1
|
Terribili L, Rateau R, Szucs AM, Maddin M, Rodriguez-Blanco JD. Impact of Rare Earth Elements on CaCO 3 Crystallization: Insights into Kinetics, Mechanisms, and Crystal Morphology. CRYSTAL GROWTH & DESIGN 2024; 24:632-645. [PMID: 38250543 PMCID: PMC10797595 DOI: 10.1021/acs.cgd.3c00858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 12/17/2023] [Accepted: 12/18/2023] [Indexed: 01/23/2024]
Abstract
This study investigated the crystallization kinetics and mechanisms of calcium carbonate (CaCO3) in the presence of rare earth elements (REEs) including lanthanum (La), neodymium (Nd), and dysprosium (Dy). Through a comprehensive approach utilizing UV-vis spectrophotometry, powder X-ray diffraction, and high-resolution electron microscopy, we examined the effects of REEs on CaCO3 growth from solution at varying concentrations and combinations of REEs. Our findings highlight that even trace amounts of REEs significantly decelerate the rate of CaCO3 crystallization, also leading to alterations in crystal morphology and mechanisms of growth. The impact of REEs becomes more pronounced at higher concentrations and atomic mass, although the potential formation of poorly ordered REEs carbonate precursor phases can result in a decrease in the REE3+/Ca2+ ratio, influencing the crystallization rate of CaCO3. Vaterite and calcite were identified as the main crystallized polymorphs, with vaterite exhibiting distinct growth defects and calcite developing complex morphologies at higher REEs concentrations and an internal architecture suggesting a nonclassical growth route. We propose that REEs ions selectively adsorb onto different calcite surfaces, impeding growth on specific sites and resulting in intricate morphologies.
Collapse
Affiliation(s)
- Luca Terribili
- Department of Geology. School
of Natural Sciences, Trinity College Dublin, Dublin D02PN40, Ireland
| | - Remi Rateau
- Department of Geology. School
of Natural Sciences, Trinity College Dublin, Dublin D02PN40, Ireland
| | - Adrienn M. Szucs
- Department of Geology. School
of Natural Sciences, Trinity College Dublin, Dublin D02PN40, Ireland
| | - Melanie Maddin
- Department of Geology. School
of Natural Sciences, Trinity College Dublin, Dublin D02PN40, Ireland
| | | |
Collapse
|
2
|
Deblonde GJP, Morrison K, Mattocks JA, Cotruvo JA, Zavarin M, Kersting AB. Impact of a Biological Chelator, Lanmodulin, on Minor Actinide Aqueous Speciation and Transport in the Environment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:20830-20843. [PMID: 37897703 DOI: 10.1021/acs.est.3c06033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2023]
Abstract
Minor actinides are major contributors to the long-term radiotoxicity of nuclear fuels and other radioactive wastes. In this context, understanding their interactions with natural chelators and minerals is key to evaluating their transport behavior in the environment. The lanmodulin family of metalloproteins is produced by ubiquitous bacteria and Methylorubrum extorquens lanmodulin (LanM) was recently identified as one of nature's most selective chelators for trivalent f-elements. Herein, we investigated the behavior of neptunium, americium, and curium in the presence of LanM, carbonate ions, and common minerals (calcite, montmorillonite, quartz, and kaolinite). We show that LanM's aqueous complexes with Am(III) and Cm(III) remain stable in carbonate-bicarbonate solutions. Furthermore, the sorption of Am(III) to these minerals is strongly impacted by LanM, while Np(V) sorption is not. With calcite, even a submicromolar concentration of LanM leads to a significant reduction in the Am(III) distribution coefficient (Kd, from >104 to ∼102 mL/g at pH 8.5), rendering it even more mobile than Np(V). Thus, LanM-type chelators can potentially increase the mobility of trivalent actinides and lanthanide fission products under environmentally relevant conditions. Monitoring biological chelators, including metalloproteins, and their biogenerators should therefore be considered during the evaluation of radioactive waste repository sites and the risk assessment of contaminated sites.
Collapse
Affiliation(s)
- Gauthier J-P Deblonde
- Physical and Life Sciences Directorate, Nuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
- Glenn T. Seaborg Institute, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Keith Morrison
- Physical and Life Sciences Directorate, Nuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
- Glenn T. Seaborg Institute, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Joseph A Mattocks
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Joseph A Cotruvo
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Mavrik Zavarin
- Glenn T. Seaborg Institute, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Annie B Kersting
- Glenn T. Seaborg Institute, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| |
Collapse
|
3
|
Demnitz M, Schymura S, Neumann J, Schmidt M, Schäfer T, Stumpf T, Müller K. Mechanistic understanding of Curium(III) sorption on natural K-feldspar surfaces. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 843:156920. [PMID: 35753478 DOI: 10.1016/j.scitotenv.2022.156920] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/29/2022] [Accepted: 06/19/2022] [Indexed: 06/15/2023]
Abstract
To assess a reliable safety case for future deep underground repositories for highly active nuclear waste the retention of radionuclides by the surrounding host rock must be understood comprehensively. Retention is influenced by several parameters such as mineral heterogeneity and surface roughness, as well as pore water chemistry (e.g., pH). However, the interplay between those parameters is not yet well understood. Therefore, we present a correlative spectromicroscopic approach to investigate sorption of the actinide Cm(III) on: 1) bulk K-feldspar crystals to determine the effect of surface roughness and pH (5.5 and 6.9) and 2) a large feldspar grain as part of a complex crystalline rock system to observe how sorption is influenced by the surrounding heterogeneous mineralogy. Our findings show that rougher K-feldspar surfaces exhibit increased Cm(III) uptake and stronger complexation. Similarly, increasing pH leads to higher surface loading and stronger Cm(III) binding to the surface. Within a heterogeneous mineralogical system sorption is further affected by neighboring mineral dissolution and competitive sorption between mineral phases such as mica and feldspar. The obtained results express a need for investigating relevant processes on multiple scales of dimension and complexity to better understand trivalent radionuclide retention by a potential repository host rock.
Collapse
Affiliation(s)
- Maximilian Demnitz
- Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany.
| | - Stefan Schymura
- Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Resource Ecology, Research Site Leipzig, Permoserstraße 15 04318 Leipzig, Germany.
| | - Julia Neumann
- Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany.
| | - Moritz Schmidt
- Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany.
| | - Thorsten Schäfer
- Friedrich-Schiller-Universität Jena, Institute for Geosciences, Burgweg 11, 07749 Jena, Germany.
| | - Thorsten Stumpf
- Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany.
| | - Katharina Müller
- Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany.
| |
Collapse
|
4
|
Spahr D, Bayarjargal L, Vinograd V, Etter M, Raddatz J, Winkler B. Incorporation of Europium into (Ba,Ca)2 (CO3)2. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2021.122759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
5
|
Demnitz M, Molodtsov K, Schymura S, Schierz A, Müller K, Jankovsky F, Havlova V, Stumpf T, Schmidt M. Effects of surface roughness and mineralogy on the sorption of Cm(III) on crystalline rock. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127006. [PMID: 34481396 DOI: 10.1016/j.jhazmat.2021.127006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/10/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
Crystalline rock is one of the host rocks considered for a future deep geological repository for highly active radiotoxic nuclear waste. The safety assessment requires reliable information on the retention behavior of minor actinides. In this work, we applied various spatially resolved techniques to investigate the sorption of Curium onto crystalline rock (granite, gneiss) thin sections from Eibenstock, Germany and Bukov, Czech Republic. We combined Raman-microscopy, calibrated autoradiography and µTRLFS (micro-focus time-resolved fluorescence spectroscopy) with vertical scanning interferometry to study in situ the impact of mineralogy and surface roughness on Cm(III) uptake and molecular speciation on the surface. Heterogeneous sorption of Cm(III) on the surface depends primarily on the mineralogy. However, for the same mineral class sorption uptake and strength of Cm(III) increases with growing surface roughness around surface holes or grain boundaries. When competitive sorption between multiple mineral phases occurs, surface roughness becomes the major retention parameter on low sorption uptake minerals. In high surface roughness areas primarily Cm(III) inner-sphere sorption complexation and surface incorporation are prominent and in selected sites formation of stable Cm(III) ternary complexes is observed. Our molecular findings confirm that predictive radionuclide modelling should implement surface roughness as a key parameter in simulations.
Collapse
Affiliation(s)
- M Demnitz
- Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - K Molodtsov
- Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - S Schymura
- Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Resource Ecology, Research Site Leipzig, Permoserstr. 15, 04318 Leipzig, Germany
| | - A Schierz
- Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - K Müller
- Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - F Jankovsky
- ÚJV Rez, a.s., Hlavni 130, Rez, 250 68 Husinec, Czech Republic
| | - V Havlova
- ÚJV Rez, a.s., Hlavni 130, Rez, 250 68 Husinec, Czech Republic
| | - T Stumpf
- Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - M Schmidt
- Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany.
| |
Collapse
|
6
|
Yuan T, Schymura S, Bollermann T, Molodtsov K, Chekhonin P, Schmidt M, Stumpf T, Fischer C. Heterogeneous Sorption of Radionuclides Predicted by Crystal Surface Nanoroughness. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:15797-15809. [PMID: 34813323 DOI: 10.1021/acs.est.1c04413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Reactive transport modeling (RTM) is an essential tool for the prediction of contaminants' behavior in the bio- and geosphere. However, RTM of sorption reactions is constrained by the reactive surface site assessment. The reactive site density variability of the crystal surface nanotopography provides an "energetic landscape", responsible for heterogeneous sorption efficiency, not covered in current RTM approaches. Here, we study the spatially heterogeneous sorption behavior of Eu(III), as an analogue to trivalent actinides, on a polycrystalline nanotopographic calcite surface and quantify the sorption efficiency as a function of surface nanoroughness. Based on experimental data from micro-focus time-resolved laser-induced luminescence spectroscopy (μTRLFS), vertical scanning interferometry, and electron back-scattering diffraction (EBSD), we parameterize a surface complexation model (SCM) using surface nanotopography data. The validation of the quantitatively predicted spatial sorption heterogeneity suggests that retention reactions can be considerably influenced by nanotopographic surface features. Our study presents a way to implement heterogeneous surface reactivity into a SCM for enhanced prediction of radionuclide retention.
Collapse
Affiliation(s)
- Tao Yuan
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Saxony 01328, Germany
| | - Stefan Schymura
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Saxony 01328, Germany
| | - Till Bollermann
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Saxony 01328, Germany
| | - Konrad Molodtsov
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Saxony 01328, Germany
| | - Paul Chekhonin
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Saxony 01328, Germany
| | - Moritz Schmidt
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Saxony 01328, Germany
| | - Thorsten Stumpf
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Saxony 01328, Germany
| | - Cornelius Fischer
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Saxony 01328, Germany
| |
Collapse
|
7
|
Santomauro G, Stiefel M, Jeurgens LPH, Bill J. In Vivo Shaping of Inorganic Functional Devices using Microalgae. ACTA ACUST UNITED AC 2020; 4:e1900301. [PMID: 32293148 DOI: 10.1002/adbi.201900301] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/16/2020] [Indexed: 11/11/2022]
Abstract
The usage of biomineralization processes performed by living microalgae to create 3D nanostructured materials are advantageous compared to conventional synthesis routes. Exploitation of in vivo shaping using living cells leads to inorganic intricate biominerals, produced with low environmental impact. Since biomineralization processes are genetically controlled, the formation of nanostructured materials is highly reproducible. The shells of microalgae, like coccoliths, are particularly of great interest. This study shows the generation of mesoporous highly structured functional materials with induced optoelectronical properties using in vivo processes of the microalga species Emiliania huxleyi. It demonstrates the metabolically driven incorporation of the lanthanide terbium into the coccoliths of E. huxleyi as a route for the synthesis of finely patterned photoluminescent particles by feeding the microalgae with this luminescent element. The resulting green luminescent particles have hierarchical ordered pores on the nano- and microscale and may act as powerful tools for many applications; they may serve as imaging probes for biomedical applications, or in microoptics. The luminescent coccoliths combine a unique hierarchical structure with a characteristic luminescence pattern, which make them superior to conventional produced Tb doted material. With this study, the possibility of the further exploitation of coccoliths as advanced functional materials for nanotechnological applications is given.
Collapse
Affiliation(s)
- Giulia Santomauro
- Institute for Materials Science, University of Stuttgart, Heisenbergstraße 3, 70569, Stuttgart, Germany
| | - Michael Stiefel
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Ueberlandstrasse 129, 8600, Duebendorf, Switzerland
| | - Lars P H Jeurgens
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Ueberlandstrasse 129, 8600, Duebendorf, Switzerland
| | - Joachim Bill
- Institute for Materials Science, University of Stuttgart, Heisenbergstraße 3, 70569, Stuttgart, Germany
| |
Collapse
|
8
|
Rachmadetin J, Mizuto M, Tanaka S, Kozaki T, Watanabe N. Calcium carbonate precipitation in compacted bentonite using electromigration reaction method and its application to estimate the ion activity coefficient in the porewater. J NUCL SCI TECHNOL 2019. [DOI: 10.1080/00223131.2019.1630020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Jaka Rachmadetin
- Division of Energy and Environmental Systems, Graduate School of Engineering, Hokkaido University, Hokkaido, Japan
- Radioactive Waste Technology Center, National Nuclear Energy Agency (BATAN), South Tangerang, Indonesia
| | - Masaya Mizuto
- Division of Energy and Environmental Systems, Graduate School of Engineering, Hokkaido University, Hokkaido, Japan
| | - Shingo Tanaka
- Division of Energy and Environmental Systems, Graduate School of Engineering, Hokkaido University, Hokkaido, Japan
| | - Tamotsu Kozaki
- Division of Energy and Environmental Systems, Graduate School of Engineering, Hokkaido University, Hokkaido, Japan
| | - Naoko Watanabe
- Division of Energy and Environmental Systems, Graduate School of Engineering, Hokkaido University, Hokkaido, Japan
| |
Collapse
|
9
|
Maleke M, Valverde A, Vermeulen JG, Cason E, Gomez-Arias A, Moloantoa K, Coetsee-Hugo L, Swart H, van Heerden E, Castillo J. Biomineralization and Bioaccumulation of Europium by a Thermophilic Metal Resistant Bacterium. Front Microbiol 2019; 10:81. [PMID: 30761115 PMCID: PMC6363818 DOI: 10.3389/fmicb.2019.00081] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 01/15/2019] [Indexed: 01/08/2023] Open
Abstract
Rare earth metals are widely used in the production of many modern technologies. However, there is concern that supply cannot meet the growing demand in the near future. The extraction from low-grade sources such as geothermal fluids could contribute to address the increasing demand for these compounds. Here we investigated the interaction and eventual bioaccumulation of europium (Eu) by a thermophilic bacterium, Thermus scotoductus SA-01. We demonstrated that this bacterial strain can survive in high levels (up to 1 mM) of Eu, which is hundred times higher than typical concentrations found in the environment. Furthermore, Eu seems to stimulate the growth of T. scotoductus SA-01 at low (0.01-0.1 mM) concentrations. We also found, using TEM-EDX analysis, that the bacterium can accumulate Eu both intracellularly and extracellularly. FT-IR results confirmed that carbonyl and carboxyl groups were involved in the biosorption of Eu. Infrared and HR-XPS analysis demonstrated that Eu can be biomineralized by T. scotoductus SA-01 as Eu2(CO3)3. This suggests that T. scotoductus SA-01 can potentially be used for the biorecovery of rare earth metals from geothermal fluids.
Collapse
Affiliation(s)
- Maleke Maleke
- Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, Bloemfontein, South Africa
| | - Angel Valverde
- Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, Bloemfontein, South Africa
| | - Jan-G Vermeulen
- Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, Bloemfontein, South Africa
| | - Errol Cason
- Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, Bloemfontein, South Africa
| | - Alba Gomez-Arias
- Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, Bloemfontein, South Africa
- Institution of Groundwater Studies, University of the Free State, Bloemfontein, South Africa
| | - Karabelo Moloantoa
- Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, Bloemfontein, South Africa
| | - Liza Coetsee-Hugo
- Department of Physics, University of the Free State, Bloemfontein, South Africa
| | - Hendrik Swart
- Department of Physics, University of the Free State, Bloemfontein, South Africa
| | - Esta van Heerden
- Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, Bloemfontein, South Africa
- iWATER Solutions, Bloemfontein, South Africa
| | - Julio Castillo
- Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, Bloemfontein, South Africa
| |
Collapse
|
10
|
Xiao B, Lösch H, Huittinen N, Schmidt M. Local Structural Effects of Eu3+
Incorporation into Xenotime-type Solid Solutions with Different Host Cations. Chemistry 2018; 24:13368-13377. [PMID: 29974984 DOI: 10.1002/chem.201802841] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 07/04/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Bin Xiao
- Helmholtz-Zentrum Dresden-Rossendorf; Institute of Resource Ecology; Bautzner Landstrasse 400 01328 Dresden Germany
| | - Henry Lösch
- Helmholtz-Zentrum Dresden-Rossendorf; Institute of Resource Ecology; Bautzner Landstrasse 400 01328 Dresden Germany
| | - Nina Huittinen
- Helmholtz-Zentrum Dresden-Rossendorf; Institute of Resource Ecology; Bautzner Landstrasse 400 01328 Dresden Germany
| | - Moritz Schmidt
- Helmholtz-Zentrum Dresden-Rossendorf; Institute of Resource Ecology; Bautzner Landstrasse 400 01328 Dresden Germany
| |
Collapse
|
11
|
Skeffington AW, Scheffel A. Exploiting algal mineralization for nanotechnology: bringing coccoliths to the fore. Curr Opin Biotechnol 2018; 49:57-63. [DOI: 10.1016/j.copbio.2017.07.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 07/21/2017] [Accepted: 07/25/2017] [Indexed: 12/17/2022]
|
12
|
Drake H, Mathurin FA, Zack T, Schäfer T, Roberts NM, Whitehouse M, Karlsson A, Broman C, Åström ME. Incorporation of Metals into Calcite in a Deep Anoxic Granite Aquifer. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:493-502. [PMID: 29251499 DOI: 10.1021/acs.est.7b05258] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Understanding metal scavenging by calcite in deep aquifers in granite is of importance for deciphering and modeling hydrochemical fluctuations and water-rock interaction in the upper crust and for retention mechanisms associated with underground repositories for toxic wastes. Metal scavenging into calcite has generally been established in the laboratory or in natural environments that cannot be unreservedly applied to conditions in deep crystalline rocks, an environment of broad interest for nuclear waste repositories. Here, we report a microanalytical study of calcite precipitated over a period of 17 years from anoxic, low-temperature (14 °C), neutral (pH: 7.4-7.7), and brackish (Cl: 1700-7100 mg/L) groundwater flowing in fractures at >400 m depth in granite rock. This enabled assessment of the trace metal uptake by calcite under these deep-seated conditions. Aquatic speciation modeling was carried out to assess influence of metal complexation on the partitioning into calcite. The resulting environment-specific partition coefficients were for several divalent ions in line with values obtained in controlled laboratory experiments, whereas for several other ions they differed substantially. High absolute uptake of rare earth elements and U(IV) suggests that coprecipitation into calcite can be an important sink for these metals and analogousactinides in the vicinity of geological repositories.
Collapse
Affiliation(s)
- Henrik Drake
- Department of Biology and Environmental Science, Linnaeus University , 39231 Kalmar, Sweden
| | - Frédéric A Mathurin
- Department of Biology and Environmental Science, Linnaeus University , 39231 Kalmar, Sweden
| | - Thomas Zack
- Department of Earth Sciences, University of Gothenburg , 405 30 Gothenburg, Sweden
| | - Thorsten Schäfer
- Karlsruhe Institute of Technology, Institute for Nuclear Waste Disposal , 76021 Karlsruhe, Germany
| | - Nick Mw Roberts
- NERC Isotope Geosciences Laboratory, British Geological Survey , Nottingham NG12 5GG, U.K
| | - Martin Whitehouse
- Department of Geosciences, Swedish Museum of Natural History , 10405 Stockholm, Sweden
| | - Andreas Karlsson
- Department of Geosciences, Swedish Museum of Natural History , 10405 Stockholm, Sweden
| | - Curt Broman
- Department of Geological Sciences, Stockholm University , Stockholm 106 91, Sweden
| | - Mats E Åström
- Department of Biology and Environmental Science, Linnaeus University , 39231 Kalmar, Sweden
| |
Collapse
|
13
|
REE Incorporation into Calcite Individual Crystals as One Time Spike Addition. MINERALS 2017. [DOI: 10.3390/min7110204] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|