Chen
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China.,MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Guoqing Fan
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China.,MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Anan Li
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China.,MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Yuan
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China.,MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Tonghui Xu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China.,MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China.,Institute of Life Sciences, Nanchang University, Nanchang, China
| |
Collapse
|
9
|
Harrigan ME, Filous AR, Tosolini AP, Morris R, Schwab JM, Arnold WD. Assessing Rat Forelimb and Hindlimb Motor Unit Connectivity as Objective and Robust Biomarkers of Spinal Motor Neuron Function. Sci Rep 2019; 9:16699. [PMID: 31723233 PMCID: PMC6853930 DOI: 10.1038/s41598-019-53235-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 10/29/2019] [Indexed: 12/13/2022] Open
Abstract
Sensitive and objective biomarkers of neuronal injury, degeneration, and regeneration can help facilitate translation of experimental findings into clinical testing. Whereas measures of upper motor neuron connectivity have been readily established, functional assessments of lower motor neuron (LMN) innervation of forelimb muscles are lacking. Compound muscle action potential (CMAP) and motor unit (MU) number estimation (MUNE) are well-established methods that allow longitudinal MU integrity monitoring in patients. In analogy we refined CMAP and MUNE methods for assessing spinal MU input in the rat forelimb and hindlimb. Repeated CMAP and MUNE recordings are robust (coefficients of variability: 4.5-11.3%), and MUNE measurements from forelimb wrist flexor muscles (415 ± 8 [SEM]) align with back-traced anatomical LMN counts (336 ± 16 [SEM]). For disease validation, cross-sectional blinded electrophysiological and muscle contractility measurements were obtained in a cohort of G93A SOD1 mutant overexpressing rats and compared with controls. Longitudinal assessment of mutant animals demonstrated progressive motor unit decline in the hindlimb to a greater extent than the forelimb. Hindlimb CMAP and MUNE demonstrated strong correlations with plantarflexion muscle contractility. Cross-species assessment of upper/fore- limb and lower/hind- limb motor units using objective electrophysiological CMAP and MUNE values as biomarkers will guide and improve bi-directional translation.
Collapse
Affiliation(s)
- Markus E Harrigan
- Department of Neurology, Spinal Cord Injury Medicine (Paraplegiology), The Ohio State University, Wexner Medical Center, Columbus, OH, USA
| | - Angela R Filous
- Department of Neurology, Spinal Cord Injury Medicine (Paraplegiology), The Ohio State University, Wexner Medical Center, Columbus, OH, USA
| | - Andrew P Tosolini
- Department of Neuromuscular Diseases, Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Renee Morris
- Translational Neuroscience Facility, School of Medical Sciences, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Jan M Schwab
- Department of Neurology, Spinal Cord Injury Medicine (Paraplegiology), The Ohio State University, Wexner Medical Center, Columbus, OH, USA
- Belford Center for Spinal Cord Injury, The Ohio State University, Wexner Medical Center, Columbus, OH, USA
- Department of Physical Medicine and Rehabilitation, The Ohio State University, Wexner Medical Center, Columbus, OH, USA
- Department of Neuroscience, The Ohio State University, Wexner Medical Center, Columbus, OH, USA
| | - W David Arnold
- Department of Neurology, Neuromuscular Division, The Ohio State University, Wexner Medical Center, Columbus, OH, USA.
- Department of Physical Medicine and Rehabilitation, The Ohio State University, Wexner Medical Center, Columbus, OH, USA.
- Department of Neuroscience, The Ohio State University, Wexner Medical Center, Columbus, OH, USA.
- Department of Physiology and Cell Biology, The Ohio State University, Wexner Medical Center, Columbus, OH, USA.
| |
Collapse
|
10
|
Laliberte AM, Goltash S, Lalonde NR, Bui TV. Propriospinal Neurons: Essential Elements of Locomotor Control in the Intact and Possibly the Injured Spinal Cord. Front Cell Neurosci 2019; 13:512. [PMID: 31798419 PMCID: PMC6874159 DOI: 10.3389/fncel.2019.00512] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 10/29/2019] [Indexed: 12/22/2022] Open
Abstract
Propriospinal interneurons (INs) communicate information over short and long distances within the spinal cord. They act to coordinate different parts of the body by linking motor circuits that control muscles across the forelimbs, trunk, and hindlimbs. Their role in coordinating locomotor circuits near and far may be invaluable to the recovery of locomotor function lost due to injury to the spinal cord where the flow of motor commands from the brain and brainstem to spinal motor circuits is disrupted. The formation and activation of circuits established by spared propriospinal INs may promote the re-emergence of locomotion. In light of progress made in animal models of spinal cord injury (SCI) and in human patients, we discuss the role of propriospinal INs in the intact spinal cord and describe recent studies investigating the assembly and/or activation of propriospinal circuits to promote recovery of locomotion following SCI.
Collapse
Affiliation(s)
- Alex M Laliberte
- Department of Biology, Faculty of Science, Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Sara Goltash
- Department of Biology, Faculty of Science, Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Nicolas R Lalonde
- Department of Biology, Faculty of Science, Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Tuan Vu Bui
- Department of Biology, Faculty of Science, Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
11
|
Williams JJ, Watson AM, Vazquez AL, Schwartz AB. Viral-Mediated Optogenetic Stimulation of Peripheral Motor Nerves in Non-human Primates. Front Neurosci 2019; 13:759. [PMID: 31417342 PMCID: PMC6684788 DOI: 10.3389/fnins.2019.00759] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 07/08/2019] [Indexed: 11/13/2022] Open
Abstract
Objective: Reanimation of muscles paralyzed by disease states such as spinal cord injury remains a highly sought therapeutic goal of neuroprosthetic research. Optogenetic stimulation of peripheral motor nerves expressing light-sensitive opsins is a promising approach to muscle reanimation that may overcome several drawbacks of traditional methods such as functional electrical stimulation (FES). However, the utility of these methods has only been demonstrated in rodents to date, while translation to clinical practice will likely first require demonstration and refinement of these gene therapy techniques in non-human primates. Approach: Three rhesus macaques were injected intramuscularly with either one or both of two optogenetic constructs (AAV6-hSyn-ChR2-eYFP and/or AAV6-hSyn-Chronos-eYFP) to transduce opsin expression in the corresponding nerves. Neuromuscular junctions were targeted for virus delivery using an electrical stimulating injection technique. Functional opsin expression was periodically evaluated up to 13 weeks post-injection by optically stimulating targeted nerves with a 472 nm fiber-coupled laser while recording electromyographic (EMG) responses. Main Results: One monkey demonstrated functional expression of ChR2 at 8 weeks post-injection in each of two injected muscles, while the second monkey briefly exhibited contractions coupled to optical stimulation in a muscle injected with the Chronos construct at 10 weeks. A third monkey injected only in one muscle with the ChR2 construct showed strong optically coupled contractions at 5 ½ weeks which then disappeared by 9 weeks. EMG responses to optical stimulation of ChR2-transduced nerves demonstrated graded recruitment relative to both stimulus pulse-width and light intensity, and followed stimulus trains up to 16 Hz. In addition, the EMG response to prolonged stimulation showed delayed fatigue over several minutes. Significance: These results demonstrate the feasibility of viral transduction of peripheral motor nerves for functional optical stimulation of motor activity in non-human primates, a variable timeline of opsin expression in a animal model closer to humans, and fundamental EMG response characteristics to optical nerve stimulation. Together, they represent an important step in translating these optogenetic techniques as a clinically viable gene therapy.
Collapse
Affiliation(s)
- Jordan J. Williams
- Department of Neurobiology, Systems Neuroscience Institute, University of Pittsburgh, Pittsburgh, PA, United States
| | - Alan M. Watson
- Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Alberto L. Vazquez
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Andrew B. Schwartz
- Department of Neurobiology, Systems Neuroscience Institute, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
12
|
Tosolini AP, Sleigh JN. Motor Neuron Gene Therapy: Lessons from Spinal Muscular Atrophy for Amyotrophic Lateral Sclerosis. Front Mol Neurosci 2017; 10:405. [PMID: 29270111 PMCID: PMC5725447 DOI: 10.3389/fnmol.2017.00405] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 11/21/2017] [Indexed: 12/11/2022] Open
Abstract
Spinal muscular atrophy (SMA) and amyotrophic lateral sclerosis (ALS) are severe nervous system diseases characterized by the degeneration of lower motor neurons. They share a number of additional pathological, cellular, and genetic parallels suggesting that mechanistic and clinical insights into one disorder may have value for the other. While there are currently no clinical ALS gene therapies, the splice-switching antisense oligonucleotide, nusinersen, was recently approved for SMA. This milestone was achieved through extensive pre-clinical research and patient trials, which together have spawned fundamental insights into motor neuron gene therapy. We have thus tried to distil key information garnered from SMA research, in the hope that it may stimulate a more directed approach to ALS gene therapy. Not only must the type of therapeutic (e.g., antisense oligonucleotide vs. viral vector) be sensibly selected, but considerable thought must be applied to the where, which, what, and when in order to enhance treatment benefit: to where (cell types and tissues) must the drug be delivered and how can this be best achieved? Which perturbed pathways must be corrected and can they be concurrently targeted? What dosing regime and concentration should be used? When should medication be administered? These questions are intuitive, but central to identifying and optimizing a successful gene therapy. Providing definitive solutions to these quandaries will be difficult, but clear thinking about therapeutic testing is necessary if we are to have the best chance of developing viable ALS gene therapies and improving upon early generation SMA treatments.
Collapse
Affiliation(s)
- Andrew P Tosolini
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, London, United Kingdom
| | - James N Sleigh
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, London, United Kingdom
| |
Collapse
|
13
|
Sleigh JN, Vagnoni A, Twelvetrees AE, Schiavo G. Methodological advances in imaging intravital axonal transport. F1000Res 2017; 6:200. [PMID: 28344778 PMCID: PMC5333613 DOI: 10.12688/f1000research.10433.1] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/27/2017] [Indexed: 11/25/2022] Open
Abstract
Axonal transport is the active process whereby neurons transport cargoes such as organelles and proteins anterogradely from the cell body to the axon terminal and retrogradely in the opposite direction. Bi-directional transport in axons is absolutely essential for the functioning and survival of neurons and appears to be negatively impacted by both aging and diseases of the nervous system, such as Alzheimer’s disease and amyotrophic lateral sclerosis. The movement of individual cargoes along axons has been studied
in vitro in live neurons and tissue explants for a number of years; however, it is currently unclear as to whether these systems faithfully and consistently replicate the
in vivo situation. A number of intravital techniques originally developed for studying diverse biological events have recently been adapted to monitor axonal transport in real-time in a range of live organisms and are providing novel insight into this dynamic process. Here, we highlight these methodological advances in intravital imaging of axonal transport, outlining key strengths and limitations while discussing findings, possible improvements, and outstanding questions.
Collapse
Affiliation(s)
- James N Sleigh
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, London, UK
| | - Alessio Vagnoni
- Division of Cell Biology, MRC Laboratory of Molecular Biology, Cambridge, UK; Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Alison E Twelvetrees
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, London, UK
| | - Giampietro Schiavo
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, London, UK
| |
Collapse
|