1
|
Maharajan N, Kim KH, Vijayakumar KA, Cho GW. Unlocking Therapeutic Potential: Camphorquinone's Role in Alleviating Non-Alcoholic Fatty Liver Disease via SIRT1/LKB1/AMPK Pathway Activation. Tissue Eng Regen Med 2025; 22:129-144. [PMID: 39680356 PMCID: PMC11712022 DOI: 10.1007/s13770-024-00684-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/16/2024] [Accepted: 11/06/2024] [Indexed: 12/17/2024] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is a pathological condition that increase the risk of simple steatosis to hepatocellular carcinoma. This study aimed to investigate the biological effects of camphorquinone (CQ) in a high-fat diet (HFD)-fed and low dose streptozotocin (STZ)-induced mouse model, widely used to mimic the concurrent development of NAFLD pathological conditions in vivo, and a free fatty acid-induced hepatic steatosis cell model in vitro. METHODS CQ (10 or 30 mg/kg/day; i.p.) was injected for three weeks, and fasting blood glucose levels, glucose tolerance, and liver lipid metabolism were assessed. RESULTS CQ administration alleviated the increase in body and liver weights and improved glucose tolerance in NAFLD mice model. CQ also reduced the gene expression levels of lipid biosynthesis and inflammation markers, while increasing the levels of fatty acid oxidation markers in liver tissues and HepG2 cells. These beneficial effects of CQ were mediated via activation of the sirtuin 1 (SIRT1)/adenosine monophosphate-activated protein kinase (AMPK) signalling pathway in vitro and in vivo. CONCLUSION Collectively, our data suggest that CQ improves liver lipid metabolism and reduces blood glucose levels via activation of the SIRT1/serine/threonine kinase 11 (STK11/LKB1)/AMPK axis.
Collapse
Affiliation(s)
- Nagarajan Maharajan
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Kil Hwan Kim
- Veterans Health Service Medical Center, Veterans Medical Research Institute, Seoul, 05368, Korea
| | - Karthikeyan A Vijayakumar
- Department of Biological Science, College of Natural Sciences, Chosun University, 309 Pilmun-Daero, Dong-Gu, Gwangju, 501-759, Korea
- The Basic Science Institute of Chosun University, Chosun University, Gwangju, 61452, Korea
| | - Gwang-Won Cho
- Department of Biological Science, College of Natural Sciences, Chosun University, 309 Pilmun-Daero, Dong-Gu, Gwangju, 501-759, Korea.
- The Basic Science Institute of Chosun University, Chosun University, Gwangju, 61452, Korea.
- Department of Integrative Biological Science, BK21 FOUR Education Research Group for Age-Associated Disorder Control Technology, Chosun University, Gwangju, 61452, Korea.
| |
Collapse
|
2
|
Kang L, Ma X, Yu F, Xu L, Lang L. Dihydromyricetin Alleviates Non-Alcoholic Fatty Liver Disease by Modulating Gut Microbiota and Inflammatory Signaling Pathways. J Microbiol Biotechnol 2024; 34:2637-2647. [PMID: 39639497 PMCID: PMC11729546 DOI: 10.4014/jmb.2406.06048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/24/2024] [Accepted: 10/25/2024] [Indexed: 12/07/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a prevalent chronic liver condition that is strongly linked to gut microbiota imbalance and chronic inflammation. This study aims to explore the preventive effects of dihydromyricetin (DHM) on NAFLD by modulating the intestinal flora and the TLR4/NF-κB signaling pathway. Fifty male C57BL/6J mice were randomly assigned to five groups: a normal control group, a model group, and three DHM treatment groups receiving low (500 mg/kg), medium (750 mg/kg), and high doses (1,000 mg/kg). NAFLD was induced using a high-fat diet, and DHM was administered for 8 weeks. ELISA measured serum levels of LPS, IL-1β, and TNF-α, while Western Blot assessed liver expression of TLR4 and NF-κB p65. Changes in intestinal flora composition were analyzed using high-throughput 16S rRNA sequencing. The results showed that DHM treatment significantly reduced serum levels of LPS, IL-1β, and TNF-α, decreasing the liver expression of TLR4 and NF-κB p65. Intestinal flora analysis indicated a notable increase in beneficial bacteria, especially in the medium and high-dose groups. DHM treatment also significantly improved liver pathology, reducing fat deposition and inflammatory cell infiltration. In conclusion, DHM effectively prevents the progression of NAFLD by improving gut microbiota balance and suppressing inflammatory signaling pathways.
Collapse
Affiliation(s)
- Limin Kang
- Department of Hepatobiliary and Pancreatic Surgery, Puer People’s Hospital, Puer 665000, P.R. China
| | - Xiaolong Ma
- Department of Reproductive Genetics Center, Puer People’s Hospital, Puer 665000, P.R. China
| | - Fakun Yu
- Department of Hepatobiliary and Pancreatic Surgery, Puer People’s Hospital, Puer 665000, P.R. China
| | - Lei Xu
- Department of Hepatobiliary and Pancreatic Surgery, Puer People’s Hospital, Puer 665000, P.R. China
| | - Li Lang
- Department of Outpatient, Puer People’s Hospital, Puer 665000, P.R. China
| |
Collapse
|
3
|
Mohammadian K, Fakhar F, Keramat S, Stanek A. The Role of Antioxidants in the Treatment of Metabolic Dysfunction-Associated Fatty Liver Disease: A Systematic Review. Antioxidants (Basel) 2024; 13:797. [PMID: 39061866 PMCID: PMC11273623 DOI: 10.3390/antiox13070797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/19/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a global public health problem that causes liver-related morbidity and mortality. It is also an independent risk factor for non-communicable diseases. In 2020, a proposal was made to refer to it as "metabolic dysfunction-associated fatty liver disease (MAFLD)", with concise diagnostic criteria. Given its widespread occurrence, its treatment is crucial. Increased levels of oxidative stress cause this disease. This review aims to evaluate various studies on antioxidant therapies for patients with MAFLD. A comprehensive search for relevant research was conducted on the PubMed, SCOPUS, and ScienceDirect databases, resulting in the identification of 87 studies that met the inclusion criteria. In total, 31.1% of human studies used natural antioxidants, 53.3% used synthetic antioxidants, and 15.5% used both natural and synthetic antioxidants. In human-based studies, natural antioxidants showed 100% efficacy in the treatment of MAFLD, while synthetic antioxidants showed effective results in only 91% of the investigations. In animal-based research, natural antioxidants were fully effective in the treatment of MAFLD, while synthetic antioxidants demonstrated effectiveness in only 87.8% of the evaluations. In conclusion, antioxidants in their natural form are more helpful for patients with MAFLD, and preserving the correct balance of pro-oxidants and antioxidants is a useful way to monitor antioxidant treatment.
Collapse
Affiliation(s)
- Kiana Mohammadian
- Division of Hematology and Blood Banking, Department of Medical Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz 71348, Iran; (K.M.); (F.F.)
| | - Fatemeh Fakhar
- Division of Hematology and Blood Banking, Department of Medical Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz 71348, Iran; (K.M.); (F.F.)
| | - Shayan Keramat
- VAS-European Independent Foundation in Angiology/Vascular Medicine, Via GB Grassi 74, 20157 Milan, Italy;
- Support Association of Patients of Buerger’s Disease, Buerger’s Disease NGO, Mashhad 9183785195, Iran
| | - Agata Stanek
- VAS-European Independent Foundation in Angiology/Vascular Medicine, Via GB Grassi 74, 20157 Milan, Italy;
- Department and Clinic of Internal Medicine, Angiology, and Physical Medicine, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 41-902 Bytom, Poland
| |
Collapse
|
4
|
Zhu Y, Lu F. Astragaloside IV inhibits cell viability and glycolysis of hepatocellular carcinoma by regulating KAT2A-mediated succinylation of PGAM1. BMC Cancer 2024; 24:682. [PMID: 38835015 DOI: 10.1186/s12885-024-12438-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 05/28/2024] [Indexed: 06/06/2024] Open
Abstract
BACKGROUND Astragaloside IV (AS-IV) is one of the basic components of Astragali radix, that has been shown to have preventive effects against various diseases, including cancers. This study aimed to explore the role of AS-IV in hepatocellular carcinoma (HCC) and its underlying mechanism. METHODS The cell viability, glucose consumption, lactate production, and extracellular acidification rate (ECAR) in SNU-182 and Huh7 cell lines were detected by specific commercial kits. Western blot was performed to analyze the succinylation level in SNU-182 and Huh7 cell lines. The interaction between lysine acetyltransferase (KAT) 2 A and phosphoglycerate mutase 1 (PGAM1) was evaluated by co-immunoprecipitation and immunofluorescence assays. The role of KAT2A in vivo was explored using a xenografted tumor model. RESULTS The results indicated that AS-IV treatment downregulated the protein levels of succinylation and KAT2A in SNU-182 and Huh7 cell lines. The cell viability, glucose consumption, lactate production, ECAR, and succinylation levels were decreased in AS-IV-treated SNU-182 and Huh7 cell lines, and the results were reversed after KAT2A overexpression. KAT2A interacted with PGAM1 to promote the succinylation of PGAM1 at K161 site. KAT2A overexpression promoted the viability and glycolysis of SNU-182 and Huh7 cell lines, which were partly blocked following PGAM1 inhibition. In tumor-bearing mice, AS-IV suppressed tumor growth though inhibiting KAT2A-mediated succinylation of PGAM1. CONCLUSION AS-IV inhibited cell viability and glycolysis in HCC by regulating KAT2A-mediated succinylation of PGAM1, suggesting that AS-IV might be a potential and suitable therapeutic agent for treating HCC.
Collapse
Affiliation(s)
- Yuanzhang Zhu
- Department of Pharmacy, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Second Road, Huangpu District, Shanghai, 200020, China
| | - Fei Lu
- Department of Pharmacy, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Second Road, Huangpu District, Shanghai, 200020, China.
| |
Collapse
|
5
|
Eeda V, Patil NY, Joshi AD, Awasthi V. Advancements in metabolic-associated steatotic liver disease research: Diagnostics, small molecule developments, and future directions. Hepatol Res 2024; 54:222-234. [PMID: 38149861 PMCID: PMC10923026 DOI: 10.1111/hepr.14008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 12/28/2023]
Abstract
Metabolic (dysfunction)-associated steatotic liver disease (MASLD), formerly known as nonalcoholic fatty liver disease, is a growing global health concern with no approved pharmacological treatments. At the same time, there are no standard methods to definitively screen for the presence of MASLD because of its progressive nature and symptomatic commonality with other disorders. Recent advances in molecular understanding of MASLD pathophysiology have intensified research on development of new drug molecules, repurposing of existing drugs approved for other indications, and an educated use of dietary supplements for its treatment and prophylaxis. This review focused on depicting the latest advancements in MASLD research related to small molecule development for prophylaxis or treatment and diagnosis, with emphasis on mechanistic basis at the molecular level.
Collapse
Affiliation(s)
- Venkateswararao Eeda
- Department of Pharmaceutical Sciences, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma, USA
| | - Nikhil Yuvaraj Patil
- Department of Pharmaceutical Sciences, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma, USA
| | - Aditya Dilip Joshi
- Department of Pharmaceutical Sciences, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma, USA
| | - Vibhudutta Awasthi
- Department of Pharmaceutical Sciences, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma, USA
| |
Collapse
|
6
|
Maseko TE, Elkalaf M, Peterová E, Lotková H, Staňková P, Melek J, Dušek J, Žádníková P, Čížková D, Bezrouk A, Pávek P, Červinková Z, Kučera O. Comparison of HepaRG and HepG2 cell lines to model mitochondrial respiratory adaptations in non‑alcoholic fatty liver disease. Int J Mol Med 2024; 53:18. [PMID: 38186319 PMCID: PMC10781417 DOI: 10.3892/ijmm.2023.5342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 12/01/2023] [Indexed: 01/09/2024] Open
Abstract
Although some clinical studies have reported increased mitochondrial respiration in patients with fatty liver and early non‑alcoholic steatohepatitis (NASH), there is a lack of in vitro models of non‑alcoholic fatty liver disease (NAFLD) with similar findings. Despite being the most commonly used immortalized cell line for in vitro models of NAFLD, HepG2 cells exposed to free fatty acids (FFAs) exhibit a decreased mitochondrial respiration. On the other hand, the use of HepaRG cells to study mitochondrial respiratory changes following exposure to FFAs has not yet been fully explored. Therefore, the present study aimed to assess cellular energy metabolism, particularly mitochondrial respiration, and lipotoxicity in FFA‑treated HepaRG and HepG2 cells. HepaRG and HepG2 cells were exposed to FFAs, followed by comparative analyses that examained cellular metabolism, mitochondrial respiratory enzyme activities, mitochondrial morphology, lipotoxicity, the mRNA expression of selected genes and triacylglycerol (TAG) accumulation. FFAs stimulated mitochondrial respiration and glycolysis in HepaRG cells, but not in HepG2 cells. Stimulated complex I, II‑driven respiration and β‑oxidation were linked to increased complex I and II activities in FFA‑treated HepaRG cells, but not in FFA‑treated HepG2 cells. Exposure to FFAs disrupted mitochondrial morphology in both HepaRG and HepG2 cells. Lipotoxicity was induced to a greater extent in FFA‑treated HepaRG cells than in FFA‑treated HepG2 cells. TAG accumulation was less prominent in HepaRG cells than in HepG2 cells. On the whole, the present study demonstrates that stimulated mitochondrial respiration is associated with lipotoxicity in FFA‑treated HepaRG cells, but not in FFA‑treated HepG2 cells. These findings suggest that HepaRG cells are more suitable for assessing mitochondrial respiratory adaptations in the developed in vitro model of early‑stage NASH.
Collapse
Affiliation(s)
- Tumisang Edward Maseko
- Department of Physiology, Charles University, Faculty of Medicine in Hradec Kralove, 500 03 Hradec Kralove, Czech Republic
| | - Moustafa Elkalaf
- Department of Physiology, Charles University, Faculty of Medicine in Hradec Kralove, 500 03 Hradec Kralove, Czech Republic
| | - Eva Peterová
- Department of Physiology, Charles University, Faculty of Medicine in Hradec Kralove, 500 03 Hradec Kralove, Czech Republic
- Department of Medical Biochemistry, Charles University, Faculty of Medicine in Hradec Kralove, 500 03 Hradec Kralove, Czech Republic
| | - Halka Lotková
- Department of Physiology, Charles University, Faculty of Medicine in Hradec Kralove, 500 03 Hradec Kralove, Czech Republic
| | - Pavla Staňková
- Department of Physiology, Charles University, Faculty of Medicine in Hradec Kralove, 500 03 Hradec Kralove, Czech Republic
| | - Jan Melek
- Department of Physiology, Charles University, Faculty of Medicine in Hradec Kralove, 500 03 Hradec Kralove, Czech Republic
| | - Jan Dušek
- Department of Physiology, Charles University, Faculty of Medicine in Hradec Kralove, 500 03 Hradec Kralove, Czech Republic
- Department of Pharmacology and Toxicology, Charles University, Faculty of Pharmacy in Hradec Kralove, 500 05 Hradec Kralove, Czech Republic
| | - Petra Žádníková
- Department of Physiology, Charles University, Faculty of Medicine in Hradec Kralove, 500 03 Hradec Kralove, Czech Republic
| | - Dana Čížková
- Department of Histology and Embryology Charles University, Faculty of Medicine in Hradec Kralove, 500 03 Hradec Kralove, Czech Republic
| | - Aleš Bezrouk
- Department of Medical Biophysics, Charles University, Faculty of Medicine in Hradec Kralove, 500 03 Hradec Kralove, Czech Republic
| | - Petr Pávek
- Department of Pharmacology and Toxicology, Charles University, Faculty of Pharmacy in Hradec Kralove, 500 05 Hradec Kralove, Czech Republic
| | - Zuzana Červinková
- Department of Physiology, Charles University, Faculty of Medicine in Hradec Kralove, 500 03 Hradec Kralove, Czech Republic
| | - Otto Kučera
- Department of Physiology, Charles University, Faculty of Medicine in Hradec Kralove, 500 03 Hradec Kralove, Czech Republic
| |
Collapse
|
7
|
Wang L, Yan Y, Wu L, Peng J. Natural products in non-alcoholic fatty liver disease (NAFLD): Novel lead discovery for drug development. Pharmacol Res 2023; 196:106925. [PMID: 37714392 DOI: 10.1016/j.phrs.2023.106925] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/06/2023] [Accepted: 09/12/2023] [Indexed: 09/17/2023]
Abstract
With changing lifestyles, non-alcoholic fatty liver disease (NAFLD) has become the most prevalent liver disease worldwide. A substantial increase in the incidence, mortality, and associated burden of NAFLD-related advanced liver disease is expected. Currently, the initial diagnosis of NAFLD is still based on ultrasound and there is no approved treatment method. Lipid-lowering drugs, vitamin supplementation, and lifestyle improvement treatments are commonly used in clinical practice. However, most lipid-lowering drugs can produce poor patient compliance and specific adverse effects. Therefore, the exploration of bio-diagnostic markers and active lead compounds for the development of innovative drugs is urgently needed. More and more studies have reported the anti-NAFLD effects and mechanisms of natural products (NPs), which have become an important source for new drug development to treat NAFLD due to their high activity and low side effects. At present, berberine and silymarin have been approved by the US FDA to enter clinical phase IV studies, demonstrating the potential of NPs against NAFLD. Studies have found that the regulation of lipid metabolism, insulin resistance, oxidative stress, and inflammation-related pathways may play important roles in the process. With the continuous updating of technical means and scientific theories, in-depth research on the targets and mechanisms of NPs against NAFLD can provide new possibilities to find bio-diagnostic markers and innovative drugs. As we know, FXR agonists, PPARα agonists, and dual CCR2/5 inhibitors are gradually coming on stage for the treatment of NAFLD. Whether NPs can exert anti-NAFLD effects by regulating these targets or some unknown targets remains to be further studied. Therefore, the study reviewed the potential anti-NAFLD NPs and their targets. Some works on the discovery of new targets and the docking of active lead compounds were also discussed. It is hoped that this review can provide some reference values for the development of non-invasive diagnostic markers and new drugs against NAFLD in the clinic.
Collapse
Affiliation(s)
- Lu Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Yonghuan Yan
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Linfang Wu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Jinyong Peng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China.
| |
Collapse
|
8
|
Li S, Hao L, Hu X. Natural products target glycolysis in liver disease. Front Pharmacol 2023; 14:1242955. [PMID: 37663261 PMCID: PMC10469892 DOI: 10.3389/fphar.2023.1242955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 08/10/2023] [Indexed: 09/05/2023] Open
Abstract
Mitochondrial dysfunction plays an important role in the occurrence and development of different liver diseases. Oxidative phosphorylation (OXPHOS) dysfunction and production of reactive oxygen species are closely related to mitochondrial dysfunction, forcing glycolysis to become the main source of energy metabolism of liver cells. Moreover, glycolysis is also enhanced to varying degrees in different liver diseases, especially in liver cancer. Therefore, targeting the glycolytic signaling pathway provides a new strategy for the treatment of non-alcoholic fatty liver disease (NAFLD) and liver fibrosis associated with liver cancer. Natural products regulate many steps of glycolysis, and targeting glycolysis with natural products is a promising cancer treatment. In this review, we have mainly illustrated the relationship between glycolysis and liver disease, natural products can work by targeting key enzymes in glycolysis and their associated proteins, so understanding how natural products regulate glycolysis can help clarify the therapeutic mechanisms these drugs use to inhibit liver disease.
Collapse
Affiliation(s)
- Shenghao Li
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Liyuan Hao
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaoyu Hu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
9
|
The role of protein kinases as key drivers of metabolic dysfunction-associated fatty liver disease progression: New insights and future directions. Life Sci 2022; 305:120732. [PMID: 35760093 DOI: 10.1016/j.lfs.2022.120732] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 06/08/2022] [Accepted: 06/21/2022] [Indexed: 02/07/2023]
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD), proposed in 2020 is a novel term for non-alcoholic fatty liver disease (NAFLD) which was coined for the first time in 1980. It is a leading cause of the most chronic liver disease and hepatic failure all over the world, and unfortunately, with no licensed drugs for treatment yet. The progress of the disease is driven by the triggered inflammatory process, oxidative stress, and insulin resistance in many pathways, starting with simple hepatic steatosis to non-alcoholic steatohepatitis, fibrosis, cirrhosis, and liver cancer. Protein kinases (PKs), such as MAPK, ErbB, PKC, PI3K/Akt, and mTOR, govern most of the pathological pathways by acting on various downstream key points in MAFLD and regulating both hepatic gluco- lipo-neogenesis and inflammation. Therefore, modulating the function of those potential protein kinases that are effectively involved in MAFLD might be a promising therapeutic approach for tackling this disease. In the current review, we have discussed the key role of protein kinases in the pathogenesis of MAFLD and performed a protein-protein interaction (PPI) network among the main proteins of each kinase pathway with MAFLD-related proteins to predict the most likely targets of the PKs in MAFLD. Moreover, we have reported the experimental, pre-clinical, and clinical data for the most recent investigated molecules that are activating p38-MAPK and AMPK proteins and inhibiting the other PKs to improve MAFLD condition by regulating oxidation and inflammation signalling.
Collapse
|
10
|
A Molecular Insight into the Role of Antioxidants in Nonalcoholic Fatty Liver Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9233650. [PMID: 35602098 PMCID: PMC9117022 DOI: 10.1155/2022/9233650] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 04/26/2022] [Indexed: 12/12/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) defines fat accumulation in the liver, and it is commonly associated with metabolic syndromes like diabetes and obesity. Progressive NAFLD leads to nonalcoholic steatohepatitis (NASH) and ultimately causes cirrhosis and hepatocellular carcinoma, and NASH is currently a frequent cause of liver transplantation. Oxidative stress is often contributed to the progression of NAFLD, and hence, antioxidants such as silymarin, silybin, or silibinin, pentoxifylline, resveratrol, and vitamins A, C, and E are used in clinical trials against NAFLD. Silymarin induces the peroxisome proliferator-activated receptor α (PPARα), a fatty acid sensor, which promotes the transcription of genes that are required for the enzymes involved in lipid oxidation in hepatocytes. Silybin inhibits sterol regulatory element-binding protein 1 and carbohydrate response element-binding protein to downregulate the expression of genes responsible for de novo lipogenesis by activating AMP-activated protein kinase phosphorylation. Pentoxifylline inhibits TNF-α expression and endoplasmic reticulum stress-mediated inflammatory nuclear factor kappa B (NF-κB) activation. Thus, it prevents NAFLD to NASH progression. Resveratrol inhibits methylation at Nrf-2 promoters and NF-κB activity via SIRT1 activation in NAFLD conditions. However, clinically, resveratrol has not shown promising beneficial effects. Vitamin C is beneficial in NAFLD patients. Vitamin E is not effectively regressing hepatic fibrosis. Hence, its combination with antifibrotic agents is used as an adjuvant to produce a synergistic antifibrotic effect. However, to date, none of these antioxidants have been used as a definite therapeutic agent in NAFLD patients. Further, these antioxidants should be studied in NAFLD patients with larger populations and multiple endpoints in the future.
Collapse
|
11
|
Wei D, Wu S, Liu J, Zhang X, Guan X, Gao L, Xu Z. Theobromine ameliorates nonalcoholic fatty liver disease by regulating hepatic lipid metabolism via mTOR signaling pathway in vivo and in vitro. Can J Physiol Pharmacol 2021; 99:775-785. [PMID: 33290156 DOI: 10.1139/cjpp-2020-0259] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Theobromine, a methylxanthine present in cocoa, has been shown to possess many beneficial pharmacological properties such as anti-oxidative stress, anti-inflammatory property, and anti-microbial activity. In this study, we investigated the effects of theobromine on nonalcoholic fatty liver disease (NAFLD) and the possible underlying mechanisms in vivo and in vitro. The results showed that theobromine reduced body weight and fat mass and improved dyslipidemia. Theobromine mitigated liver injury and significantly reduced hepatic triglyceride level in mice with obesity. Histological examinations also showed hepatic steatosis was alleviated after theobromine treatment. Furthermore, theobromine reversed the elevated mRNA and protein expression of SREBP-1c, FASN, CD36, FABP4, and the suppressed expression of PPARα and CPT1a in the liver of mice with obesity, which were responsible for lipogenesis, fatty acid uptake, and fatty acid oxidation respectively. In vitro, theobromine also downregulated SREBP-1c, FASN, CD36, FABP4 and upregulated PPARα and CPT1a mRNA and protein levels in hepatocytes in a dose-dependent manner, while these changes were reversed by L-leucine, a mammalian target of rapamycin (mTOR) agonist. The present study demonstrated that theobromine improved NAFLD by inhibiting lipogenesis and fatty acid uptake and promoting fatty acid oxidation in the liver and hepatocytes, which might be associated with its suppression of mTOR signaling pathway. Novelty: Theobromine protects against high-fat diet - induced NAFLD. Theobromine inhibits lipogenesis and fatty acid uptake and promotes fatty acid oxidation in the liver and hepatocytes via inhibiting mTOR signaling pathway.
Collapse
Affiliation(s)
- Dan Wei
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China
| | - Shaofei Wu
- Department of Hepatology, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China
| | - Jie Liu
- Department of Public Health, Tengzhou Central People's Hospital, Zaozhuang, Shandong, China
| | - Xiaoqian Zhang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China
| | - Xiaoling Guan
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China
| | - Li Gao
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China
| | - Zhipeng Xu
- Department of Urology, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
12
|
Di Ciaula A, Calamita G, Shanmugam H, Khalil M, Bonfrate L, Wang DQH, Baffy G, Portincasa P. Mitochondria Matter: Systemic Aspects of Nonalcoholic Fatty Liver Disease (NAFLD) and Diagnostic Assessment of Liver Function by Stable Isotope Dynamic Breath Tests. Int J Mol Sci 2021; 22:7702. [PMID: 34299321 PMCID: PMC8305940 DOI: 10.3390/ijms22147702] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/08/2021] [Accepted: 07/14/2021] [Indexed: 02/07/2023] Open
Abstract
The liver plays a key role in systemic metabolic processes, which include detoxification, synthesis, storage, and export of carbohydrates, lipids, and proteins. The raising trends of obesity and metabolic disorders worldwide is often associated with the nonalcoholic fatty liver disease (NAFLD), which has become the most frequent type of chronic liver disorder with risk of progression to cirrhosis and hepatocellular carcinoma. Liver mitochondria play a key role in degrading the pathways of carbohydrates, proteins, lipids, and xenobiotics, and to provide energy for the body cells. The morphological and functional integrity of mitochondria guarantee the proper functioning of β-oxidation of free fatty acids and of the tricarboxylic acid cycle. Evaluation of the liver in clinical medicine needs to be accurate in NAFLD patients and includes history, physical exam, imaging, and laboratory assays. Evaluation of mitochondrial function in chronic liver disease and NAFLD is now possible by novel diagnostic tools. "Dynamic" liver function tests include the breath test (BT) based on the use of substrates marked with the non-radioactive, naturally occurring stable isotope 13C. Hepatocellular metabolization of the substrate will generate 13CO2, which is excreted in breath and measured by mass spectrometry or infrared spectroscopy. Breath levels of 13CO2 are biomarkers of specific metabolic processes occurring in the hepatocyte cytosol, microsomes, and mitochondria. 13C-BTs explore distinct chronic liver diseases including simple liver steatosis, non-alcoholic steatohepatitis, liver fibrosis, cirrhosis, hepatocellular carcinoma, drug, and alcohol effects. In NAFLD, 13C-BT use substrates such as α-ketoisocaproic acid, methionine, and octanoic acid to assess mitochondrial oxidation capacity which can be impaired at an early stage of disease. 13C-BTs represent an indirect, cost-effective, and easy method to evaluate dynamic liver function. Further applications are expected in clinical medicine. In this review, we discuss the involvement of liver mitochondria in the progression of NAFLD, together with the role of 13C-BT in assessing mitochondrial function and its potential use in the prevention and management of NAFLD.
Collapse
Affiliation(s)
- Agostino Di Ciaula
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, 70124 Bari, Italy; (A.D.C.); (H.S.); (M.K.); (L.B.)
| | - Giuseppe Calamita
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari “Aldo Moro”, 70100 Bari, Italy;
| | - Harshitha Shanmugam
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, 70124 Bari, Italy; (A.D.C.); (H.S.); (M.K.); (L.B.)
| | - Mohamad Khalil
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, 70124 Bari, Italy; (A.D.C.); (H.S.); (M.K.); (L.B.)
| | - Leonilde Bonfrate
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, 70124 Bari, Italy; (A.D.C.); (H.S.); (M.K.); (L.B.)
| | - David Q.-H. Wang
- Marion Bessin Liver Research Center, Einstein-Mount Sinai Diabetes Research Center, Department of Medicine and Genetics, Division of Gastroenterology and Liver Diseases, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
| | - Gyorgy Baffy
- Department of Medicine, VA Boston Healthcare System and Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02130, USA;
| | - Piero Portincasa
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, 70124 Bari, Italy; (A.D.C.); (H.S.); (M.K.); (L.B.)
| |
Collapse
|
13
|
Di Ciaula A, Passarella S, Shanmugam H, Noviello M, Bonfrate L, Wang DQH, Portincasa P. Nonalcoholic Fatty Liver Disease (NAFLD). Mitochondria as Players and Targets of Therapies? Int J Mol Sci 2021; 22:ijms22105375. [PMID: 34065331 PMCID: PMC8160908 DOI: 10.3390/ijms22105375] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/14/2021] [Accepted: 05/18/2021] [Indexed: 12/12/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease and represents the hepatic expression of several metabolic abnormalities of high epidemiologic relevance. Fat accumulation in the hepatocytes results in cellular fragility and risk of progression toward necroinflammation, i.e., nonalcoholic steatohepatitis (NASH), fibrosis, cirrhosis, and eventually hepatocellular carcinoma. Several pathways contribute to fat accumulation and damage in the liver and can also involve the mitochondria, whose functional integrity is essential to maintain liver bioenergetics. In NAFLD/NASH, both structural and functional mitochondrial abnormalities occur and can involve mitochondrial electron transport chain, decreased mitochondrial β-oxidation of free fatty acids, excessive generation of reactive oxygen species, and lipid peroxidation. NASH is a major target of therapy, but there is no established single or combined treatment so far. Notably, translational and clinical studies point to mitochondria as future therapeutic targets in NAFLD since the prevention of mitochondrial damage could improve liver bioenergetics.
Collapse
Affiliation(s)
- Agostino Di Ciaula
- Department of Biomedical Sciences & Human Oncology, Clinica Medica “A. Murri”, University of Bari Medical School, 70124 Bari, Italy; (A.D.C.); (H.S.); (M.N.); (L.B.)
| | - Salvatore Passarella
- School of Medicine, University of Bari Medical School, 70124 Bari, Italy
- Correspondence: (S.P.); (P.P.); Tel.: +39-328-468-7215 (P.P.)
| | - Harshitha Shanmugam
- Department of Biomedical Sciences & Human Oncology, Clinica Medica “A. Murri”, University of Bari Medical School, 70124 Bari, Italy; (A.D.C.); (H.S.); (M.N.); (L.B.)
| | - Marica Noviello
- Department of Biomedical Sciences & Human Oncology, Clinica Medica “A. Murri”, University of Bari Medical School, 70124 Bari, Italy; (A.D.C.); (H.S.); (M.N.); (L.B.)
| | - Leonilde Bonfrate
- Department of Biomedical Sciences & Human Oncology, Clinica Medica “A. Murri”, University of Bari Medical School, 70124 Bari, Italy; (A.D.C.); (H.S.); (M.N.); (L.B.)
| | - David Q.-H. Wang
- Department of Medicine and Genetics, Division of Gastroenterology and Liver Diseases, Marion Bessin Liver Research Center, Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
| | - Piero Portincasa
- Department of Biomedical Sciences & Human Oncology, Clinica Medica “A. Murri”, University of Bari Medical School, 70124 Bari, Italy; (A.D.C.); (H.S.); (M.N.); (L.B.)
- Correspondence: (S.P.); (P.P.); Tel.: +39-328-468-7215 (P.P.)
| |
Collapse
|
14
|
Grattagliano I, Di Ciaula A, Baj J, Molina-Molina E, Shanmugam H, Garruti G, Wang DQH, Portincasa P. Protocols for Mitochondria as the Target of Pharmacological Therapy in the Context of Nonalcoholic Fatty Liver Disease (NAFLD). Methods Mol Biol 2021; 2310:201-246. [PMID: 34096005 PMCID: PMC8580566 DOI: 10.1007/978-1-0716-1433-4_12] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is one of the most frequent metabolic chronic liver diseases in developed countries and puts the populations at risk of progression to liver necro-inflammation, fibrosis, cirrhosis, and hepatocellular carcinoma. Mitochondrial dysfunction is involved in the onset of NAFLD and contributes to the progression from NAFLD to nonalcoholic steatohepatitis (NASH). Thus, liver mitochondria could become the target for treatments for improving liver function in NAFLD patients. This chapter describes the most important steps used for potential therapeutic interventions in NAFLD patients, discusses current options gathered from both experimental and clinical evidence, and presents some novel options for potentially improving mitochondrial function in NAFLD.
Collapse
Affiliation(s)
- Ignazio Grattagliano
- Clinica Medica "A. Murri", Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, Bari, Italy
- Italian College of General Practitioners and Primary Care, Bari, Italy
| | - Agostino Di Ciaula
- Clinica Medica "A. Murri", Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, Bari, Italy
| | - Jacek Baj
- Department of Anatomy, Medical University of Lublin, Lublin, Poland
| | - Emilio Molina-Molina
- Clinica Medica "A. Murri", Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, Bari, Italy
| | - Harshitha Shanmugam
- Clinica Medica "A. Murri", Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, Bari, Italy
| | - Gabriella Garruti
- Section of Endocrinology, Department of Emergency and Organ Transplantations, University of Bari "Aldo Moro" Medical School, Bari, Italy
| | - David Q-H Wang
- Division of Gastroenterology and Liver Diseases, Department of Medicine and Genetics, Marion Bessin Liver Research Center, Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Piero Portincasa
- Clinica Medica "A. Murri", Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, Bari, Italy.
| |
Collapse
|
15
|
Hu Y, Yin F, Liu Z, Xie H, Xu Y, Zhou D, Zhu B. Acerola polysaccharides ameliorate high-fat diet-induced non-alcoholic fatty liver disease through reduction of lipogenesis and improvement of mitochondrial functions in mice. Food Funct 2020; 11:1037-1048. [PMID: 31819934 DOI: 10.1039/c9fo01611b] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Acerola polysaccharides (ACPs) were purified from acerola (Malpighia emarginata DC.), a tropical fruit with strong antioxidant and anti-inflammatory activities. However, the biological activities of ACPs have barely been investigated. The present study was designed to investigate the efficacy of ACPs in the treatment of high-fat diet (HFD)-induced nonalcoholic fatty liver disease (NAFLD) in C57BL/6 mice. Male C57BL/6 mice were fed with a high-fat diet and treated with different doses of ACPs for 9 continuous weeks. NAFLD was examined in terms of body weight, lipid profiles, liver function markers, and histology. Gene expression was determined by using both qRT-PCR and western blot. Our results showed that administration of ACPs significantly reduced HFD-induced hyperlipidemia and hepatic lipid deposition by inhibiting the SREBP1c pathway in mice. ACP treatment normalized oxidative stress by activating nuclear factor (erythroid-derived-2)-like 2 (Nrf2) and reduced the expressions of pro-inflammatory cytokines in HFD fed mice. Furthermore, ACPs reduced uncoupling protein 2 (UCP2) expression, restored mitochondrial ATP content, increased mitochondrial complex I, IV, and V activity, and increased mitochondrial beta-oxidation by stimulating peroxisomal proliferator-activated receptor-gamma coactivator-1α (PGC-1α) in the liver of HFD-fed mice. Our study indicated that ACPs may be an effective dietary supplement for preventing HFD-induced NAFLD by regulating lipogenesis, reducing inflammation and oxidative stress, and promoting the mitochondrial function.
Collapse
Affiliation(s)
- Yuanyuan Hu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, PR China.
| | | | | | | | | | | | | |
Collapse
|
16
|
Mahjoubin-Tehran M, De Vincentis A, Mikhailidis DP, Atkin SL, Mantzoros CS, Jamialahmadi T, Sahebkar A. Non-alcoholic fatty liver disease and steatohepatitis: State of the art on effective therapeutics based on the gold standard method for diagnosis. Mol Metab 2020; 50:101049. [PMID: 32673798 PMCID: PMC8324680 DOI: 10.1016/j.molmet.2020.101049] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/19/2020] [Accepted: 06/26/2020] [Indexed: 02/08/2023] Open
Abstract
Objective The prevalence of non-alcoholic fatty liver disease and non-alcoholic steatohepatitis (NAFLD/NASH) is increasing. NAFLD/NASH may progress to cirrhosis and hepatocellular carcinoma. However, most patients with NAFLD/NASH will die from a vascular cause. There are no approved pharmacological treatments for NASH/NAFLD. Many clinical trials have been, or are being, undertaken; however, the challenge is the assessment of the clinical endpoint. The main objective of this narrative review was to evaluate the efficacy of drugs used in clinical trials for the treatment of NAFLD/NASH that included a liver biopsy as the gold standard. Methods A literature search was conducted using 3 databases (PubMed, Scopus, and Google Scholar) to identify the clinical trials that included liver biopsy assessment before and after treatment. Results Interventional clinical trials (n = 33) involving 18 different agents, alone and in combination, were identified. Pioglitazone is the only agent that has shown consistent benefit and efficacy in clinical trials. Pentoxifylline, rosiglitazone, and ursodeoxycholic acid had both positive and negative results from clinical trials. There is also evidence for vitamin E and metformin. Other drugs, including bicyclol, cysteamine bitartrate, l-carnitine, liraglutide, obeticholic acid, oligofructose, selonsertib, silymarin, and statins, each had a single clinical study. Conclusions In summary, the available molecules demonstrated a significant improvement in NASH and/or liver fibrosis in a minority of patients; thus, other drugs should be identified, possibly those acting on alternative pathophysiological pathways, and tested for their safety and efficacy. There are no currently approved pharmacological treatments for NASH/NAFLD. Confirmation of effective therapies for NAFLD/NASH is challenging due to the limitations of non-biopsy methods. We reviewed the efficacy of drugs used in NAFLD/NASH trials that included a liver biopsy as the gold standard.
Collapse
Affiliation(s)
- Maryam Mahjoubin-Tehran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Antonio De Vincentis
- Clinical Medicine and Hepatology Unit, Campus Bio-Medico University of Rome, via Alvaro del Portillo, 200, 00128 Rome, Italy
| | - Dimitri P Mikhailidis
- Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School, University College London (UCL), London, United Kingdom
| | | | - Christos S Mantzoros
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Section of Endocrinology, Boston VA Healthcare System, Harvard Medical School, Boston, MA, USA
| | - Tannaz Jamialahmadi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Food Science and Technology, Quchan Branch, Islamic Azad University, Quchan, Iran; Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Halal Research Center of IRI, FDA, Tehran, Iran; Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran; Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland.
| |
Collapse
|
17
|
Lu Y, Su X, Zhao M, Zhang Q, Liu C, Lai Q, Wu S, Fang A, Yang J, Chen X, Yao Y. Comparative RNA-sequencing profiled the differential gene expression of liver in response to acetyl-CoA carboxylase inhibitor GS-0976 in a mouse model of NASH. PeerJ 2019; 7:e8115. [PMID: 31879571 PMCID: PMC6927352 DOI: 10.7717/peerj.8115] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 10/28/2019] [Indexed: 02/05/2023] Open
Abstract
Background Non-alcoholic steatohepatitis (NASH) is a progressive liver disease characterized by hepatic steatosis, lobular inflammation and fibrosis. Acetyl-CoA carboxylase (ACC) isoform 1 and 2 involved in de novo lipogenesis (DNL) and fatty acid oxidation have been identified as a therapeutic target in NASH. GS-0976, the inhibitor of ACC1 and ACC2, has achieved favorable therapeutic effects in clinical trials with NASH. The purpose of this study was to explore the transcriptional alterations regulated by GS-0976 in NASH. Methods C57BL/6 mice were fed on a choline-deficient, L-amino acid-defined, high-fat diet (CDAHFD) or normal diet for 12 weeks. Mice were treated with or without GS-0976 (3 mg/kg per day) in the last 8 weeks. Oil Red O, Haematoxylin-eosin (H & E), and Sirius Red were used to evaluate hepatic steatosis, inflammation and fibrosis. The comparative RNA-sequencing was conducted to analyse the hepatic gene expression profiles in mice. Reverse transcription–polymerase chain reaction analysis was performed to validate the differential expression of representative genes. Results GS-0976 attenuated the steatosis, inflammation, and fibrosis of NASH in CDAHFD mouse model. High-throughput sequencing and differential gene expression analysis showed that there were 516 up-regulated genes and 525 down-regulated genes after GS-0976 treatment. Genes involved in the metabolic process, extracellular matrix formation, immune response, and angiogenesis were significantly enriched. The “Metabolic pathways” and “ECM-receptor interaction” pathways were the most significantly enriched KEGG pathways in the up-regulated and down-regulated differentially expressed genes (DEGs), respectively. Conclusions Transcriptome analysis showed that GS-0976 could regulate the expression of genes related to metabolism, inflammation and fibrosis in NASH. The global transcriptomic changes in gene expression promote the further understanding for the inhibition mechanisms of GS-0976 in NASH.
Collapse
Affiliation(s)
- Ying Lu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and Healthy Food Evaluation Research Center, Sichuan University, Chengdu, China.,West China School of Public Health and West China Fourth Hospital, Healthy Food Evaluation Research Center, Sichuan University, Chengdu, China
| | - Xiaolan Su
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and Healthy Food Evaluation Research Center, Sichuan University, Chengdu, China.,West China School of Public Health and West China Fourth Hospital, Healthy Food Evaluation Research Center, Sichuan University, Chengdu, China
| | - Manyu Zhao
- West China School of Public Health and West China Fourth Hospital, Healthy Food Evaluation Research Center, Sichuan University, Chengdu, China
| | - Qianru Zhang
- West China School of Public Health and West China Fourth Hospital, Healthy Food Evaluation Research Center, Sichuan University, Chengdu, China.,Guangdong Zhongsheng Pharmaceutical Co., Ltd., Dongguan, China
| | - Chuang Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and Healthy Food Evaluation Research Center, Sichuan University, Chengdu, China.,West China School of Public Health and West China Fourth Hospital, Healthy Food Evaluation Research Center, Sichuan University, Chengdu, China
| | - Qinhuai Lai
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and Healthy Food Evaluation Research Center, Sichuan University, Chengdu, China.,West China School of Public Health and West China Fourth Hospital, Healthy Food Evaluation Research Center, Sichuan University, Chengdu, China
| | - Sijia Wu
- West China School of Public Health and West China Fourth Hospital, Healthy Food Evaluation Research Center, Sichuan University, Chengdu, China
| | - Aiping Fang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and Healthy Food Evaluation Research Center, Sichuan University, Chengdu, China.,West China School of Public Health and West China Fourth Hospital, Healthy Food Evaluation Research Center, Sichuan University, Chengdu, China
| | - Jinliang Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and Healthy Food Evaluation Research Center, Sichuan University, Chengdu, China.,West China School of Public Health and West China Fourth Hospital, Healthy Food Evaluation Research Center, Sichuan University, Chengdu, China.,Guangdong Zhongsheng Pharmaceutical Co., Ltd., Dongguan, China
| | - Xiaoxin Chen
- Guangdong Zhongsheng Pharmaceutical Co., Ltd., Dongguan, China
| | - Yuqin Yao
- West China School of Public Health and West China Fourth Hospital, Healthy Food Evaluation Research Center, Sichuan University, Chengdu, China
| |
Collapse
|
18
|
Li, J, Wang, T, Xia J, Yao W, Huang F. Enzymatic and nonenzymatic protein acetylations control glycolysis process in liver diseases. FASEB J 2019; 33:11640-11654. [PMID: 31370704 PMCID: PMC6902721 DOI: 10.1096/fj.201901175r] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 07/09/2019] [Indexed: 12/12/2022]
Abstract
Impaired glycolysis has pathologic effects on the occurrence and progression of liver diseases, and it appears that glycolysis is increased to different degrees in different liver diseases. As an important post-translational modification, reversible lysine acetylation regulates almost all cellular processes, including glycolysis. Lysine acetylation can occur enzymatically with acetyltransferases or nonenzymatically with acetyl-coenzyme A. Accompanied by the progression of liver diseases, there seems to be a temporal and spatial variation between enzymatic and nonenzymatic acetylations in the regulation of glycolysis. Here, we summarize the most recent findings on the functions and targets of acetylation in controlling glycolysis in the different stages of liver diseases. In addition, we discuss the differences and causes between enzymatic and nonenzymatic acetylations in regulating glycolysis throughout the progression of liver diseases. Then, we review these new discoveries to provide the potential implications of these findings for therapeutic interventions in liver diseases.-Li, J., Wang, T., Xia, J., Yao, W., Huang, F. Enzymatic and nonenzymatic protein acetylations control glycolysis process in liver diseases.
Collapse
Affiliation(s)
- Juan Li,
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Tongxin Wang,
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jun Xia
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Weilei Yao
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Feiruo Huang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
19
|
Li Z, Li Y, Zhang HX, Guo JR, Lam CWK, Wang CY, Zhang W. Mitochondria-Mediated Pathogenesis and Therapeutics for Non-Alcoholic Fatty Liver Disease. Mol Nutr Food Res 2019; 63:e1900043. [PMID: 31199058 DOI: 10.1002/mnfr.201900043] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 05/03/2019] [Indexed: 12/28/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) has become a worldwide epidemic over the last decade. Remarkable progress has been made in understanding the pathogenesis of NAFLD and, subsequently, in developing medications to treat this disease. Although the mechanisms of NAFLD are complex and multifactorial, accumulating and emerging evidence indicates that mitochondria play a critical role in the pathogenesis and progression of NAFLD. Pharmacologic therapies acting on mitochondria may therefore pave the way to novel strategies for the prevention and protection against NAFLD. This review focuses on new insights into the role of hepatic mitochondrial dysfunction in NAFLD, and summarizes recent studies on mitochondria-centric therapies for NAFLD utilizing new medications or repurposing of currently available drugs. Although some studies presented may feature controversial results or are still in lack of clinical verification, it is undoubted that medications that may spare the mitochondria from multiple levels of damage are highly promising, and have begun to be used with some degree of success.
Collapse
Affiliation(s)
- Zheng Li
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, China
| | - Yan Li
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, China
| | - Hui-Xia Zhang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, China
| | - Jian-Ru Guo
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, China
| | - Christopher Wai Kei Lam
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, China
| | - Cai-Yun Wang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, China
| | - Wei Zhang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, China
| |
Collapse
|
20
|
Inhibitory effects of pentoxifylline on inflammation-related tumorigenesis in rat colon. Oncotarget 2018; 9:33972-33981. [PMID: 30338039 PMCID: PMC6188053 DOI: 10.18632/oncotarget.26119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 09/04/2018] [Indexed: 01/14/2023] Open
Abstract
Chronic inflammation in the colorectum increases the risk of colorectal cancer development. Pentoxifylline, a medicine used for improving the circulation, has been reported to inhibit TNF-α production and to ameliorate inflammatory bowel disease and non-alcoholic steatohepatitis. In this study, we investigated the effects of pentoxifylline on inflammation-related colon tumorigenesis in a rodent model using Kyoto APC delta rats, which have APC mutation and are susceptible to colon carcinogenesis. Male Kyoto APC delta rats were treated with azoxymethane and dextran sodium sulfate, and were subsequently administered water, with or without pentoxifylline. At the end of the experiment, the development of colorectal tumor was significantly inhibited in the pentoxifylline group. The pentoxifylline treatment also lowered the levels of oxidative stress markers and mRNAs of pro-inflammatory cytokines, including TNF-α and IL-6, in the colon mucosa. The PCNA labeling index and the inflammation score were also decreased in the colon of rats in the pentoxifylline -treated group. We also used an endoscopy to observe the tumor progression and inflammation in the colon of rats, revealing that inflammation grade was significantly lower in pentoxifylline-treated group at several points during the experiment. These findings suggest that pentoxifylline treatment might be useful for chemoprevention of inflammation-related colon cancer.
Collapse
|
21
|
Le Y, Chen L, Zhang Y, Bu P, Dai G, Cheng X. Epalrestat Stimulated Oxidative Stress, Inflammation, and Fibrogenesis in Mouse Liver. Toxicol Sci 2018; 163:397-408. [PMID: 28204799 PMCID: PMC11009688 DOI: 10.1093/toxsci/kfx038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Epalrestat (EPS), an aldose reductase inhibitor, is widely prescribed to manage diabetic neuropathy. It is generally believed that EPS is beneficial to diabetic patients because it can protect endothelial cells, Schwann cells, or other neural cells from oxidative stress. However, several clinical studies revealed that EPS therapy led to liver dysfunction, which limited its clinical applications. Currently, the underlying mechanism by which EPS causes liver dysfunction is unknown. This study aimed to investigate the mechanism responsible for EPS-induced liver injury. In mouse liver, EPS 1) increased oxidative stress, indicated by increased expression of manganese superoxide dismutase, Ho-1, and Nqo1, 2) induced inflammation, indicated by infiltration of inflammatory cells, and induced expression of tumor necrosis factor-alpha, CD11b, and CD11c, as well as 3) predisposed to induce fibrosis, evidenced by increased mRNA and protein expression of early profibrotic biomarker genes procollagen I and alpha-smooth muscle actin, and by increased collagen deposition. In cultured mouse and human hepatoma cells, EPS treatment induced oxidative stress, decreased cell viability, and triggered apoptosis evidenced by increased Caspase-3 cleavage/activation. In addition, EPS increased mRNA and protein expression of cytoglobin in mouse liver, indicating that EPS activated hepatic stellate cells (HSCs). Furthermore, EPS treatment in cultured human HSCs increased cell viability. In summary, EPS administration induced oxidative stress and inflammation in mouse liver, and stimulated liver fibrogenesis. Therefore, cautions should be exercised during EPS therapy.
Collapse
Affiliation(s)
- Yuan Le
- Department of Pharmaceutical Sciences College of Pharmacy and Health Sciences
| | - Liming Chen
- Department of Pharmaceutical Sciences College of Pharmacy and Health Sciences
| | - Yue Zhang
- Department of Pharmaceutical Sciences College of Pharmacy and Health Sciences
| | - Pengli Bu
- Department of Pharmaceutical Sciences College of Pharmacy and Health Sciences
- Department of Biological Sciences College of Liberal Arts and Sciences, St John’s University, Queens, New York 11439
| | - Guoli Dai
- Department of Biology, Center for Developmental and Regenerative Biology, School of Science, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202
| | - Xingguo Cheng
- Department of Pharmaceutical Sciences College of Pharmacy and Health Sciences
| |
Collapse
|
22
|
Kim IH, Choi JW, Lee MK, Kwon CJ, Nam TJ. Anti-obesity effects of pectinase and cellulase enzyme‑treated Ecklonia cava extract in high‑fat diet‑fed C57BL/6N mice. Int J Mol Med 2018; 41:924-934. [PMID: 29207025 PMCID: PMC5752156 DOI: 10.3892/ijmm.2017.3295] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 11/23/2017] [Indexed: 12/28/2022] Open
Abstract
The present study investigated the anti‑obesity effects of enzyme‑treated Ecklonia cava extract (EEc) in C57BL/6N mice with high‑fat diet (HFD)‑induced obesity. The EEc was separated and purified with the digestive enzymes pectinase (Rapidase X‑Press L) and cellulase (Rohament CL) and its effects on the progression of HFD‑induced obesity were examined over 10 weeks. The mice were divided into 6 groups (n=10/group) as follows: Normal diet group, HFD group, mice fed a HFD with 25 mg/kg/day Garcinia cambogia extract and mice fed a HFD with 5, 25 or 150 mg/kg/day EEc (EHD groups). Changes in body weight, fat, serum lipid levels and lipogenic enzyme levels were determined. The body weight and liver weight were increased in the HFD group compared with those in the ND group, which was significantly reduced by EEc supplementation. In addition, significant reductions in epididymal, perirenal and mesenteric white adipose tissues were present in the EHD groups and all three EHD groups exhibited decreases in insulin, leptin and glutamate pyruvate transaminase levels compared with those in the HFD group. In addition, EEc treatment significantly decreased the serum and hepatic triglyceride levels compared with those in the HFD group. However, the levels of high‑density lipoprotein cholesterol/total cholesterol ration increased significantly in EHD‑25 and ‑150 groups compared with those in the HFD group. Changes in adipogenic and lipogenic protein expression in the liver was assessed by western blot analysis. The EHD‑25 and -150 groups exhibited reduced levels of CCAAT/enhancer‑binding protein α and peroxisome proliferator activated receptor γ. However, the phosphorylation ratios of AMP‑activated protein kinase and acetyl‑CoA carboxylase were significantly increased in the liver tissue obtained from the EHD (5, ‑25 and ‑150 mg/kg/day) groups compared with those in the HFD group. EEc supplementation reduced levels of sterol regulatory element‑binding protein‑1c, adipose fatty acid‑binding protein, fatty acid synthase and leptin, while it significantly increased glucose transporter type 4 and adiponectin protein levels in the liver tissues of all three EHD groups compared with those in the HFD group. Taken together, these results suggest that EEc exerts anti‑obesity effects by reducing body weight and the serum and hepatic levels of obesity‑associated factors. Thus, EEc supplementation reduces HFD‑induced obesity in C57BL/6N mice and has the potential to prevent obesity and subsequent metabolic disorders.
Collapse
Affiliation(s)
- In-Hye Kim
- Cell Biology Laboratory, Institute of Fisheries Sciences, Pukyong National University, Busan, Gijang-gun 46041
| | - Jung-Wook Choi
- Department of Food Science and Nutrition, Pukyong National University, Busan, Nam-gu 48513
| | - Min-Kyeong Lee
- Department of Food Science and Nutrition, Pukyong National University, Busan, Nam-gu 48513
| | - Chang-Ju Kwon
- Ju Yeong NS Co., Ltd., Chuncheon, Gangwon-do 24232, Republic of Korea
| | - Taek-Jeong Nam
- Cell Biology Laboratory, Institute of Fisheries Sciences, Pukyong National University, Busan, Gijang-gun 46041
- Department of Food Science and Nutrition, Pukyong National University, Busan, Nam-gu 48513
| |
Collapse
|
23
|
Pappachan JM, Babu S, Krishnan B, Ravindran NC. Non-alcoholic Fatty Liver Disease: A Clinical Update. J Clin Transl Hepatol 2017; 5:384-393. [PMID: 29226105 PMCID: PMC5719196 DOI: 10.14218/jcth.2017.00013] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 05/31/2017] [Accepted: 06/24/2017] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is currently the most common chronic liver disease in developed countries because of the obesity epidemic. The disease increases liver-related morbidity and mortality, and often increases the risk for other comorbidities, such as type 2 diabetes and cardiovascular disease. Insulin resistance related to metabolic syndrome is the main pathogenic trigger that, in association with adverse genetic, humoral, hormonal and lifestyle factors, precipitates development of NAFLD. Biochemical markers and radiological imaging, along with liver biopsy in selected cases, help in diagnosis and prognostication. Intense lifestyle changes aiming at weight loss are the main therapeutic intervention to manage cases. Insulin sensitizers, antioxidants, lipid lowering agents, incretin-based drugs, weight loss medications, bariatric surgery and liver transplantation may be necessary for management in some cases along with lifestyle measures. This review summarizes the latest evidence on the epidemiology, natural history, pathogenesis, diagnosis and management of NAFLD.
Collapse
Affiliation(s)
- Joseph M Pappachan
- Department of Endocrinology, Diabetes & Metabolism, Royal Lancaster Infirmary, University Hospitals of Morecambe Bay NHS Trust, Lancaster, UK
| | - Shithu Babu
- Department of Medicine, Dorset County Hospital, Dorchester, UK
| | - Babu Krishnan
- Department of Gastroenterology & Hepatology, Royal Bournemouth Hospital, Bournemouth, UK
| | - Nishal C Ravindran
- Department of Gastroenterology & Hepatology, Hinchingbrooke Hospital, Hinchingbrooke, Huntingdon, UK
| |
Collapse
|
24
|
Arcaro CA, Assis RP, Zanon NM, Paula-Gomes S, Navegantes LCC, Kettelhut IC, Brunetti IL, Baviera AM. Involvement of cAMP/EPAC/Akt signaling in the antiproteolytic effects of pentoxifylline on skeletal muscles of diabetic rats. J Appl Physiol (1985) 2017; 124:704-716. [PMID: 29357512 DOI: 10.1152/japplphysiol.00499.2017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Advances in the knowledge of the mechanisms controlling protein breakdown in skeletal muscles have allowed the exploration of new options for treating muscle-wasting conditions. Pentoxifylline (PTX), a nonselective phosphodiesterase (PDE) inhibitor, attenuates the loss of muscle mass during catabolic conditions, mainly via inhibiting protein breakdown. The aim of this study was to explore the mechanisms by which PTX inhibits proteolysis in the soleus and extensor digitorum longus (EDL) muscles of streptozotocin-induced diabetic rats. The levels of atrogin-1 and muscle RING finger-1 were decreased, as were the activities of caspase-3 (EDL) and calpains (soleus and EDL), in diabetic rats treated with PTX, which at least partly explains the drop in the ubiquitin conjugate (EDL) levels and in proteasome activity (soleus and EDL). Treatment with PTX decreased PDE activity and increased cAMP content in muscles of diabetic rats; moreover, it also increased both the protein levels of exchange protein directly activated by cAMP (EPAC, a cAMP effector) and the phosphorylation of Akt. The loss of muscle mass was practically prevented in diabetic rats treated with PTX. These findings advance our understanding of the mechanisms underlying the antiproteolytic effects of PTX and suggest the use of PDE inhibitors as a strategy to activate cAMP signaling, which is emerging as a promising target for treating muscle mass loss during atrophic conditions. NEW & NOTEWORTHY cAMP signaling has been explored as a strategy to attenuate skeletal muscle atrophies. Therefore, in addition to β2AR agonists, phosphodiesterase inhibitors such as pentoxifylline (PTX) can be an interesting option. This study advances the understanding of the mechanisms related to the antiproteolytic effects of PTX on skeletal muscles of diabetic rats, which involve the activation of both exchange protein directly activated by cAMP and Akt effectors, inhibiting the expression of atrogenes and calpain/caspase-3-proteolytic machinery.
Collapse
Affiliation(s)
- Carlos Alberto Arcaro
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University, Araraquara, University of São Paulo , São Paulo , Brazil
| | - Renata Pires Assis
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University, Araraquara, University of São Paulo , São Paulo , Brazil
| | - Neusa Maria Zanon
- Department of Physiology, University of São Paulo, Ribeirão Preto Medical School , Ribeirão Preto, São Paulo , Brazil
| | - Silvia Paula-Gomes
- Department of Biochemistry/Immunology, University of São Paulo, Ribeirão Preto Medical School , Ribeirão Preto, São Paulo , Brazil
| | | | - Isis Carmo Kettelhut
- Department of Physiology, University of São Paulo, Ribeirão Preto Medical School , Ribeirão Preto, São Paulo , Brazil.,Department of Biochemistry/Immunology, University of São Paulo, Ribeirão Preto Medical School , Ribeirão Preto, São Paulo , Brazil
| | - Iguatemy Lourenço Brunetti
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University, Araraquara, University of São Paulo , São Paulo , Brazil
| | - Amanda Martins Baviera
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University, Araraquara, University of São Paulo , São Paulo , Brazil
| |
Collapse
|
25
|
Eshraghian A. Current and emerging pharmacological therapy for non-alcoholic fatty liver disease. World J Gastroenterol 2017; 23:7495-7504. [PMID: 29204050 PMCID: PMC5698243 DOI: 10.3748/wjg.v23.i42.7495] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 09/14/2017] [Accepted: 09/19/2017] [Indexed: 02/06/2023] Open
Abstract
The main treatment of patients with non-alcoholic fatty liver disease (NAFLD) is life style modification including weight reduction and dietary regimen. Majority of patients are safely treated with this management and pharmacologic interventions are not recommended. However, a subgroup of NAFLD patients with non-alcoholic steatohepatitis (NASH) who cannot achieve goals of life style modification may need pharmacological therapy. One major obstacle is measurement of histological outcome by liver biopsy which is an invasive method and is not recommended routinely in these patients. Several medications, mainly targeting baseline mechanism of NAFLD, have been investigated in clinical trials for treatment of NASH with promising results. At present, only pioglitazone acting as insulin sensitizing agent and vitamin E as an anti-oxidant have been recommended for treatment of NASH by international guidelines. Lipid lowering agents including statins and fibrates, pentoxifylline, angiotensin receptor blockers, ursodeoxycholic acid, probiotics and synbiotics are current agents with beneficial effects for treatment of NASH but have not been approved yet. Several emerging medications are in development for treatment of NASH. Obeticholic acid, liraglutide, elafibranor, cenicriviroc and aramchol have been tested in clinical trials or are completing trials. Here in, current and upcoming medications with promising results in clinical trial for treatment of NAFLD were reviewed.
Collapse
Affiliation(s)
- Ahad Eshraghian
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz 71937-11351, Iran
| |
Collapse
|
26
|
Zhao Q, Yang R, Wang J, Hu DD, Li F. PPARα activation protects against cholestatic liver injury. Sci Rep 2017; 7:9967. [PMID: 28855630 PMCID: PMC5577315 DOI: 10.1038/s41598-017-10524-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 08/10/2017] [Indexed: 12/13/2022] Open
Abstract
Intrahepatic cholestasis induced by drug toxicity, bile salt export pump (BSEP) deficiency, or pregnancy frequently causes cholestatic liver damage, which ultimately may lead to liver fibrosis and cirrhosis. Here, the preventive and therapeutic effects of peroxisome proliferator-activated receptor α (PPARα) signaling activated by fenofibrate was evaluated on cholestatic liver damage. Metabolomic analysis revealed that alpha-naphthyl isothiocyanate (ANIT)-induced intrahepatic cholestasis resulted in the accumulation of serum long-chain acylcarnitines and triglyceride, and the reduced expression of four fatty acid β-oxidation (β-FAO) relevant genes (Cpt1b, Cpt2, Mcad and Hadha), indicating the disruption of β-FAO. The increase of acylcarnitines in hepatic cell resulted in the enhanced expression of anti-oxidative genes glutathione S-transferases (Gsta2 and Gstm3) directly. As direct PPARα-regulated genes, Cpt1b, Cpt2, and Mcad were up-regulated after pretreatment with PPARα agonist, fenofibrate, indicating the improvement of β-FAO. In the end, the disrupted bile acid metabolism in the enterohepatic circulation and the enhanced oxidative stress and inflammation cytokines induced by ANIT exposure were significantly recovered with the improvement of β-FAO using fenofibrate treatment. These findings provide the rationale for the use of PPARα agonists as therapeutic alternatives for cholestatic liver damage.
Collapse
Affiliation(s)
- Qi Zhao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Rui Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Wang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Dan-Dan Hu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.,School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology of Natural Products, Kunming Medical University, Kunming, 650500, China
| | - Fei Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
| |
Collapse
|
27
|
Cui CX, Deng JN, Yan L, Liu YY, Fan JY, Mu HN, Sun HY, Wang YH, Han JY. Silibinin Capsules improves high fat diet-induced nonalcoholic fatty liver disease in hamsters through modifying hepatic de novo lipogenesis and fatty acid oxidation. JOURNAL OF ETHNOPHARMACOLOGY 2017; 208:24-35. [DOI: 10.1016/j.jep.2017.06.030] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
28
|
Konstantopoulos P, Doulamis IP, Tzani A, Korou ML, Agapitos E, Vlachos IS, Pergialiotis V, Verikokos C, Mastorakos G, Katsilambros NL, Perrea DN. Metabolic effects of Crocus sativus and protective action against non-alcoholic fatty liver disease in diabetic rats. Biomed Rep 2017; 6:513-518. [PMID: 28529733 PMCID: PMC5431529 DOI: 10.3892/br.2017.884] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 01/31/2017] [Indexed: 12/26/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the result of the accumulation of adipose tissue deposits in the liver and it is associated with type 2 diabetes. Crocus sativus (saffron) is known for its antioxidant and its potential hypoglycemic effects. We investigated the role of saffron on NAFLD in diabetic rats. Thirty adult male rats were allocated into three groups; control (n=10), which received normal diet; streptozotocin (STZ) group (n=10), which received normal chow diet, 10% fructose in their drinking water and STZ (40 mg/kg body weight; STZ-saffron group (n=10), which followed the same dietary and pharmacological pattern as STZ group and were additionally supplemented with saffron (100 mg/kg/day). Metabolic profile was measured and histopathological examination of the liver was evaluated. STZ group exhibited the highest glucose levels at the end of the experiment (P<0.05), while there was no difference between control and STZ-saffron group (584 vs. 213 mg/dl vs. 209 mg/dl, respectively). STZ group revealed higher percentage of steatosis (5–33%) when compared to the other two groups (P<0.005). Saffron exhibits both hypoglycemic and hepatoprotective actions. Yet, further studies enlightening the exact mechanisms of saffron's mode of actions are required.
Collapse
Affiliation(s)
- Panagiotis Konstantopoulos
- Laboratory for Experimental Surgery and Surgical Research 'N.S. Christeas', National and Kapodistrian University of Athens, Medical School, Athens 11527, Greece
| | - Ilias P Doulamis
- Laboratory for Experimental Surgery and Surgical Research 'N.S. Christeas', National and Kapodistrian University of Athens, Medical School, Athens 11527, Greece
| | - Aspasia Tzani
- Laboratory for Experimental Surgery and Surgical Research 'N.S. Christeas', National and Kapodistrian University of Athens, Medical School, Athens 11527, Greece
| | - Maria-Laskarina Korou
- Laboratory for Experimental Surgery and Surgical Research 'N.S. Christeas', National and Kapodistrian University of Athens, Medical School, Athens 11527, Greece
| | - Emmanouil Agapitos
- Department of Pathology, National and Kapodistrian University of Athens, Medical School, Athens 11527, Greece
| | - Ioannis S Vlachos
- Laboratory for Experimental Surgery and Surgical Research 'N.S. Christeas', National and Kapodistrian University of Athens, Medical School, Athens 11527, Greece
| | - Vasilios Pergialiotis
- Laboratory for Experimental Surgery and Surgical Research 'N.S. Christeas', National and Kapodistrian University of Athens, Medical School, Athens 11527, Greece
| | - Christos Verikokos
- Second Department of Propedeutic Surgery, 'Laiko' General Hospital, National and Kapodistrian University of Athens, Medical School, Athens 11527, Greece
| | - George Mastorakos
- Unit of Endocrinology, Diabetes and Metabolism, 'Aretaieion' Hospital, Athens Medical School, Athens 11528, Greece
| | - Nicholas L Katsilambros
- Laboratory for Experimental Surgery and Surgical Research 'N.S. Christeas', National and Kapodistrian University of Athens, Medical School, Athens 11527, Greece
| | - Despina N Perrea
- Laboratory for Experimental Surgery and Surgical Research 'N.S. Christeas', National and Kapodistrian University of Athens, Medical School, Athens 11527, Greece
| |
Collapse
|