1
|
Gurova K. Can aggressive cancers be identified by the "aggressiveness" of their chromatin? Bioessays 2022; 44:e2100212. [PMID: 35452144 DOI: 10.1002/bies.202100212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 04/08/2022] [Accepted: 04/12/2022] [Indexed: 12/15/2022]
Abstract
Phenotypic plasticity is a crucial feature of aggressive cancer, providing the means for cancer progression. Stochastic changes in tumor cell transcriptional programs increase the chances of survival under any condition. I hypothesize that unstable chromatin permits stochastic transitions between transcriptional programs in aggressive cancers and supports non-genetic heterogeneity of tumor cells as a basis for their adaptability. I present a mechanistic model for unstable chromatin which includes destabilized nucleosomes, mobile chromatin fibers and random enhancer-promoter contacts, resulting in stochastic transcription. I suggest potential markers for "unsettled" chromatin in tumors associated with poor prognosis. Although many of the characteristics of unstable chromatin have been described, they were mostly used to explain changes in the transcription of individual genes. I discuss approaches to evaluate the role of unstable chromatin in non-genetic tumor cell heterogeneity and suggest using the degree of chromatin instability and transcriptional noise in tumor cells to predict cancer aggressiveness.
Collapse
Affiliation(s)
- Katerina Gurova
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| |
Collapse
|
2
|
Saintilnord WN, Fondufe-Mittendorf Y. Arsenic-induced epigenetic changes in cancer development. Semin Cancer Biol 2021; 76:195-205. [PMID: 33798722 PMCID: PMC8481342 DOI: 10.1016/j.semcancer.2021.03.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 12/29/2022]
Abstract
Arsenic is a ubiquitous metalloid whose high levels of toxicity pose major health concerns to millions of people worldwide by increasing susceptibility to various cancers and non-cancer illnesses. Since arsenic is not a mutagen, the mechanism by which it causes changes in gene expression and disease pathogenesis is not clear. One possible mechanism is through generation of reactive oxygen species. Another equally important mechanism still very much in its infancy is epigenetic dysregulation. In this review, we discuss recent discoveries underlying arsenic-induced epigenetic changes in cancer development. Importantly, we highlight the proposed mechanisms targeted by arsenic to drive oncogenic gene expression.
Collapse
Affiliation(s)
- Wesley N Saintilnord
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA.
| | | |
Collapse
|
3
|
Malousi A, Andreou AZ, Kouidou S. In silico structural analysis of sequences containing 5-hydroxymethylcytosine reveals its potential as binding regulator for development, ageing and cancer-related transcription factors. Epigenetics 2020; 16:503-518. [PMID: 32752914 DOI: 10.1080/15592294.2020.1805693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The presence of 5-hydroxymethyl cytosine in DNA has been previously associated with ageing. Using in silico analysis of normal liver samples we presently observed that in 5-hydroxymethyl cytosine sequences, DNA methylation is dependent on the co-presence of G-quadruplexes and palindromes. This association exhibits discrete patterns depending on G-quadruplex and palindrome densities. DNase-Seq data show that 5-hydroxymethyl cytosine sequences are common among liver nucleosomes (p < 2.2x10-16) and threefold more frequent than nucleosome sequences. Nucleosomes lacking palindromes and potential G-quadruplexes are rare in vivo (1%) and nucleosome occupancy potential decreases with increasing G-quadruplexes. Palindrome distribution is similar to that previously reported in nucleosomes. In low and mixed complexity sequences 5-hydroxymethyl cytosine is frequently located next to three elements: G-quadruplexes or imperfect G-quadruplexes with CpGs, or unstable hairpin loops (TCCCAY6TGGGA) mostly located in antisense strands or finally A-/T-rich segments near these motifs. The high frequencies and selective distribution of pentamer sequences (including TCCCA, TGGGA) probably indicate the positive contribution of 5-hydroxymethyl cytosine to stabilize the formation of structures unstable in the absence of this cytosine modification. Common motifs identified in all total 5-hydroxymethyl cytosine-containing sequences exhibit high homology to recognition sites of several transcription factor families: homeobox, factors involved in growth, mortality/ageing, cancer, neuronal function, vision, and reproduction. We conclude that cytosine hydroxymethylation could play a role in the recognition of sequences with G-quadruplexes/palindromes by forming epigenetically regulated DNA 'springs' and governing expansions or compressions recognized by different transcription factors or stabilizing nucleosomes. The balance of these epigenetic elements is lost in hepatocellular carcinoma.
Collapse
Affiliation(s)
- Andigoni Malousi
- Lab. of Biological Chemistry, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Sofia Kouidou
- Lab. of Biological Chemistry, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
4
|
Hildreth AE, Ellison MA, Francette AM, Seraly JM, Lotka LM, Arndt KM. The nucleosome DNA entry-exit site is important for transcription termination and prevention of pervasive transcription. eLife 2020; 9:e57757. [PMID: 32845241 PMCID: PMC7449698 DOI: 10.7554/elife.57757] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 08/09/2020] [Indexed: 12/21/2022] Open
Abstract
Compared to other stages in the RNA polymerase II transcription cycle, the role of chromatin in transcription termination is poorly understood. We performed a genetic screen in Saccharomyces cerevisiae to identify histone mutants that exhibit transcriptional readthrough of terminators. Amino acid substitutions identified by the screen map to the nucleosome DNA entry-exit site. The strongest H3 mutants revealed widespread genomic changes, including increased sense-strand transcription upstream and downstream of genes, increased antisense transcription overlapping gene bodies, and reduced nucleosome occupancy particularly at the 3' ends of genes. Replacement of the native sequence downstream of a gene with a sequence that increases nucleosome occupancy in vivo reduced readthrough transcription and suppressed the effect of a DNA entry-exit site substitution. Our results suggest that nucleosomes can facilitate termination by serving as a barrier to transcription and highlight the importance of the DNA entry-exit site in broadly maintaining the integrity of the transcriptome.
Collapse
Affiliation(s)
- A Elizabeth Hildreth
- Department of Biological Sciences, University of PittsburghPittsburghUnited States
| | - Mitchell A Ellison
- Department of Biological Sciences, University of PittsburghPittsburghUnited States
| | - Alex M Francette
- Department of Biological Sciences, University of PittsburghPittsburghUnited States
| | - Julia M Seraly
- Department of Biological Sciences, University of PittsburghPittsburghUnited States
| | - Lauren M Lotka
- Department of Biological Sciences, University of PittsburghPittsburghUnited States
| | - Karen M Arndt
- Department of Biological Sciences, University of PittsburghPittsburghUnited States
| |
Collapse
|
5
|
Sandlesh P, Safina A, Goswami I, Prendergast L, Rosario S, Gomez EC, Wang J, Gurova KV. Prevention of Chromatin Destabilization by FACT Is Crucial for Malignant Transformation. iScience 2020; 23:101177. [PMID: 32498018 PMCID: PMC7267732 DOI: 10.1016/j.isci.2020.101177] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 03/23/2020] [Accepted: 05/14/2020] [Indexed: 01/09/2023] Open
Abstract
Histone chaperone FACT is commonly expressed and essential for the viability of transformed but not normal cells, and its expression levels correlate with poor prognosis in patients with cancer. FACT binds several components of nucleosomes and has been viewed as a factor destabilizing nucleosomes to facilitate RNA polymerase passage. To connect FACT's role in transcription with the viability of tumor cells, we analyzed genome-wide FACT binding to chromatin in conjunction with transcription in mouse and human cells with different degrees of FACT dependence. Genomic distribution and density of FACT correlated with the intensity of transcription. However, FACT knockout or knockdown was unexpectedly accompanied by the elevation, rather than suppression, of transcription and with the destabilization of chromatin in transformed, but not normal cells. These data suggest that FACT stabilizes and reassembles nucleosomes disturbed by transcription. This function is vital for tumor cells because malignant transformation is accompanied by chromatin destabilization. FACT is essential for viability of the tumor, but not for normal cells FACT level depends on transcription, but transcription does not depend on FACT FACT preserves nucleosomes during transcription to maintain chromatin integrity FACT maintains chromatin in destabilized state during malignant transformation
Collapse
Affiliation(s)
- Poorva Sandlesh
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Carlton and Elm Streets, Buffalo, NY 14127, USA
| | - Alfiya Safina
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Carlton and Elm Streets, Buffalo, NY 14127, USA
| | - Imon Goswami
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Carlton and Elm Streets, Buffalo, NY 14127, USA
| | - Laura Prendergast
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Carlton and Elm Streets, Buffalo, NY 14127, USA
| | - Spenser Rosario
- Department of Cancer Genetics, Roswell Park Comprehensive Cancer Center, Carlton and Elm Streets, Buffalo, NY 14127, USA
| | - Eduardo C Gomez
- Department of Bioinformatics, Roswell Park Comprehensive Cancer Center, Carlton and Elm Streets, Buffalo, NY 14127, USA
| | - Jianmin Wang
- Department of Bioinformatics, Roswell Park Comprehensive Cancer Center, Carlton and Elm Streets, Buffalo, NY 14127, USA
| | - Katerina V Gurova
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Carlton and Elm Streets, Buffalo, NY 14127, USA.
| |
Collapse
|
6
|
Sanbonmatsu KY. Large-scale simulations of nucleoprotein complexes: ribosomes, nucleosomes, chromatin, chromosomes and CRISPR. Curr Opin Struct Biol 2019; 55:104-113. [PMID: 31125796 DOI: 10.1016/j.sbi.2019.03.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 03/01/2019] [Indexed: 12/11/2022]
Abstract
Recent advances in biotechnology such as Hi-C, CRISPR/Cas9 and ribosome display have placed nucleoprotein complexes at center stage. Understanding the structural dynamics of these complexes aids in optimizing protocols and interpreting data for these new technologies. The integration of simulation and experiment has helped advance mechanistic understanding of these systems. Coarse-grained simulations, reduced-description models, and explicit solvent molecular dynamics simulations yield useful complementary perspectives on nucleoprotein complex structural dynamics. When combined with Hi-C, cryo-EM, and single molecule measurements, these simulations integrate disparate forms of experimental data into a coherent mechanism.
Collapse
|
7
|
Gandaglia A, Brivio E, Carli S, Palmieri M, Bedogni F, Stefanelli G, Bergo A, Leva B, Cattaneo C, Pizzamiglio L, Cicerone M, Bianchi V, Kilstrup-Nielsen C, D’Annessa I, Di Marino D, D’Adamo P, Antonucci F, Frasca A, Landsberger N. A Novel Mecp2Y120D Knock-in Model Displays Similar Behavioral Traits But Distinct Molecular Features Compared to the Mecp2-Null Mouse Implying Precision Medicine for the Treatment of Rett Syndrome. Mol Neurobiol 2018; 56:4838-4854. [DOI: 10.1007/s12035-018-1412-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 10/24/2018] [Indexed: 10/27/2022]
|