1
|
Zhang C, Peng K, Liu Q, Huang Q, Liu T. Adavosertib and beyond: Biomarkers, drug combination and toxicity of WEE1 inhibitors. Crit Rev Oncol Hematol 2024; 193:104233. [PMID: 38103761 DOI: 10.1016/j.critrevonc.2023.104233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 12/10/2023] [Accepted: 12/12/2023] [Indexed: 12/19/2023] Open
Abstract
WEE1 kinase is renowned as an S-G2 checkpoint inhibitor activated by ATR-CHK1 in response to replication stress. WEE1 inhibition enhances replication stress and effectively circumvents checkpoints into mitosis, which triggers significant genetic impairs and culminates in cell death. This approach has been validated clinically for its promising anti-tumor efficacy across various cancer types, notably in cases of ovarian cancers. Nonetheless, the initial stage of clinical trials has shown that the first-in-human WEE1 inhibitor adavosertib is limited by dose-limiting adverse events. As a result, recent efforts have been made to explore predictive biomarkers and smart combination schedules to alleviate adverse effects. In this review, we focused on the exploration of therapeutic biomarkers, as well as schedules of combination utilizing WEE1 inhibitors and canonical anticancer drugs, according to the latest preclinical and clinical studies, indicating that the optimal application of WEE1 inhibitors will likely be as part of dose-reducing combination and be tailored to specific patient populations.
Collapse
Affiliation(s)
- Chi Zhang
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ke Peng
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qing Liu
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qihong Huang
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China; Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Tianshu Liu
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
2
|
Chien W, Tyner JW, Gery S, Zheng Y, Li LY, Gopinatha Pillai MS, Nam C, Bhowmick NA, Lin DC, Koeffler HP. Treatment for ovarian clear cell carcinoma with combined inhibition of WEE1 and ATR. J Ovarian Res 2023; 16:80. [PMID: 37087441 PMCID: PMC10122390 DOI: 10.1186/s13048-023-01160-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 04/10/2023] [Indexed: 04/24/2023] Open
Abstract
BACKGROUND Standard platinum-based therapy for ovarian cancer is inefficient against ovarian clear cell carcinoma (OCCC). OCCC is a distinct subtype of epithelial ovarian cancer. OCCC constitutes 25% of ovarian cancers in East Asia (Japan, Korea, China, Singapore) and 6-10% in Europe and North America. The cancer is characterized by frequent inactivation of ARID1A and 10% of cases of endometriosis progression to OCCC. The aim of this study was to identify drugs that are either FDA-approved or in clinical trials for the treatment of OCCC. RESULTS High throughput screening of 166 compounds that are either FDA-approved, in clinical trials or are in pre-clinical studies identified several cytotoxic compounds against OCCC. ARID1A knockdown cells were more sensitive to inhibitors of either mTOR (PP242), dual mTOR/PI3K (GDC0941), ATR (AZD6738) or MDM2 (RG7388) compared to control cells. Also, compounds targeting BH3 domain (AZD4320) and SRC (AZD0530) displayed preferential cytotoxicity against ARID1A mutant cell lines. In addition, WEE1 inhibitor (AZD1775) showed broad cytotoxicity toward OCCC cell lines, irrespective of ARID1A status. CONCLUSIONS In a selection of 166 compounds we showed that inhibitors of ATR and WEE1 were cytotoxic against a panel of OCCC cell lines. These two drugs are already in other clinical trials, making them ideal candidates for treatment of OCCC.
Collapse
Affiliation(s)
- Wenwen Chien
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA, 90048, USA.
| | - Jeffrey W Tyner
- Knight Cancer Institute, Oregon Health & Science University, Oregon Health and Science University, 2720 S.W. Moody Avenue, Portland, OR, 97201, USA
| | - Sigal Gery
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA, 90048, USA
| | - Yueyuan Zheng
- Clinical Big Data Research Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, P. R. China
| | - Li-Yan Li
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, Guandong Province, P. R. China
| | - Mohan Shankar Gopinatha Pillai
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA, 90048, USA
| | - Chehyun Nam
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Neil A Bhowmick
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA, 90048, USA
| | - De-Chen Lin
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA, 90089, USA
| | - H Phillip Koeffler
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA, 90048, USA
- Department of Hematology-Oncology, National University Cancer Institute of Singapore, National University Hospital, Singapore, 119074, Singapore
| |
Collapse
|
3
|
Maimaiti A, Liu Y, Abulaiti A, Wang X, Feng Z, Wang J, Mijiti M, Turhon M, Alimu N, Wang Y, Liang W, Jiang L, Pei Y. Genomic Profiling of Lower-Grade Gliomas Subtype with Distinct Molecular and Clinicopathologic Characteristics via Altered DNA-Damage Repair Features. J Mol Neurosci 2023; 73:269-286. [PMID: 37067735 DOI: 10.1007/s12031-023-02116-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 03/30/2023] [Indexed: 04/18/2023]
Abstract
Lower WHO grade II and III gliomas (LGGs) exhibit significant genetic and transcriptional heterogeneity, and the heterogeneity of DNA damage repair (DDR) and its relationship to tumor biology, transcriptome, and tumor microenvironment (TME) remains poorly understood. In this study, we conducted multi-omics data integration to investigate DDR alterations in LGG. Based on clinical parameters and molecular characteristics, LGG patients were categorized into distinct DDR subtypes, namely, DDR-activated and DDR-suppressed subtypes. We compared gene mutation, immune spectrum, and immune cell infiltration between the two subtypes. DDR scores were generated to classify LGG patients based on DDR subtype features, and the results were validated using a multi-layer data cohort. We found that DDR activation was associated with poorer overall survival and that clinicopathological features of advanced age and higher grade were more common in the DDR-activated subtype. DDR-suppressed subtypes exhibited more frequent mutations in IDH1. In addition, we observed significant upregulation of activated immune cells in the DDR-activated subgroup, which suggests that immune cell infiltration significantly influences tumor progression and immunotherapeutic responses. Furthermore, we constructed a DDR signature for LGG using six DDR genes, which allowed for the division of patients into low- and high-risk groups. Quantitative real-time PCR results showed that CDK1, CDK2, TYMS, SMC4, and WEE1 were significantly upregulated in LGG samples compared to normal brain tissue samples. Overall, our study sheds light on DDR heterogeneity in LGG and provides insight into the molecular pathways of DDR involved in LGG development.
Collapse
Affiliation(s)
- Aierpati Maimaiti
- Department of Neurosurgery, Neurosurgery Centre, The First Affiliated Hospital of Xinjiang Medical University, No. 137, South Liyushan Road, Xinshi District, 830054, Urumqi, Xinjiang, China
| | - Yanwen Liu
- Department of Medical Laboratory, Xinjiang Production and Construction Corps Hospital, 830002, Urumqi, Xinjiang, China
| | - Aimitaji Abulaiti
- Department of Neurosurgery, Neurosurgery Centre, The First Affiliated Hospital of Xinjiang Medical University, No. 137, South Liyushan Road, Xinshi District, 830054, Urumqi, Xinjiang, China
| | - Xixian Wang
- Department of Neurosurgery, Neurosurgery Centre, The First Affiliated Hospital of Xinjiang Medical University, No. 137, South Liyushan Road, Xinshi District, 830054, Urumqi, Xinjiang, China
| | - Zhaohai Feng
- Department of Neurosurgery, Neurosurgery Centre, The First Affiliated Hospital of Xinjiang Medical University, No. 137, South Liyushan Road, Xinshi District, 830054, Urumqi, Xinjiang, China
| | - Jiaming Wang
- Department of Neurosurgery, Neurosurgery Centre, The First Affiliated Hospital of Xinjiang Medical University, No. 137, South Liyushan Road, Xinshi District, 830054, Urumqi, Xinjiang, China
| | - Maimaitili Mijiti
- Department of Neurosurgery, Neurosurgery Centre, The First Affiliated Hospital of Xinjiang Medical University, No. 137, South Liyushan Road, Xinshi District, 830054, Urumqi, Xinjiang, China
| | - Mirzat Turhon
- Department of Neurointerventional Surgery, Beijing Neurosurgical Institute, Capital Medical University, 100070, Beijing, China
- Department of Neurointerventional Surgery, Beijing Tiantan Hospital, Capital Medical University, 100070, Beijing, China
| | - Nilipaer Alimu
- Department of Otorhinolaryngology, The First Affiliated Hospital of Xinjiang Medical University, No. 137, South Liyushan Road, Xinshi District, 830054, Urumqi, Xinjiang, China
| | - Yongxin Wang
- Department of Neurosurgery, Neurosurgery Centre, The First Affiliated Hospital of Xinjiang Medical University, No. 137, South Liyushan Road, Xinshi District, 830054, Urumqi, Xinjiang, China
| | - Wenbao Liang
- Department of Neurosurgery, The Fourth Affiliated Hospital of Xinjiang Medical University, No. 116, Huanghe Road, Shaibak District, 830000, Urumqi, Xinjiang, China.
| | - Lei Jiang
- Department of Neurosurgery, Neurosurgery Centre, The First Affiliated Hospital of Xinjiang Medical University, No. 137, South Liyushan Road, Xinshi District, 830054, Urumqi, Xinjiang, China.
| | - Yinan Pei
- Department of Neurosurgery, Neurosurgery Centre, The First Affiliated Hospital of Xinjiang Medical University, No. 137, South Liyushan Road, Xinshi District, 830054, Urumqi, Xinjiang, China.
| |
Collapse
|
4
|
Golan T, Raitses-Gurevich M, Beller T, Carroll J, Brody JR. Strategies for the Management of Patients with Pancreatic Cancer with PARP Inhibitors. Cancer Treat Res 2023; 186:125-142. [PMID: 37978134 DOI: 10.1007/978-3-031-30065-3_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
A subset of patients with pancreatic adenocarcinomas (PDAC) harbor mutations that are exploitable in the context of DNA-damage response and repair (DDR) inhibitory strategies. Between 8-18% of PDACs harbor specific mutations in the DDR pathway such as BRCA1/2 mutations, and a higher prevalence exists in high-risk populations (e.g., Ashkenazi Jews). Herein, we will review the current trials and data on the treatment of PDAC patients who harbor such mutations and who appear sensitive to platinum and/or poly ADP ribose polymerase inhibitor (PARPi) based therapies due to a concept known as synthetic lethality. Although this current best-in-class precision treatment shows clinical promise, the specter of resistance limits the extent of therapeutic responses. We therefore also evaluate promising pre-clinical and clinical approaches in the pipeline that may either work with existing therapies to break resistance or work separately with combination therapies against this subset of PDACs.
Collapse
Affiliation(s)
- Talia Golan
- Cancer Center, Chaim Sheba Medical Center and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Maria Raitses-Gurevich
- Cancer Center, Chaim Sheba Medical Center and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Tamar Beller
- Cancer Center, Chaim Sheba Medical Center and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - James Carroll
- Department of Surgery, Brenden Colson Center for Pancreatic Care, Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
| | - Jonathan R Brody
- Department of Surgery, Brenden Colson Center for Pancreatic Care, Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
| |
Collapse
|
5
|
Hu H, Zhang Z, Fang Y, Chen L, Wu J. Therapeutic poly(amino acid)s as drug carriers for cancer therapy. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
6
|
Cleary JM, Wolpin BM, Dougan SK, Raghavan S, Singh H, Huffman B, Sethi NS, Nowak JA, Shapiro GI, Aguirre AJ, D'Andrea AD. Opportunities for Utilization of DNA Repair Inhibitors in Homologous Recombination Repair-Deficient and Proficient Pancreatic Adenocarcinoma. Clin Cancer Res 2021; 27:6622-6637. [PMID: 34285063 PMCID: PMC8678153 DOI: 10.1158/1078-0432.ccr-21-1367] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/04/2021] [Accepted: 07/06/2021] [Indexed: 11/16/2022]
Abstract
Pancreatic cancer is rapidly progressive and notoriously difficult to treat with cytotoxic chemotherapy and targeted agents. Recent demonstration of the efficacy of maintenance PARP inhibition in germline BRCA mutated pancreatic cancer has raised hopes that increased understanding of the DNA damage response pathway will lead to new therapies in both homologous recombination (HR) repair-deficient and proficient pancreatic cancer. Here, we review the potential mechanisms of exploiting HR deficiency, replicative stress, and DNA damage-mediated immune activation through targeted inhibition of DNA repair regulatory proteins.
Collapse
Affiliation(s)
- James M Cleary
- Dana-Farber Brigham and Women's Cancer Center, Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts.
| | - Brian M Wolpin
- Dana-Farber Brigham and Women's Cancer Center, Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Stephanie K Dougan
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Srivatsan Raghavan
- Dana-Farber Brigham and Women's Cancer Center, Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Harshabad Singh
- Dana-Farber Brigham and Women's Cancer Center, Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Brandon Huffman
- Dana-Farber Brigham and Women's Cancer Center, Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Nilay S Sethi
- Dana-Farber Brigham and Women's Cancer Center, Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Jonathan A Nowak
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Geoffrey I Shapiro
- Dana-Farber Brigham and Women's Cancer Center, Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Andrew J Aguirre
- Dana-Farber Brigham and Women's Cancer Center, Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Alan D D'Andrea
- Dana-Farber Brigham and Women's Cancer Center, Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts.
- Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, Massachusetts
| |
Collapse
|
7
|
Jain A, Bhardwaj V. Therapeutic resistance in pancreatic ductal adenocarcinoma: Current challenges and future opportunities. World J Gastroenterol 2021; 27:6527-6550. [PMID: 34754151 PMCID: PMC8554400 DOI: 10.3748/wjg.v27.i39.6527] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/22/2021] [Accepted: 08/30/2021] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the third leading cause of cancer-related deaths in the United States. Although chemotherapeutic regimens such as gemcitabine+ nab-paclitaxel and FOLFIRINOX (FOLinic acid, 5-Fluroruracil, IRINotecan, and Oxaliplatin) significantly improve patient survival, the prevalence of therapy resistance remains a major roadblock in the success of these agents. This review discusses the molecular mechanisms that play a crucial role in PDAC therapy resistance and how a better understanding of these mechanisms has shaped clinical trials for pancreatic cancer chemotherapy. Specifically, we have discussed the metabolic alterations and DNA repair mechanisms observed in PDAC and current approaches in targeting these mechanisms. Our discussion also includes the lessons learned following the failure of immunotherapy in PDAC and current approaches underway to improve tumor's immunological response.
Collapse
Affiliation(s)
- Aditi Jain
- The Jefferson Pancreas, Biliary and Related Cancer Center, Department of Surgery, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, United States
| | - Vikas Bhardwaj
- Department of Pharmaceutical Sciences, Jefferson College of Pharmacy, Thomas Jefferson University, Philadelphia, PA 19107, United States
| |
Collapse
|
8
|
Stoof J, Harrold E, Mariottino S, Lowery MA, Walsh N. DNA Damage Repair Deficiency in Pancreatic Ductal Adenocarcinoma: Preclinical Models and Clinical Perspectives. Front Cell Dev Biol 2021; 9:749490. [PMID: 34712667 PMCID: PMC8546202 DOI: 10.3389/fcell.2021.749490] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/22/2021] [Indexed: 12/11/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers worldwide, and survival rates have barely improved in decades. In the era of precision medicine, treatment strategies tailored to disease mutations have revolutionized cancer therapy. Next generation sequencing has found that up to a third of all PDAC tumors contain deleterious mutations in DNA damage repair (DDR) genes, highlighting the importance of these genes in PDAC. The mechanisms by which DDR gene mutations promote tumorigenesis, therapeutic response, and subsequent resistance are still not fully understood. Therefore, an opportunity exists to elucidate these processes and to uncover relevant therapeutic drug combinations and strategies to target DDR deficiency in PDAC. However, a constraint to preclinical research is due to limitations in appropriate laboratory experimental models. Models that effectively recapitulate their original cancer tend to provide high levels of predictivity and effective translation of preclinical findings to the clinic. In this review, we outline the occurrence and role of DDR deficiency in PDAC and provide an overview of clinical trials that target these pathways and the preclinical models such as 2D cell lines, 3D organoids and mouse models [genetically engineered mouse model (GEMM), and patient-derived xenograft (PDX)] used in PDAC DDR deficiency research.
Collapse
Affiliation(s)
- Jojanneke Stoof
- Trinity St. James Cancer Institute, Trinity College Dublin, Dublin, Ireland
| | - Emily Harrold
- Trinity College Dublin, Dublin, Ireland
- Mater Private Hospital, Dublin, Ireland
| | - Sarah Mariottino
- Trinity St. James Cancer Institute, Trinity College Dublin, Dublin, Ireland
| | - Maeve A Lowery
- Trinity St. James Cancer Institute, Trinity College Dublin, Dublin, Ireland
| | - Naomi Walsh
- National Institute of Cellular Biotechnology, School of Biotechnology, Dublin City University, Dublin, Ireland
| |
Collapse
|
9
|
Di Federico A, Tateo V, Parisi C, Formica F, Carloni R, Frega G, Rizzo A, Ricci D, Di Marco M, Palloni A, Brandi G. Hacking Pancreatic Cancer: Present and Future of Personalized Medicine. Pharmaceuticals (Basel) 2021; 14:677. [PMID: 34358103 PMCID: PMC8308563 DOI: 10.3390/ph14070677] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/11/2021] [Accepted: 07/13/2021] [Indexed: 12/20/2022] Open
Abstract
Pancreatic cancer (PC) is a recalcitrant disease characterized by high incidence and poor prognosis. The extremely complex genomic landscape of PC has a deep influence on cultivating a tumor microenvironment, resulting in the promotion of tumor growth, drug resistance, and immune escape mechanisms. Despite outstanding progress in personalized medicine achieved for many types of cancer, chemotherapy still represents the mainstay of treatment for PC. Olaparib was the first agent to demonstrate a significant benefit in a biomarker-selected population, opening the doors for a personalized approach. Despite the failure of a large number of studies testing targeted agents or immunotherapy to demonstrate benefits over standard chemotherapy regimens, some interesting agents, alone or in combination with other drugs, have achieved promising results. A wide spectrum of therapeutic strategies, including immune-checkpoint inhibitors tyrosine kinase inhibitors and agents targeting metabolic pathways or the tumor microenvironment, is currently under investigation. In this review, we aim to provide a comprehensive overview of the current landscape and future directions of personalized medicine for patients affected by PC.
Collapse
Affiliation(s)
- Alessandro Di Federico
- Division of Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (A.D.F.); (V.T.); (C.P.); (F.F.); (R.C.); (G.F.); (A.R.); (D.R.); (M.D.M.); (G.B.)
- Department of Specialized, Experimental and Diagnostic Medicine, University of Bologna, Via Giuseppe Massarenti, 9, 40138 Bologna, Italy
| | - Valentina Tateo
- Division of Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (A.D.F.); (V.T.); (C.P.); (F.F.); (R.C.); (G.F.); (A.R.); (D.R.); (M.D.M.); (G.B.)
- Department of Specialized, Experimental and Diagnostic Medicine, University of Bologna, Via Giuseppe Massarenti, 9, 40138 Bologna, Italy
| | - Claudia Parisi
- Division of Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (A.D.F.); (V.T.); (C.P.); (F.F.); (R.C.); (G.F.); (A.R.); (D.R.); (M.D.M.); (G.B.)
- Department of Specialized, Experimental and Diagnostic Medicine, University of Bologna, Via Giuseppe Massarenti, 9, 40138 Bologna, Italy
| | - Francesca Formica
- Division of Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (A.D.F.); (V.T.); (C.P.); (F.F.); (R.C.); (G.F.); (A.R.); (D.R.); (M.D.M.); (G.B.)
- Department of Specialized, Experimental and Diagnostic Medicine, University of Bologna, Via Giuseppe Massarenti, 9, 40138 Bologna, Italy
| | - Riccardo Carloni
- Division of Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (A.D.F.); (V.T.); (C.P.); (F.F.); (R.C.); (G.F.); (A.R.); (D.R.); (M.D.M.); (G.B.)
- Department of Specialized, Experimental and Diagnostic Medicine, University of Bologna, Via Giuseppe Massarenti, 9, 40138 Bologna, Italy
| | - Giorgio Frega
- Division of Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (A.D.F.); (V.T.); (C.P.); (F.F.); (R.C.); (G.F.); (A.R.); (D.R.); (M.D.M.); (G.B.)
- Department of Specialized, Experimental and Diagnostic Medicine, University of Bologna, Via Giuseppe Massarenti, 9, 40138 Bologna, Italy
| | - Alessandro Rizzo
- Division of Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (A.D.F.); (V.T.); (C.P.); (F.F.); (R.C.); (G.F.); (A.R.); (D.R.); (M.D.M.); (G.B.)
- Department of Specialized, Experimental and Diagnostic Medicine, University of Bologna, Via Giuseppe Massarenti, 9, 40138 Bologna, Italy
| | - Dalia Ricci
- Division of Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (A.D.F.); (V.T.); (C.P.); (F.F.); (R.C.); (G.F.); (A.R.); (D.R.); (M.D.M.); (G.B.)
- Department of Specialized, Experimental and Diagnostic Medicine, University of Bologna, Via Giuseppe Massarenti, 9, 40138 Bologna, Italy
| | - Mariacristina Di Marco
- Division of Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (A.D.F.); (V.T.); (C.P.); (F.F.); (R.C.); (G.F.); (A.R.); (D.R.); (M.D.M.); (G.B.)
- Department of Specialized, Experimental and Diagnostic Medicine, University of Bologna, Via Giuseppe Massarenti, 9, 40138 Bologna, Italy
| | - Andrea Palloni
- Division of Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (A.D.F.); (V.T.); (C.P.); (F.F.); (R.C.); (G.F.); (A.R.); (D.R.); (M.D.M.); (G.B.)
- Department of Specialized, Experimental and Diagnostic Medicine, University of Bologna, Via Giuseppe Massarenti, 9, 40138 Bologna, Italy
| | - Giovanni Brandi
- Division of Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (A.D.F.); (V.T.); (C.P.); (F.F.); (R.C.); (G.F.); (A.R.); (D.R.); (M.D.M.); (G.B.)
- Department of Specialized, Experimental and Diagnostic Medicine, University of Bologna, Via Giuseppe Massarenti, 9, 40138 Bologna, Italy
| |
Collapse
|
10
|
Hartman SJ, Bagby SM, Yacob BW, Simmons DM, MacBeth M, Lieu CH, Davis SL, Leal AD, Tentler JJ, Diamond JR, Eckhardt SG, Messersmith WA, Pitts TM. WEE1 Inhibition in Combination With Targeted Agents and Standard Chemotherapy in Preclinical Models of Pancreatic Ductal Adenocarcinoma. Front Oncol 2021; 11:642328. [PMID: 33869031 PMCID: PMC8044903 DOI: 10.3389/fonc.2021.642328] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/09/2021] [Indexed: 12/15/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal cancer with high incidences of p53 mutations. AZD1775 (adavosertib, previously MK-1775) is a small molecule WEE1 inhibitor that abrogates the G2M checkpoint and can potentially synergize with DNA damaging therapies commonly used in PDAC treatment. The purpose of this study was to identify combination partners for AZD1775, including standard chemotherapy or targeted agents, in PDAC preclinical models. Low powered preliminary screens demonstrated that two of the four PDX models responded better to the combinations of AZD1775 with irinotecan or capecitabine than to either single agent. Following the screens, two full powered PDAC PDX models of differing p53 status were tested with the combinations of AZD1775 and irinotecan or capecitabine. The combinations of AZD1775 and SN38 or 5-FU were also tested on PDAC cell lines. Cellular proliferation was measured using an IncuCyte Live Cell Imager and apoptosis was measured using a Caspase-Glo 3/7 assay. Flow cytometry was conducted to measure alterations in cell cycle distribution. Western blot analysis was used to determine the effects of the drug combinations on downstream effectors. In PDX models with mutated p53 status, there was significant tumor growth inhibition from the combination of AZD1775 with irinotecan or capecitabine (P ≤ 0.03), while PDX models with wild type p53 did not show anti-tumor synergy from the same combinations (P ≥ 0.08). The combination of AZD1775 with SN38 or 5-FU significantly decreased proliferation in all PDAC cell lines, and enhanced apoptosis in multiple cell lines. Cell cycle distribution was disrupted from the combination of AZD1775 with SN38 or 5-FU which was recorded as G2M arrest and decreased G1 phase. AZD1775 inhibited phospho-CDC2 and increased the expression of γH2AX that was either maintained or enhanced after combination with SN38 or 5-FU. The combination of AZD1775 with irinotecan/SN38 or capecitabine/5-FU showed anti-tumor effects in vivo and in vitro in PDAC models. These results support further investigation for these combination strategies to enhance outcomes for PDAC patients.
Collapse
Affiliation(s)
- Sarah J Hartman
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Stacey M Bagby
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Betelehem W Yacob
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Dennis M Simmons
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Morgan MacBeth
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Christopher H Lieu
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - S Lindsey Davis
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Alexis D Leal
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - John J Tentler
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Jennifer R Diamond
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - S Gail Eckhardt
- Department of Oncology, Dell Medical School, The University of Texas Austin, Austin, TX, United States
| | - Wells A Messersmith
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Todd M Pitts
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
11
|
Agostini LC, Jain A, Shupp A, Nevler A, McCarthy G, Bussard KM, Yeo CJ, Brody JR. Combined Targeting of PARG and Wee1 Causes Decreased Cell Survival and DNA Damage in an S-Phase-Dependent Manner. Mol Cancer Res 2020; 19:207-214. [PMID: 33257507 DOI: 10.1158/1541-7786.mcr-20-0708] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/15/2020] [Accepted: 11/24/2020] [Indexed: 12/12/2022]
Abstract
The DNA damage response (DDR) pathway sets the stage for tumorigenesis and provides both an opportunity for drug efficacy and resistance. Therapeutic approaches to target the DDR pathway include aiming to increase the efficacy of cytotoxic chemotherapies and synergistic drug strategies to enhance DNA damage, and hence cell death. Here, we report the first preclinical evaluation of a novel synergistic approach by using both genetic and small-molecule inhibition methods of silencing the DDR-related protein, poly (ADP-ribose) glycohydrolase (PARG), and the checkpoint kinase inhibitor, Wee1, in pancreatic ductal adenocarcinoma (PDAC) and colorectal carcinoma cells in vitro and in vivo. Mechanistically, we demonstrate that coinhibition of PARG and Wee1 synergistically decreased cell survival and increased DNA damage in an S-phase-dependent manner. IMPLICATIONS: In preclinical models, we demonstrate the efficacy and mechanism of action of targeting both PARG and Wee1 in PDAC and colorectal carcinoma cells. VISUAL OVERVIEW: http://mcr.aacrjournals.org/content/molcanres/19/2/207/F1.large.jpg.
Collapse
Affiliation(s)
- Lebaron C Agostini
- The Jefferson Pancreas, Biliary and Related Cancer Center, Department of Surgery, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Aditi Jain
- The Jefferson Pancreas, Biliary and Related Cancer Center, Department of Surgery, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Alison Shupp
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Avinoam Nevler
- The Jefferson Pancreas, Biliary and Related Cancer Center, Department of Surgery, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Grace McCarthy
- Brenden Colson Center for Pancreatic Care, Departments of Surgery and Cell, Developmental & Cancer Biology, Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon
| | - Karen M Bussard
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Charles J Yeo
- The Jefferson Pancreas, Biliary and Related Cancer Center, Department of Surgery, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Jonathan R Brody
- Brenden Colson Center for Pancreatic Care, Departments of Surgery and Cell, Developmental & Cancer Biology, Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon.
| |
Collapse
|
12
|
Ghelli Luserna di Rorà A, Cerchione C, Martinelli G, Simonetti G. A WEE1 family business: regulation of mitosis, cancer progression, and therapeutic target. J Hematol Oncol 2020; 13:126. [PMID: 32958072 PMCID: PMC7507691 DOI: 10.1186/s13045-020-00959-2] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 09/02/2020] [Indexed: 01/05/2023] Open
Abstract
The inhibition of the DNA damage response (DDR) pathway in the treatment of cancer has recently gained interest, and different DDR inhibitors have been developed. Among them, the most promising ones target the WEE1 kinase family, which has a crucial role in cell cycle regulation and DNA damage identification and repair in both nonmalignant and cancer cells. This review recapitulates and discusses the most recent findings on the biological function of WEE1/PKMYT1 during the cell cycle and in the DNA damage repair, with a focus on their dual role as tumor suppressors in nonmalignant cells and pseudo-oncogenes in cancer cells. We here report the available data on the molecular and functional alterations of WEE1/PKMYT1 kinases in both hematological and solid tumors. Moreover, we summarize the preclinical information on 36 chemo/radiotherapy agents, and in particular their effect on cell cycle checkpoints and on the cellular WEE1/PKMYT1-dependent response. Finally, this review outlines the most important pre-clinical and clinical data available on the efficacy of WEE1/PKMYT1 inhibitors in monotherapy and in combination with chemo/radiotherapy agents or with other selective inhibitors currently used or under evaluation for the treatment of cancer patients.
Collapse
Affiliation(s)
- Andrea Ghelli Luserna di Rorà
- Biosciences Laboratory (Onco-hematology Unit), Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Via P. Maroncelli 40, 47014, Meldola, FC, Italy
| | - Claudio Cerchione
- Biosciences Laboratory (Onco-hematology Unit), Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Via P. Maroncelli 40, 47014, Meldola, FC, Italy
| | - Giovanni Martinelli
- Biosciences Laboratory (Onco-hematology Unit), Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Via P. Maroncelli 40, 47014, Meldola, FC, Italy
| | - Giorgia Simonetti
- Biosciences Laboratory (Onco-hematology Unit), Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Via P. Maroncelli 40, 47014, Meldola, FC, Italy.
| |
Collapse
|
13
|
Abstract
OPINION STATEMENT Metastatic (and locally advanced) pancreatic adenocarcinoma (mPDA) represents a major challenge for the oncology community given the rising mortality burden from the disease and the preponderance of patients diagnosed with unresectable disease. Although systemic therapies have become more potent with the development of fluorouracil, irinotecan, and oxaliplatin (FOLFIRINOX) and gemcitabine plus nab-paclitaxel as first-line treatments, the median overall survival for patients treated with either of these regimens remains just above 1 year. A significant need exists to build upon the effectiveness of first-line regimens, incorporate tolerable maintenance treatments, and add effective later-line options for patients with this disease. We believe every newly diagnosed mPDA patient should undergo next-generation sequencing (NGS) testing, preferably from tumor tissue, to assess for the presence of DNA damage repair (DDR) defects, microsatellite instability, and other possible actionable molecular alterations (such as neurotrophic tropomysin receptor kinase (NTRK) fusions, anaplastic lymphoma kinase (ALK) rearrangements, or human epidermal growth factor receptor 2 (HER2) amplification). Existing clinical data suggests that patients, whose tumors harbor DDR defects, benefit from treatment with platinum-based chemotherapy and poly (ADP-ribose) polymerase (PARP) inhibitors. Preclinically, inhibitors of other critical players in DDR such as ataxia-telangiectasia and Rad3 related (ATR), ataxia-telangiectasia mutated (ATM), DNA-dependent protein kinase (DNA-PK), and WEE1 have demonstrated promising anti-tumor activity in PDA cell lines and xenografts. How to move forward the preclinical promise of these newer DDR-targeting therapies into rational clinical trial combinations and sequence PARP inhibitors in relation to platinum chemotherapy remain areas of tremendous clinical research interest. We believe clinical trials should be considered early for mPDA patients, in all treatment lines, so that novel therapies may be added to the treatment armamentarium for patients with this disease. Beyond NGS testing from tumor tissue, we believe it is important to consider germline genetic testing for all patients diagnosed with PDA given recent data suggesting a much stronger hereditary component of the disease than previously understood, and the potential screening implications for family members.
Collapse
Affiliation(s)
- Satya Das
- Department of Medicine, Division of Hematology Oncology, Vanderbilt University Medical Center, 777 Preston Research Building, 2220 Pierce Avenue, Nashville, TN, 37232, USA.
| | - Dana Cardin
- Department of Medicine, Division of Hematology Oncology, Vanderbilt University Medical Center, 777 Preston Research Building, 2220 Pierce Avenue, Nashville, TN, 37232, USA
| |
Collapse
|
14
|
Liang L, He Y, Wang H, Zhou H, Xiao L, Ye M, Kuang Y, Luo S, Zuo Y, Feng P, Yang C, Cao W, Liu T, Roy M, Xiao X, Liu J. The Wee1 kinase inhibitor MK1775 suppresses cell growth, attenuates stemness and synergises with bortezomib in multiple myeloma. Br J Haematol 2020; 191:62-76. [PMID: 32314355 DOI: 10.1111/bjh.16614] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 03/05/2020] [Indexed: 12/16/2022]
Abstract
Multiple myeloma stem-like cells (MMSCs) are responsible for initiation and relapse, though novel treatment paradigms that effectively eradicate MMSCs are yet to be developed. Selective inhibition of the cell cycle regulatory kinase Wee1 by MK1775 is being explored as a potential anti-cancer therapeutic. We report that higher expression of Wee1 is correlated with poor survival in multiple myeloma (MM). The MM models and patient-derived CD138+ plasma cells are particularly sensitive to the growth-inhibitory effects of the Wee1 inhibitor MK1775. MK1775 induces Mus81-Eme1 endonuclease-mediated DNA damage in S-phase cell cycle that results in a blockade of replication and then apoptosis. Furthermore, MK1775 strongly suppresses the features of stemness in vitro, in vivo and in primary CD138+ cells by decreasing ALDH1+ cell fraction and the expression of ALDH1. In addition, co-treatment of MK1775 with bortezomib is synergistic in vitro and in vivo. Bortezomib, although it enhances ALDH1+ cells, when combined with MK1775 abrogates this stimulatory effect on stemness. Considering MM as an invariably incurable malignancy due to the presence of heterogenic myeloma stem-like cells, our study presents inhibition of Wee1 as a promising targeted therapy for MM and provides a compelling rationale to further investigate the activity of MK1775 against myeloma in clinical settings.
Collapse
Affiliation(s)
- Long Liang
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China.,Molecular Biology Research Center & Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, China
| | - Yanjuan He
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China
| | - Haiqin Wang
- Molecular Biology Research Center & Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, China
| | - Hui Zhou
- Lymphoma & Hematology Department, The Affiliated Tumor Hospital of Xiangya Medical School of Central South University, Changsha, China
| | - Ling Xiao
- Department of Histology and Embryology of School of Basic Medical Sciences, Central South University, Changsha, China
| | - Mao Ye
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Yijin Kuang
- Molecular Biology Research Center & Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, China
| | - Saiqun Luo
- Molecular Biology Research Center & Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, China
| | - Yuna Zuo
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China
| | - Peifu Feng
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Chaoying Yang
- Molecular Biology Research Center & Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, China
| | - Wenjie Cao
- Molecular Biology Research Center & Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, China.,Department of Histology and Embryology of School of Basic Medical Sciences, Central South University, Changsha, China
| | - Taohua Liu
- Department of Clinical Medicine, Xiangya Medical School, Changsha, China
| | - Mridul Roy
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Xiaojuan Xiao
- Molecular Biology Research Center & Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, China
| | - Jing Liu
- Molecular Biology Research Center & Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, China
| |
Collapse
|
15
|
Miller AL, Garcia PL, Yoon KJ. Developing effective combination therapy for pancreatic cancer: An overview. Pharmacol Res 2020; 155:104740. [PMID: 32135247 DOI: 10.1016/j.phrs.2020.104740] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 02/28/2020] [Accepted: 02/29/2020] [Indexed: 02/08/2023]
Abstract
Pancreatic cancer is a fatal disease. The five-year survival for patients with all stages of this tumor type is less than 10%, with a majority of patients dying from drug resistant, metastatic disease. Gemcitabine has been a standard of care for the treatment of pancreatic cancer for over 20 years, but as a single agent gemcitabine is not curative. Since the only therapeutic option for the over 80 percent of pancreatic cancer patients ineligible for surgical resection is chemotherapy with or without radiation, the last few decades have seen a significant effort to develop effective therapy for this disease. This review addresses preclinical and clinical efforts to identify agents that target molecular characteristics common to pancreatic tumors and to develop mechanism-based combination approaches to therapy. Some of the most promising combinations include agents that inhibit transcription dependent on BET proteins (BET bromodomain inhibitors) or that inhibit DNA repair mediated by PARP (PARP inhibitors).
Collapse
Affiliation(s)
- Aubrey L Miller
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham AL, 35294 USA
| | - Patrick L Garcia
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham AL, 35294 USA
| | - Karina J Yoon
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham AL, 35294 USA.
| |
Collapse
|
16
|
Taylor SJ, Arends MJ, Langdon SP. Inhibitors of the Fanconi anaemia pathway as potential antitumour agents for ovarian cancer. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2020; 1:26-52. [PMID: 36046263 PMCID: PMC9400734 DOI: 10.37349/etat.2020.00003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 12/18/2019] [Indexed: 11/30/2022] Open
Abstract
The Fanconi anaemia (FA) pathway is an important mechanism for cellular DNA damage repair, which functions to remove toxic DNA interstrand crosslinks. This is particularly relevant in the context of ovarian and other cancers which rely extensively on interstrand cross-link generating platinum chemotherapy as standard of care treatment. These cancers often respond well to initial treatment, but reoccur with resistant disease and upregulation of DNA damage repair pathways. The FA pathway is therefore of great interest as a target for therapies that aim to improve the efficacy of platinum chemotherapies, and reverse tumour resistance to these. In this review, we discuss recent advances in understanding the mechanism of interstrand cross-link repair by the FA pathway, and the potential of the component parts as targets for therapeutic agents. We then focus on the current state of play of inhibitor development, covering both the characterisation of broad spectrum inhibitors and high throughput screening approaches to identify novel small molecule inhibitors. We also consider synthetic lethality between the FA pathway and other DNA damage repair pathways as a therapeutic approach.
Collapse
Affiliation(s)
- Sarah J Taylor
- Cancer Research UK Edinburgh Centre and Edinburgh Pathology, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road South, EH4 2XU Edinburgh, UK
| | - Mark J Arends
- Cancer Research UK Edinburgh Centre and Edinburgh Pathology, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road South, EH4 2XU Edinburgh, UK
| | - Simon P Langdon
- Cancer Research UK Edinburgh Centre and Edinburgh Pathology, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road South, EH4 2XU Edinburgh, UK
| |
Collapse
|
17
|
van Harten AM, de Boer DV, Martens-de Kemp SR, Buijze M, Ganzevles SH, Hunter KD, Leemans CR, van Beusechem VW, Wolthuis RMF, de Menezes RX, Brakenhoff RH. Chemopreventive targeted treatment of head and neck precancer by Wee1 inhibition. Sci Rep 2020; 10:2330. [PMID: 32047167 PMCID: PMC7012863 DOI: 10.1038/s41598-020-58509-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 10/25/2019] [Indexed: 01/17/2023] Open
Abstract
HPV-negative head and neck squamous cell carcinomas (HNSCCs) develop in precancerous changes in the mucosal lining of the upper-aerodigestive tract. These precancerous cells contain cancer-associated genomic changes and cause primary tumors and local relapses. Therapeutic strategies to eradicate these precancerous cells are very limited. Using functional genomic screens, we identified the therapeutic vulnerabilities of premalignant mucosal cells, which are shared with fully malignant HNSCC cells. We screened 319 previously identified tumor-lethal siRNAs on a panel of cancer and precancerous cell lines as well as primary fibroblasts. In total we identified 147 tumor-essential genes including 34 druggable candidates. Of these 34, 13 were also essential in premalignant cells. We investigated the variable molecular basis of the vulnerabilities in tumor and premalignant cell lines and found indications of collateral lethality. Wee1-like kinase (WEE1) was amongst the most promising targets for both tumor and precancerous cells. All four precancerous cell lines were highly sensitive to Wee1 inhibition by Adavosertib (AZD1775), while primary keratinocytes tolerated this inhibitor. Wee1 inhibition caused induction of DNA damage during S-phase followed by mitotic failure in (pre)cancer cells. In conclusion, we uncovered Wee1 inhibition as a promising chemopreventive strategy for precancerous cells, with comparable responses as fully transformed HNSCC cells.
Collapse
Affiliation(s)
- Anne M van Harten
- Amsterdam UMC, Vrije Universiteit Amsterdam, Otolaryngology/Head and Neck Surgery, section Tumor Biology, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - D Vicky de Boer
- Amsterdam UMC, Vrije Universiteit Amsterdam, Otolaryngology/Head and Neck Surgery, section Tumor Biology, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Sanne R Martens-de Kemp
- Amsterdam UMC, Vrije Universiteit Amsterdam, Otolaryngology/Head and Neck Surgery, section Tumor Biology, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Marijke Buijze
- Amsterdam UMC, Vrije Universiteit Amsterdam, Otolaryngology/Head and Neck Surgery, section Tumor Biology, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Sonja H Ganzevles
- Amsterdam UMC, Vrije Universiteit Amsterdam, Otolaryngology/Head and Neck Surgery, section Tumor Biology, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Keith D Hunter
- Academic Unit of Oral and Maxillofacial Medicine, Surgery and Pathology, University of Sheffield, South Yorkshire, England
| | - C René Leemans
- Amsterdam UMC, Vrije Universiteit Amsterdam, Otolaryngology/Head and Neck Surgery, section Tumor Biology, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Victor W van Beusechem
- Amsterdam UMC, Vrije Universiteit Amsterdam, Medical Oncology, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Rob M F Wolthuis
- Amsterdam UMC, Vrije Universiteit Amsterdam, Clinical Genetics, section Oncogenetics, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Renée X de Menezes
- Amsterdam UMC, Vrije Universiteit Amsterdam, Epidemiology and Biostatistics, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Ruud H Brakenhoff
- Amsterdam UMC, Vrije Universiteit Amsterdam, Otolaryngology/Head and Neck Surgery, section Tumor Biology, Cancer Center Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
18
|
Abstract
The use of RNA electrophoretic mobility shift assays (REMSAs) for analysis of RNA-protein interactions have been limited to lengthy assay time and qualitative assessment. To vastly improve assay efficiency, feasibility and quality of data procured from REMSAs, we combine here some of the best-known labeling and electrophoretic techniques. Nucleic acid fragments are end-labeled with fluorescent tags, as opposed to the radioactive or biotin tags. The fluorescent probes may be detected directly from the electrophoresis gel, eliminating the need for cumbersome membrane transfer and immunoblotting. Modifying the REMSA protocol to include low-molarity, lithium borate conductive media and near-infrared-labeled probes allows for a reduction assay time, quantitative comparison between experimental conditions and crisp band resolution (i.e., optimized results).
Collapse
|
19
|
Pilié PG, Tang C, Mills GB, Yap TA. State-of-the-art strategies for targeting the DNA damage response in cancer. Nat Rev Clin Oncol 2019; 16:81-104. [PMID: 30356138 PMCID: PMC8327299 DOI: 10.1038/s41571-018-0114-z] [Citation(s) in RCA: 702] [Impact Index Per Article: 140.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Genomic instability is a key hallmark of cancer that arises owing to defects in the DNA damage response (DDR) and/or increased replication stress. These alterations promote the clonal evolution of cancer cells via the accumulation of driver aberrations, including gene copy-number changes, rearrangements and mutations; however, these same defects also create vulnerabilities that are relatively specific to cancer cells, which could potentially be exploited to increase the therapeutic index of anticancer treatments and thereby improve patient outcomes. The discovery that BRCA-mutant cancer cells are exquisitely sensitive to inhibition of poly(ADP-ribose) polymerase has ushered in a new era of research on biomarker-driven synthetic lethal treatment strategies for different cancers. The therapeutic landscape of antitumour agents targeting the DDR has rapidly expanded to include inhibitors of other key mediators of DNA repair and replication, such as ATM, ATR, CHK1 and CHK2, DNA-PK and WEE1. Efforts to optimize these therapies are ongoing across a range of cancers, involving the development of predictive biomarker assays of responsiveness (beyond BRCA mutations), assessment of the mechanisms underlying intrinsic and acquired resistance, and evaluation of rational, tolerable combinations with standard-of-care treatments (such as chemotherapeutics and radiation), novel molecularly targeted agents and immune-checkpoint inhibitors. In this Review, we discuss the current status of anticancer therapies targeting the DDR.
Collapse
Affiliation(s)
- Patrick G Pilié
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Chad Tang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Investigational Cancer Therapeutics (Phase I Program), The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gordon B Mills
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Khalifa Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Timothy A Yap
- Department of Investigational Cancer Therapeutics (Phase I Program), The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Khalifa Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- The Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
20
|
Zemanek T, Melichar B, Lovecek M, Soucek P, Mohelnikova-Duchonova B. Biomarkers and pathways of chemoresistance and chemosensitivity for personalized treatment of pancreatic adenocarcinoma. Pharmacogenomics 2018; 20:113-127. [PMID: 30539680 DOI: 10.2217/pgs-2018-0073] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Pancreatic carcinoma is usually diagnosed late when treatment options are limited and is considered a chemo-resistant malignancy. However, early stage, good performance status and specific patient subgroup are thought to have a more favorable prognosis. Search for novel molecular biomarkers, which could predict treatment resistance, represents a major opportunity, but also a challenge in further research. This review summarizes most aspects of individualized therapy of pancreatic cancer including promising biomarkers, BRCA-deficient pancreatic cancer and its etiology. It may be estimated that nearly a third of metastatic pancreatic ductal adenocarcinoma patients could benefit from treatment other than gold standard chemotherapy. Thus, other aspects of an individualized approach concerning the main factors for the choice of the best therapy for individual pancreatic cancer patient (surgery and chemotherapy), as well as the future directions (target therapy and immunotherapy), are also addressed.
Collapse
Affiliation(s)
- Tomas Zemanek
- Department of Oncology, Faculty of Medicine & Dentistry, Palacky University Olomouc, University Hospital Olomouc, Czech Republic
| | - Bohuslav Melichar
- Department of Oncology, Faculty of Medicine & Dentistry, Palacky University Olomouc, University Hospital Olomouc, Czech Republic.,Institute of Molecular & Translational Medicine, Faculty of Medicine & Dentistry, Palacky University, Olomouc, Czech Republic
| | - Martin Lovecek
- Department of Surgery I, Faculty of Medicine & Dentistry, Palacky University, Olomouc, University Hospital Olomouc, Czech Republic
| | - Pavel Soucek
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Beatrice Mohelnikova-Duchonova
- Department of Oncology, Faculty of Medicine & Dentistry, Palacky University Olomouc, University Hospital Olomouc, Czech Republic.,Institute of Molecular & Translational Medicine, Faculty of Medicine & Dentistry, Palacky University, Olomouc, Czech Republic
| |
Collapse
|
21
|
Fang B, Kannan A, Guo T, Gao L. Simultaneously targeting DNA damage repair pathway and mTORC1/2 results in small cell lung cancer growth arrest via ER stress-induced apoptosis. Int J Biol Sci 2018; 14:1221-1231. [PMID: 30123071 PMCID: PMC6097473 DOI: 10.7150/ijbs.25488] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 04/09/2018] [Indexed: 01/08/2023] Open
Abstract
Purpose: Small cell lung cancer (SCLC) is highly lethal with no effective therapy. Wee1 kinase inhibitor AZD1775 (MK-1775) and mTOR kinase inhibitor MLN0128 (TAK228) are in clinical trials for relapsed SCLC and recurrent lung cancer, respectively. However, there is no preclinical data combining these two drugs in human cancers. Methods: In this study, we set to investigate the combinatorial anti-tumor effects of AZD1775 and MLN0128 on two human SCLC cell lines H69 and H82 in vitro and in vivo. Results: We have found that AZD1775 or MLN0128 treatment results in remarkably suppressed cell proliferation and increased cell death in vitro, what's more, the salient finding here is the potent anti-tumor effect observed in combinatorial treatment in H82 xenograft tumor. Importantly, we have first observed marked induction of ER stress and CHOP-dependent SCLC cell apoptosis in MLN0128 and AZD1775-primed cells. Conclusion: Our study has first provided preclinical evidence that combination of AZD1775 and MLN0128 could be a novel effective therapy for advanced SCLC patients.
Collapse
Affiliation(s)
- Bin Fang
- Department of Dermatology, University of Arkansas for Medical Sciences, Little Rock, AR, 72205.,Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Collaborative Innovation Center of Hematology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Aarthi Kannan
- Department of Dermatology, University of Arkansas for Medical Sciences, Little Rock, AR, 72205
| | - Tao Guo
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Collaborative Innovation Center of Hematology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ling Gao
- Department of Dermatology, University of Arkansas for Medical Sciences, Little Rock, AR, 72205
| |
Collapse
|
22
|
Lin X, Chen D, Zhang C, Zhang X, Li Z, Dong B, Gao J, Shen L. Augmented antitumor activity by olaparib plus AZD1775 in gastric cancer through disrupting DNA damage repair pathways and DNA damage checkpoint. J Exp Clin Cancer Res 2018; 37:129. [PMID: 29954437 PMCID: PMC6027790 DOI: 10.1186/s13046-018-0790-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 06/13/2018] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Targeting poly ADP-ribose polymerase (PARP) has been recently identified as a promising option against gastric cancer (GC). However, PARP inhibitors alone achieve limited efficacy. Combination strategies, especially with homologous recombination (HR) impairment, are of great hope to optimize PARP inhibitor's efficacy and expand target populations but remains largely unknown. Herein, we investigated whether a WEE1/ Polo-like kinase 1 (PLK1) dual inhibitor AZD1775 reported to impair HR augmented anticancer activity of a PARP inhibitor olaparib and its underlying mechanisms. METHODS GC cell lines and in vivo xenografts were employed to determine antitumor activity of PARP inhibitor combined with WEE1/PLK1 dual inhibitor AZD1775. Western blot, genetic knockdown by siRNA, flow cytometry, Immunohistochemistry were performed to explore the underlying mechanisms. RESULTS AZD1775 dually targeting WEE1/PLK1 enhanced effects of olaparib on growth inhibition and apoptotic induction in GC cells. Mechanistic investigations elucidate that WEE1/PLK1 blockade downregulated several HR-related proteins and caused an accumulation in γH2AX. As confirmed in both GC cell lines and mice bearing GC xenografts, these effects were enhanced by AZD1775-olaparib combination compared to olaparib alone, suggesting that disrupting HR-mediated DNA damage repairs (DDR) by WEE1/PLK1 blockade might be responsible for improved GC cells' response to PARP inhibitors. Given the DNA damage checkpoint as a primary target of WEE1 inhibition, our data also demonstrate that AZD1775 abrogated olaparib-activated DNA damage checkpoint through CDC2 de-phosphorylation, followed by mitotic progression with unrepaired DNA damage (marked by increased pHH3-stained and γH2AX-stained cells, respectively). CONCLUSIONS PARP inhibitor olaparib combined with WEE1/PLK1 dual inhibitor AZD1775 elicited potentiated anticancer activity through disrupting DDR signaling and the DNA damage checkpoint. It sheds light on the combination strategy of WEE1/PLK1 dual inhibitors with PARP inhibitors in the treatment of GC, even in HR-proficient patients.
Collapse
Affiliation(s)
- Xiaoting Lin
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Fu-Cheng Road 52, Hai-Dian District, Beijing, 100142 China
| | - Dongshao Chen
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Fu-Cheng Road 52, Hai-Dian District, Beijing, 100142 China
| | - Cheng Zhang
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Fu-Cheng Road 52, Hai-Dian District, Beijing, 100142 China
| | - Xiaotian Zhang
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Fu-Cheng Road 52, Hai-Dian District, Beijing, 100142 China
| | - Zhongwu Li
- Department of Pathology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, 100142 China
| | - Bin Dong
- Department of Pathology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, 100142 China
| | - Jing Gao
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Fu-Cheng Road 52, Hai-Dian District, Beijing, 100142 China
| | - Lin Shen
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Fu-Cheng Road 52, Hai-Dian District, Beijing, 100142 China
| |
Collapse
|
23
|
Oku Y, Nishiya N, Tazawa T, Kobayashi T, Umezawa N, Sugawara Y, Uehara Y. Augmentation of the therapeutic efficacy of WEE1 kinase inhibitor AZD1775 by inhibiting the YAP-E2F1-DNA damage response pathway axis. FEBS Open Bio 2018; 8:1001-1012. [PMID: 29928579 PMCID: PMC5986022 DOI: 10.1002/2211-5463.12440] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 03/26/2018] [Accepted: 04/25/2018] [Indexed: 01/10/2023] Open
Abstract
The main reasons for failure of cancer chemotherapy are intrinsic and acquired drug resistance. The Hippo pathway effector Yes‐associated protein (YAP) is associated with resistance to both cytotoxic and molecular targeted drugs. Several lines of evidence indicate that YAP activates transcriptional programmes to promote cell cycle progression and DNA damage responses. Therefore, we hypothesised that YAP is involved in the sensitivity of cancer cells to small‐molecule agents targeting cell cycle‐related proteins. Here, we report that the inactivation of YAP sensitises the OVCAR‐8 ovarian cancer cell line to AZD1775, a small‐molecule WEE1 kinase inhibitor. The accumulation of DNA damage and mitotic failures induced by AZD1775‐based therapy were further enhanced by YAP depletion. YAP depletion reduced the expression of the Fanconi anaemia (FA) pathway components required for DNA repair and their transcriptional regulator E2F1. These results suggest that YAP activates the DNA damage response pathway, exemplified by the FA pathway and E2F1. Furthermore, we aimed to apply this finding to combination chemotherapy against ovarian cancers. The regimen containing dasatinib, which inhibits the nuclear localisation of YAP, improved the response to AZD1775‐based therapy in the OVCAR‐8 ovarian cancer cell line. We propose that dasatinib acts as a chemosensitiser for a subset of molecular targeted drugs, including AZD1775, by targeting YAP.
Collapse
Affiliation(s)
- Yusuke Oku
- Department of Integrated Information for Pharmaceutical Sciences Iwate Medical University School of Pharmacy Yahaba-cho Japan
| | - Naoyuki Nishiya
- Department of Integrated Information for Pharmaceutical Sciences Iwate Medical University School of Pharmacy Yahaba-cho Japan
| | - Takaaki Tazawa
- Department of Integrated Information for Pharmaceutical Sciences Iwate Medical University School of Pharmacy Yahaba-cho Japan
| | - Takaya Kobayashi
- Department of Integrated Information for Pharmaceutical Sciences Iwate Medical University School of Pharmacy Yahaba-cho Japan
| | - Nanami Umezawa
- Department of Integrated Information for Pharmaceutical Sciences Iwate Medical University School of Pharmacy Yahaba-cho Japan
| | - Yasuyo Sugawara
- Department of Integrated Information for Pharmaceutical Sciences Iwate Medical University School of Pharmacy Yahaba-cho Japan
| | - Yoshimasa Uehara
- Department of Integrated Information for Pharmaceutical Sciences Iwate Medical University School of Pharmacy Yahaba-cho Japan
| |
Collapse
|
24
|
Kawaguchi K, Igarashi K, Murakami T, Kiyuna T, Lwin TM, Hwang HK, Delong JC, Clary BM, Bouvet M, Unno M, Hoffman RM. MEK inhibitors cobimetinib and trametinib, regressed a gemcitabine-resistant pancreatic-cancer patient-derived orthotopic xenograft (PDOX). Oncotarget 2018; 8:47490-47496. [PMID: 28537897 PMCID: PMC5564580 DOI: 10.18632/oncotarget.17667] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Accepted: 04/20/2017] [Indexed: 12/24/2022] Open
Abstract
A pancreatic ductal adenocarcinoma (PDAC), obtained from a patient, was grown orthotopically in the pancreatic tail of nude mice to establish a patient-derived orthotopic (PDOX) model. Seven weeks after implantation, PDOX nude mice were divided into the following groups: untreated control (n = 7); gemcitabine (100 mg/kg, i.p., once a week for 2 weeks, n = 7); cobimetinib (5 mg/kg, p.o., 14 consecutive days, n = 7); trametinib (0.3 mg/kg, p.o., 14 consecutive days, n = 7); trabectedin (0.15 mg/kg, i.v., once a week for 2 weeks, n = 7); temozolomide (25 mg/kg, p.o., 14 consecutive days, n = 7); carfilzomib (2 mg/kg, i.v., twice a week for 2 weeks, n = 7); bortezomib (1 mg/kg, i.v., twice a week for 2 weeks, n = 7); MK-1775 (20 mg/kg, p.o., 14 consecutive days, n = 7); BEZ-235 (45 mg/kg, p.o., 14 consecutive days, n = 7); vorinostat (50 mg/kg, i.p., 14 consecutive days, n = 7). Only the MEK inhibitors, cobimetinib and trametinib, regressed tumor growth, and they were more significantly effective than other therapies (p < 0.0001, respectively), thereby demonstrating the precision of the PDOX models of PDAC and its potential for individualizing pancreatic-cancer therapy.
Collapse
Affiliation(s)
- Kei Kawaguchi
- AntiCancer, Inc., San Diego, CA, USA.,Department of Surgery, University of California, San Diego, CA, USA.,Department of Surgery, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Kentaro Igarashi
- AntiCancer, Inc., San Diego, CA, USA.,Department of Surgery, University of California, San Diego, CA, USA
| | - Takashi Murakami
- AntiCancer, Inc., San Diego, CA, USA.,Department of Surgery, University of California, San Diego, CA, USA
| | - Tasuku Kiyuna
- AntiCancer, Inc., San Diego, CA, USA.,Department of Surgery, University of California, San Diego, CA, USA
| | - Thinzar M Lwin
- Department of Surgery, University of California, San Diego, CA, USA
| | - Ho Kyoung Hwang
- AntiCancer, Inc., San Diego, CA, USA.,Department of Surgery, University of California, San Diego, CA, USA
| | | | - Bryan M Clary
- Department of Surgery, University of California, San Diego, CA, USA
| | - Michael Bouvet
- Department of Surgery, University of California, San Diego, CA, USA
| | - Michiaki Unno
- Department of Surgery, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Robert M Hoffman
- AntiCancer, Inc., San Diego, CA, USA.,Department of Surgery, University of California, San Diego, CA, USA
| |
Collapse
|
25
|
Peng W, Furuuchi N, Aslanukova L, Huang YH, Brown SZ, Jiang W, Addya S, Vishwakarma V, Peters E, Brody JR, Dixon DA, Sawicki JA. Elevated HuR in Pancreas Promotes a Pancreatitis-Like Inflammatory Microenvironment That Facilitates Tumor Development. Mol Cell Biol 2018; 38:e00427-17. [PMID: 29133460 PMCID: PMC5770537 DOI: 10.1128/mcb.00427-17] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 09/07/2017] [Accepted: 11/07/2017] [Indexed: 12/30/2022] Open
Abstract
Human antigen R (ELAVL1; HuR) is perhaps the best-characterized RNA-binding protein. Through its overexpression in various tumor types, HuR promotes posttranscriptional regulation of target genes in multiple core signaling pathways associated with tumor progression. The role of HuR overexpression in pancreatic tumorigenesis is unknown and led us to explore the consequences of HuR overexpression using a novel transgenic mouse model that has a >2-fold elevation of pancreatic HuR expression. Histologically, HuR-overexpressing pancreas displays a fibroinflammatory response and other pathological features characteristic of chronic pancreatitis. This pathology is reflected in changes in the pancreatic gene expression profile due, in part, to genes whose expression changes as a consequence of direct binding of their respective mRNAs to HuR. Older mice develop pancreatic steatosis and severe glucose intolerance. Elevated HuR cooperated with mutant K-rasG12D to result in a 3.4-fold increase in pancreatic ductal adenocarcinoma (PDAC) incidence compared to PDAC presence in K-rasG12D alone. These findings implicate HuR as a facilitator of pancreatic tumorigenesis, especially in the setting of inflammation, and a novel therapeutic target for pancreatitis treatment.
Collapse
Affiliation(s)
- Weidan Peng
- Lankenau Institute for Medical Research, Wynnewood, Pennsylvania, USA
| | - Narumi Furuuchi
- Lankenau Institute for Medical Research, Wynnewood, Pennsylvania, USA
| | | | - Yu-Hung Huang
- Lankenau Institute for Medical Research, Wynnewood, Pennsylvania, USA
| | - Samantha Z Brown
- Sidney Kimmel Cancer Center at the Jefferson Pancreatic, Biliary, and Related Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Wei Jiang
- Sidney Kimmel Cancer Center at the Jefferson Pancreatic, Biliary, and Related Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Sankar Addya
- Sidney Kimmel Cancer Center at the Jefferson Pancreatic, Biliary, and Related Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | | | - Erika Peters
- University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Jonathan R Brody
- Sidney Kimmel Cancer Center at the Jefferson Pancreatic, Biliary, and Related Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Dan A Dixon
- University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Janet A Sawicki
- Lankenau Institute for Medical Research, Wynnewood, Pennsylvania, USA
- Sidney Kimmel Cancer Center at the Jefferson Pancreatic, Biliary, and Related Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
26
|
Brandsma I, Fleuren ED, Williamson CT, Lord CJ. Directing the use of DDR kinase inhibitors in cancer treatment. Expert Opin Investig Drugs 2017; 26:1341-1355. [PMID: 28984489 PMCID: PMC6157710 DOI: 10.1080/13543784.2017.1389895] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
INTRODUCTION Defects in the DNA damage response (DDR) drive the development of cancer by fostering DNA mutation but also provide cancer-specific vulnerabilities that can be exploited therapeutically. The recent approval of three different PARP inhibitors for the treatment of ovarian cancer provides the impetus for further developing targeted inhibitors of many of the kinases involved in the DDR, including inhibitors of ATR, ATM, CHEK1, CHEK2, DNAPK and WEE1. Areas covered: We summarise the current stage of development of these novel DDR kinase inhibitors, and describe which predictive biomarkers might be exploited to direct their clinical use. Expert opinion: Novel DDR inhibitors present promising candidates in cancer treatment and have the potential to elicit synthetic lethal effects. In order to fully exploit their potential and maximize their utility, identifying highly penetrant predictive biomarkers of single agent and combinatorial DDR inhibitor sensitivity are critical. Identifying the optimal drug combination regimens that could used with DDR inhibitors is also a key objective.
Collapse
Affiliation(s)
- Inger Brandsma
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Emmy D.G. Fleuren
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Chris T. Williamson
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Christopher J. Lord
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, SW3 6JB, UK
| |
Collapse
|
27
|
Carrassa L, Damia G. DNA damage response inhibitors: Mechanisms and potential applications in cancer therapy. Cancer Treat Rev 2017; 60:139-151. [PMID: 28961555 DOI: 10.1016/j.ctrv.2017.08.013] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 07/26/2017] [Accepted: 08/01/2017] [Indexed: 02/06/2023]
Abstract
Over the last decade the unravelling of the molecular mechanisms of the DNA damage response pathways and of the genomic landscape of human tumors have paved the road to new therapeutic approaches in oncology. It is now clear that tumors harbour defects in different DNA damage response steps, mainly signalling and repair, rendering them more dependent on the remaining pathways. We here focus on the proteins ATM, ATR, CHK1 and WEE1, reviewing their roles in the DNA damage response and as targets in cancer therapy. In the last decade specific inhibitors of these proteins have been designed, and their potential antineoplastic activity has been explored both in monotherapy strategies against tumors with specific defects (synthetic lethality approach) and in combination with radiotherapy or chemotherapeutic or molecular targeted agents. The preclinical and clinical evidence of antitumor activity of these inhibitors emanating from these research efforts will be critically reviewed. Lastly, the potential therapeutic feasibility of combining together such inhibitors with the aim to target particular subsets of tumors will be also discussed.
Collapse
Affiliation(s)
- Laura Carrassa
- Laboratory of Molecular Pharmacology, Department of Oncology, IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri", Milan, Italy.
| | - Giovanna Damia
- Laboratory of Molecular Pharmacology, Department of Oncology, IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri", Milan, Italy.
| |
Collapse
|
28
|
Ruess DA, Görgülü K, Wörmann SM, Algül H. Pharmacotherapeutic Management of Pancreatic Ductal Adenocarcinoma: Current and Emerging Concepts. Drugs Aging 2017; 34:331-357. [PMID: 28349415 DOI: 10.1007/s40266-017-0453-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Pancreatic ductal adenocarcinoma is a devastating malignancy, which is the result of late diagnosis, aggressive disease, and a lack of effective treatment options. Thus, pancreatic ductal adenocarcinoma is projected to become the second leading cause of cancer-related death by 2030. This review summarizes recent developments of oncological therapy in the palliative setting of metastatic pancreatic ductal adenocarcinoma. It further compiles novel targets and therapeutic approaches as well as promising treatment combinations, which are presently in preclinical evaluation, covering several aspects of the hallmarks of cancer. Finally, challenges to the implementation of an individualized therapy approach in the context of precision medicine are discussed.
Collapse
Affiliation(s)
- Dietrich A Ruess
- Internal Medicine II, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany.
| | - Kivanc Görgülü
- Internal Medicine II, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany
| | - Sonja M Wörmann
- Internal Medicine II, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany
| | - Hana Algül
- Internal Medicine II, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany.
| |
Collapse
|
29
|
Ku BM, Bae YH, Koh J, Sun JM, Lee SH, Ahn JS, Park K, Ahn MJ. Mutational status of TP53 defines the efficacy of Wee1 inhibitor AZD1775 in KRAS-mutant non-small cell lung cancer. Oncotarget 2017; 8:67526-67537. [PMID: 28978051 PMCID: PMC5620191 DOI: 10.18632/oncotarget.18728] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 05/23/2017] [Indexed: 12/31/2022] Open
Abstract
KRAS is frequently mutated in non-small cell lung cancer (NSCLC). However, direct targeting of KRAS has proven to be challenging, and inhibition of KRAS effectors has resulted in limited clinical efficacy. Wee1 kinase is an important regulator of the G2 checkpoint and is overexpressed in various cancers. Inhibition of Wee1 exerts anticancer effects as a monotherapy or in combination with DNA-damaging agents when cancer cells harbor TP53 mutations. However, its role in KRAS-mutant NSCLC, especially as a single agent, has not been explored. Here, we investigate the anticancer potential of Wee1 inhibitor AZD1775 as a monotherapy and uncover a possible cellular context underlying sensitivity to AZD1775. Our data show that treatment with AZD1775 significantly inhibited cell survival, growth, and proliferation of TP53-mutant (TP53MUT) compared to TP53 wild-type (TP53WT) in KRAS-mutant (KRASMUT) NSCLC cells. In KRASMUT/TP53MUT cells, AZD1775 treatment led to DNA damage, a decrease of survival signaling, and cell death by apoptosis. Interestingly, cell death through apoptosis was found to be heavily dependent on specific cellular genetic context, rather than inhibition of Wee1 kinase activity alone. In addition, AZD1775 treatment was well tolerated and displayed single-agent efficacy in a mouse xenograft model. This study provides rationale for inhibiting Wee1 using AZD1775 as a potential anticancer therapy against the TP53MUT subgroup of KRASMUT NSCLC.
Collapse
Affiliation(s)
- Bo Mi Ku
- Samsung Biomedical Research Institute, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Yeon-Hee Bae
- Samsung Biomedical Research Institute, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jiae Koh
- Samsung Biomedical Research Institute, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jong-Mu Sun
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Se-Hoon Lee
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jin Seok Ahn
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Keunchil Park
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Myung-Ju Ahn
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
30
|
Lal S, Cheung EC, Zarei M, Preet R, Chand SN, Mambelli-Lisboa NC, Romeo C, Stout MC, Londin E, Goetz A, Lowder CY, Nevler A, Yeo CJ, Campbell PM, Winter JM, Dixon DA, Brody JR. CRISPR Knockout of the HuR Gene Causes a Xenograft Lethal Phenotype. Mol Cancer Res 2017; 15:696-707. [PMID: 28242812 PMCID: PMC5466444 DOI: 10.1158/1541-7786.mcr-16-0361] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 11/30/2016] [Accepted: 01/25/2017] [Indexed: 12/15/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDA) is the third leading cause of cancer-related deaths in the United States, whereas colorectal cancer is the third most common cancer. The RNA-binding protein HuR (ELAVL1) supports a pro-oncogenic network in gastrointestinal (GI) cancer cells through enhanced HuR expression. Using a publically available database, HuR expression levels were determined to be increased in primary PDA and colorectal cancer tumor cohorts as compared with normal pancreas and colon tissues, respectively. CRISPR/Cas9 technology was successfully used to delete the HuR gene in both PDA (MIA PaCa-2 and Hs 766T) and colorectal cancer (HCT116) cell lines. HuR deficiency has a mild phenotype, in vitro, as HuR-deficient MIA PaCa-2 (MIA.HuR-KO(-/-)) cells had increased apoptosis when compared with isogenic wild-type (MIA.HuR-WT(+/+)) cells. Using this isogenic system, mRNAs were identified that specifically bound to HuR and were required for transforming a two-dimensional culture into three dimensional (i.e., organoids). Importantly, HuR-deficient MIA PaCa-2 and Hs 766T cells were unable to engraft tumors in vivo compared with control HuR-proficient cells, demonstrating a unique xenograft lethal phenotype. Although not as a dramatic phenotype, CRISPR knockout HuR HCT116 colon cancer cells (HCT.HuR-KO(-/-)) showed significantly reduced in vivo tumor growth compared with controls (HCT.HuR-WT(+/+)). Finally, HuR deletion affects KRAS activity and controls a subset of pro-oncogenic genes.Implications: The work reported here supports the notion that targeting HuR is a promising therapeutic strategy to treat GI malignancies. Mol Cancer Res; 15(6); 696-707. ©2017 AACR.
Collapse
Affiliation(s)
- Shruti Lal
- Division of Surgical Research, Department of Surgery, Jefferson Pancreas, Biliary and Related Cancer Center, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Edwin C Cheung
- Division of Surgical Research, Department of Surgery, Jefferson Pancreas, Biliary and Related Cancer Center, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Mahsa Zarei
- Division of Surgical Research, Department of Surgery, Jefferson Pancreas, Biliary and Related Cancer Center, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Ranjan Preet
- Department of Cancer Biology and University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, Kansas
| | - Saswati N Chand
- Division of Surgical Research, Department of Surgery, Jefferson Pancreas, Biliary and Related Cancer Center, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Nicole C Mambelli-Lisboa
- Division of Surgical Research, Department of Surgery, Jefferson Pancreas, Biliary and Related Cancer Center, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Carmella Romeo
- Division of Surgical Research, Department of Surgery, Jefferson Pancreas, Biliary and Related Cancer Center, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Matthew C Stout
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Eric Londin
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Austin Goetz
- Division of Surgical Research, Department of Surgery, Jefferson Pancreas, Biliary and Related Cancer Center, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Cinthya Y Lowder
- Division of Surgical Research, Department of Surgery, Jefferson Pancreas, Biliary and Related Cancer Center, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Avinoam Nevler
- Division of Surgical Research, Department of Surgery, Jefferson Pancreas, Biliary and Related Cancer Center, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Charles J Yeo
- Division of Surgical Research, Department of Surgery, Jefferson Pancreas, Biliary and Related Cancer Center, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Paul M Campbell
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Jordan M Winter
- Division of Surgical Research, Department of Surgery, Jefferson Pancreas, Biliary and Related Cancer Center, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania.
| | - Dan A Dixon
- Department of Cancer Biology and University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, Kansas.
| | - Jonathan R Brody
- Division of Surgical Research, Department of Surgery, Jefferson Pancreas, Biliary and Related Cancer Center, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania.
| |
Collapse
|