1
|
Sarkar S, Chakraborty A, Nag P, Singh S, Munjal R, Vennapusa SR, Jha HC, Mukhopadhyay S. Role of Charge Density and Surface Area of Tailored Ionic Porous Organic Polymers for Adsorption and Antibacterial Actions. ACS APPLIED MATERIALS & INTERFACES 2024; 16:62788-62802. [PMID: 39471396 DOI: 10.1021/acsami.4c15935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
The development of high-performance adsorbents for environmental remediation is a current need, and ionic porous organic polymers (iPOPs), due to their high physicochemical stability, high surface area, added electrostatic interaction, and easy reusability, have already established themselves as a better adsorbent. However, research on the structural design of high-performance iPOP-based adsorbents is still nascent. This study explored the building blocks' role in optimizing the polymers' charge density and surface area to develop better polymeric adsorbents. Among the three synthesized polymers, iPOP-ZN1, owing to its high surface area and high charge density in its active sites, proved to be the best adsorbent for adsorbing inorganic and organic pollutants in an aqueous medium. The polymers were efficient enough to capture and store iodine vapor in the solid state. Further, this study tried to address using iodine-loaded polymers in antibacterial action. Iodine-loaded iPOPs show impressive antibacterial behavior against E. coli, B. subtilis, and H. pylori.
Collapse
Affiliation(s)
- Sayantan Sarkar
- Department of Chemistry, Indian Institute of Technology Indore, Indore 453552, India
| | - Argha Chakraborty
- Department of Chemistry, Indian Institute of Technology Indore, Indore 453552, India
| | - Probal Nag
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram 695551, India
| | - Siddharth Singh
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore 453552, India
| | - Ritika Munjal
- Department of Chemistry, Indian Institute of Technology Indore, Indore 453552, India
| | - Sivaranjana Reddy Vennapusa
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram 695551, India
| | - Hem Chandra Jha
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore 453552, India
| | - Suman Mukhopadhyay
- Department of Chemistry, Indian Institute of Technology Indore, Indore 453552, India
| |
Collapse
|
2
|
Dewachter L, Deckers B, Mares-Mejía I, Louwagie E, Vercauteren S, Matthay P, Brückner S, Möller AM, Narberhaus F, Vonesch SC, Versées W, Michiels J. The role of the essential GTPase ObgE in regulating lipopolysaccharide synthesis in Escherichia coli. Nat Commun 2024; 15:9684. [PMID: 39516202 PMCID: PMC11549432 DOI: 10.1038/s41467-024-53980-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
During growth, cells need to synthesize and expand their envelope, a process that requires careful regulation. Here, we show that the GTPase ObgE of E. coli contributes to the regulation of lipopolysaccharide (LPS) synthesis, an essential component of the Gram-negative outer membrane. Using a dominant-negative mutant (named 'ObgE*'), we show a direct interaction between ObgE and LpxA, which catalyzes the first step in LPS synthesis. This interaction is enhanced by the mutation in ObgE* which, when bound to GTP, leads to inhibition of LpxA, decreased LPS synthesis, and cell death. Although wild-type ObgE does not exert the same strong effects as ObgE* on LpxA or LPS synthesis, our data indicate that ObgE participates in the regulation of cell envelope synthesis in E. coli. Because ObgE also influences other cellular functions (i.e., ribosome assembly, DNA replication, etc.), it seems increasingly plausible that this GTPase coordinates several processes to finetune cell growth.
Collapse
Affiliation(s)
- Liselot Dewachter
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium.
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium.
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium.
| | - Babette Deckers
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
- VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
- Eurofins Amatsigroup NV, Industriepark Zwijnaarde 7B, Ghent, Belgium
| | - Israel Mares-Mejía
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
- VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
| | - Elen Louwagie
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
| | - Silke Vercauteren
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
| | - Paul Matthay
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
| | - Simon Brückner
- Microbial Biology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Anna-Maria Möller
- Microbial Biology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Franz Narberhaus
- Microbial Biology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Sibylle C Vonesch
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
| | - Wim Versées
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
- VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
| | - Jan Michiels
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
| |
Collapse
|
3
|
da Cruz Nizer WS, Adams ME, Montgomery MC, Allison KN, Beaulieu C, Overhage J. Genetic determinants of increased sodium hypochlorite and ciprofloxacin susceptibility in Pseudomonas aeruginosa PA14 biofilms. BIOFOULING 2024; 40:563-579. [PMID: 39189148 DOI: 10.1080/08927014.2024.2395378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 06/12/2024] [Accepted: 08/15/2024] [Indexed: 08/28/2024]
Abstract
Reactive chlorine species (RCS) like sodium hypochlorite (NaOCl) are potent oxidizing agents and widely used biocides in surface disinfection, water treatment, and biofilm elimination. Moreover, RCS are also produced by the human immune system to kill invading pathogens. However, bacteria have developed mechanisms to survive the damage caused by RCS. Using the comprehensive Pseudomonas aeruginosa PA14 transposon mutant library in a genetic screen, we identified a total of 28 P. aeruginosa PA14 mutants whose biofilms showed increased susceptibility to NaOCl in comparison to PA14 WT biofilms. Of these, ten PA14 mutants with a disrupted apaH, PA0793, acsA, PA1506, PA1547, PA3728, yajC, queA, PA3869, or PA14_32840 gene presented a 4-fold increase in NaOCl susceptibility compared to wild-type biofilms. While none of these mutants showed a defect in biofilm formation or attenuated susceptibility of biofilms toward the oxidant hydrogen peroxide (H2O2), all but PA14_32840 also exhibited a 2-4-fold increase in susceptibility toward the antibiotic ciprofloxacin. Further analyses revealed attenuated levels of intracellular ROS and catalase activity only for the apaH and PA1547 mutant, providing insights into the oxidative stress response in P. aeruginosa biofilms. The findings of this paper highlight the complexity of biofilm resistance and the intricate interplay between different mechanisms to survive oxidative stress. Understanding resistance strategies adopted by biofilms is crucial for developing more effective ways to fight resistant bacteria, ultimately contributing to better management of bacterial growth and resistance in clinical and environmental settings.
Collapse
Affiliation(s)
| | | | | | | | - Carole Beaulieu
- Department of Health Sciences, Carleton University, Ottawa, Canada
| | - Joerg Overhage
- Department of Health Sciences, Carleton University, Ottawa, Canada
| |
Collapse
|
4
|
Singh M, Chandra D, Jagdish S, Nandi D. Global transcriptome analysis reveals Salmonella Typhimurium employs nitrate metabolism to combat bile stress. FEBS Lett 2024; 598:1605-1619. [PMID: 38503554 DOI: 10.1002/1873-3468.14853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/21/2024]
Abstract
Salmonella Typhimurium is an enteric pathogen that is highly tolerant to bile. Next-generation mRNA sequencing was performed to analyze the adaptive responses to bile in two S. Typhimurium strains: wild type (WT) and a mutant lacking cold shock protein E (ΔcspE). CspE is an RNA chaperone which is crucial for survival of S. Typhimurium during bile stress. This study identifies transcriptional responses in bile-tolerant WT and bile-sensitive ΔcspE. Upregulation of several genes involved in nitrate metabolism was observed, including fnr, a global regulator of nitrate metabolism. Notably, Δfnr was susceptible to bile stress. Also, complementation with fnr lowered reactive oxygen species and enhanced the survival of bile-sensitive ΔcspE. Importantly, intracellular nitrite amounts were highly induced in bile-treated WT compared to ΔcspE. Also, the WT strain pre-treated with nitrate displayed better growth with bile. These results demonstrate that nitrate-dependent metabolism promotes adaptation of S. Typhimurium to bile.
Collapse
Affiliation(s)
- Madhulika Singh
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Deepti Chandra
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Sirisha Jagdish
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Dipankar Nandi
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| |
Collapse
|
5
|
Singh M, Penmatsa A, Nandi D. Functional Characterization of Salmonella Typhimurium Encoded YciF, a Domain of Unknown Function (DUF892) Family Protein, and Its Role in Protection during Bile and Oxidative Stress. J Bacteriol 2023; 205:e0005923. [PMID: 37367303 PMCID: PMC10367587 DOI: 10.1128/jb.00059-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 06/12/2023] [Indexed: 06/28/2023] Open
Abstract
YciF (STM14_2092) is a member of the domain of unknown function (DUF892) family. It is an uncharacterized protein involved in stress responses in Salmonella Typhimurium. In this study, we investigated the significance of YciF and its DUF892 domain during bile and oxidative stress responses of S. Typhimurium. Purified wild-type YciF forms higher order oligomers, binds to iron, and displays ferroxidase activity. Studies on the site-specific mutants revealed that the ferroxidase activity of YciF is dependent on the two metal binding sites present within the DUF892 domain. Transcriptional analysis displayed that the ΔcspE strain, which has compromised expression of YciF, encounters iron toxicity due to dysregulation of iron homeostasis in the presence of bile. Utilizing this observation, we demonstrate that the bile mediated iron toxicity in ΔcspE causes lethality, primarily through the generation of reactive oxygen species (ROS). Expression of wild-type YciF, but not the three mutants of the DUF892 domain, in ΔcspE alleviate ROS in the presence of bile. Our results establish the role of YciF as a ferroxidase that can sequester excess iron in the cellular milieu to counter ROS-associated cell death. This is the first report of biochemical and functional characterization of a member of the DUF892 family. IMPORTANCE The DUF892 domain has a wide taxonomic distribution encompassing several bacterial pathogens. This domain belongs to the ferritin-like superfamily; however, it has not been biochemically and functionally characterized. This is the first report of characterization of a member of this family. In this study, we demonstrate that S. Typhimurium YciF is an iron binding protein with ferroxidase activity, which is dependent on the metal binding sites present within the DUF892 domain. YciF combats iron toxicity and oxidative damage caused due to exposure to bile. The functional characterization of YciF delineates the significance of the DUF892 domain in bacteria. In addition, our studies on S. Typhimurium bile stress response divulged the importance of comprehensive iron homeostasis and ROS in bacteria.
Collapse
Affiliation(s)
- Madhulika Singh
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Aravind Penmatsa
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | - Dipankar Nandi
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| |
Collapse
|
6
|
Shao Y, Zhou Z, Jiang J, Jiang LM, Huang J, Zuo Y, Ren Y, Zhao X. Membrane fouling in anoxic/oxic membrane reactors coupled with carrier-enhanced anaerobic side-stream reactor: Effects of anaerobic hydraulic retention time and mechanism insights. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119657] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Kim JA, Jang BR, Kim YR, Jung YC, Kim KS, Lee KH. Vibrio vulnificus induces the death of a major bacterial species in the mouse gut via cyclo-Phe-Pro. MICROBIOME 2021; 9:161. [PMID: 34284824 PMCID: PMC8293591 DOI: 10.1186/s40168-021-01095-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 05/12/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND A foodborne pathogen, Vibrio vulnificus, encounters normal microflora inhabiting the gut environments prior to causing fatal septicemia or gastroenteritis and should overcome the barriers derived from the gut commensals for successful infection. Its interactions with gut commensals during the infection process, however, have not yet been understood. In the present study, the effect of V. vulnificus on the community structures of gut microbiota in mice was examined. RESULTS Analyses of microbiota in the fecal samples of mice that died due to V. vulnificus infection revealed the decreased abundance of bacteria belonged to Bacteroidetes, notably, the species Bacteroides vulgatus. In vitro coculturing of the two bacterial species resulted in the decreased survival of B. vulgatus. The antagonistic effect of V. vulnificus against B. vulgatus was found to be mediated by cyclo-Phe-Pro (cFP), one of the major compounds secreted by V. vulnificus. cFP-treated B. vulgatus showed collapsed cellular morphology with an undulated cell surface, enlarged periplasmic space, and lysed membranes, suggesting the occurrence of membrane disruption. The degree of membrane disruption caused by cFP was dependent upon the cellular levels of ObgE in B. vulgatus. Recombinant ObgE exhibited a high affinity to cFP at a 1:1 ratio. When mice were orally injected with cFP, their feces contained significantly reduced B. vulgatus levels, and their susceptibility to V. vulnificus infection was considerably increased. CONCLUSIONS This study demonstrates that V. vulnificus-derived cFP modulates the abundance of the predominant species among gut commensals, which made V. vulnificus increase its pathogenicity in the hosts. Video abstract.
Collapse
Affiliation(s)
- Jeong-A Kim
- Department of Life Science, Sogang University, 35 Baekbeom-Ro, Mapo-Gu, Seoul, South Korea
| | - Bo-Ram Jang
- Department of Life Science, Sogang University, 35 Baekbeom-Ro, Mapo-Gu, Seoul, South Korea
| | - Yu-Ra Kim
- Department of Life Science, Sogang University, 35 Baekbeom-Ro, Mapo-Gu, Seoul, South Korea
| | - You-Chul Jung
- Department of Life Science, Sogang University, 35 Baekbeom-Ro, Mapo-Gu, Seoul, South Korea
| | - Kun-Soo Kim
- Department of Life Science, Sogang University, 35 Baekbeom-Ro, Mapo-Gu, Seoul, South Korea
| | - Kyu-Ho Lee
- Department of Life Science, Sogang University, 35 Baekbeom-Ro, Mapo-Gu, Seoul, South Korea.
| |
Collapse
|
8
|
Hübner I, Shapiro JA, Hoßmann J, Drechsel J, Hacker SM, Rather PN, Pieper DH, Wuest WM, Sieber SA. Broad Spectrum Antibiotic Xanthocillin X Effectively Kills Acinetobacter baumannii via Dysregulation of Heme Biosynthesis. ACS CENTRAL SCIENCE 2021; 7:488-498. [PMID: 33791430 PMCID: PMC8006170 DOI: 10.1021/acscentsci.0c01621] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Indexed: 05/19/2023]
Abstract
Isonitrile natural products exhibit promising antibacterial activities. However, their mechanism of action (MoA) remains largely unknown. Based on the nanomolar potency of xanthocillin X (Xan) against diverse difficult-to-treat Gram-negative bacteria, including the critical priority pathogen Acinetobacter baumannii, we performed in-depth studies to decipher its MoA. While neither metal binding nor cellular protein targets were detected as relevant for Xan's antibiotic effects, sequencing of resistant strains revealed a conserved mutation in the heme biosynthesis enzyme porphobilinogen synthase (PbgS). This mutation caused impaired enzymatic efficiency indicative of reduced heme production. This discovery led to the validation of an untapped mechanism, by which direct heme sequestration of Xan prevents its binding into cognate enzyme pockets resulting in uncontrolled cofactor biosynthesis, accumulation of porphyrins, and corresponding stress with deleterious effects for bacterial viability. Thus, Xan represents a promising antibiotic displaying activity even against multidrug resistant strains, while exhibiting low toxicity to human cells.
Collapse
Affiliation(s)
- Ines Hübner
- Center
for Functional Protein Assemblies at the Department of Chemistry and
Chair of Organic Chemistry II, Technische
Universität München, Garching D-85748, Germany
| | - Justin A. Shapiro
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Jörn Hoßmann
- Microbial
Interactions and Processes Research Group, Helmholtz Centre for Infection Research, Braunschweig 38124, Germany
| | - Jonas Drechsel
- Center
for Functional Protein Assemblies at the Department of Chemistry and
Chair of Organic Chemistry II, Technische
Universität München, Garching D-85748, Germany
| | - Stephan M. Hacker
- Department
of Chemistry, Technische Universität
München, Garching D-85748, Germany
| | - Philip N. Rather
- Emory Antibiotic Resistance Center and Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia 30322, United States
- Research
Service, Atlanta VA Medical Center, Decatur, Georgia 30033, United States
| | - Dietmar H. Pieper
- Microbial
Interactions and Processes Research Group, Helmholtz Centre for Infection Research, Braunschweig 38124, Germany
| | - William M. Wuest
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
- Emory Antibiotic Resistance Center and Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| | - Stephan A. Sieber
- Center
for Functional Protein Assemblies at the Department of Chemistry and
Chair of Organic Chemistry II, Technische
Universität München, Garching D-85748, Germany
| |
Collapse
|
9
|
Redox signaling through zinc activates the radiation response in Deinococcus bacteria. Sci Rep 2021; 11:4528. [PMID: 33633226 PMCID: PMC7907104 DOI: 10.1038/s41598-021-84026-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 02/11/2021] [Indexed: 02/06/2023] Open
Abstract
Deinococcus bacteria are extremely resistant to radiation and other DNA damage- and oxidative stress-generating conditions. An efficient SOS-independent response mechanism inducing expression of several DNA repair genes is essential for this resistance, and is controlled by metalloprotease IrrE that cleaves and inactivates transcriptional repressor DdrO. Here, we identify the molecular signaling mechanism that triggers DdrO cleavage. We show that reactive oxygen species (ROS) stimulate the zinc-dependent metalloprotease activity of IrrE in Deinococcus. Sudden exposure of Deinococcus to zinc excess also rapidly induces DdrO cleavage, but is not accompanied by ROS production and DNA damage. Further, oxidative treatment leads to an increase of intracellular free zinc, indicating that IrrE activity is very likely stimulated directly by elevated levels of available zinc ions. We conclude that radiation and oxidative stress induce changes in redox homeostasis that result in IrrE activation by zinc in Deinococcus. We propose that a part of the zinc pool coordinated with cysteine thiolates is released due to their oxidation. Predicted regulation systems involving IrrE- and DdrO-like proteins are present in many bacteria, including pathogens, suggesting that such a redox signaling pathway including zinc as a second messenger is widespread and participates in various stress responses.
Collapse
|
10
|
GTP Binding is Necessary for the Activation of a Toxic Mutant Isoform of the Essential GTPase ObgE. Int J Mol Sci 2019; 21:ijms21010016. [PMID: 31861427 PMCID: PMC6982127 DOI: 10.3390/ijms21010016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/11/2019] [Accepted: 12/17/2019] [Indexed: 11/29/2022] Open
Abstract
Even though the Obg protein is essential for bacterial viability, the cellular functions of this universally conserved GTPase remain enigmatic. Moreover, the influence of GTP and GDP binding on the activity of this protein is largely unknown. Previously, we identified a mutant isoform of ObgE (the Obg protein of Escherichia coli) that triggers cell death. In this research we explore the biochemical requirements for the toxic effect of this mutant ObgE* isoform, using cell death as a readily accessible read-out for protein activity. Both the absence of the N-terminal domain and a decreased GTP binding affinity neutralize ObgE*-mediated toxicity. Moreover, a deletion in the region that connects the N-terminal domain to the G domain likewise abolishes toxicity. Taken together, these data indicate that GTP binding by ObgE* triggers a conformational change that is transmitted to the N-terminal domain to confer toxicity. We therefore conclude that ObgE*–GTP, but not ObgE*–GDP, is the active form of ObgE* that is detrimental to cell viability. Based on these data, we speculate that also for wild-type ObgE, GTP binding triggers conformational changes that affect the N-terminal domain and thereby control ObgE function.
Collapse
|
11
|
Verstraeten N, Gkekas S, Kint CI, Deckers B, Van den Bergh B, Herpels P, Louwagie E, Knapen W, Wilmaerts D, Dewachter L, Fauvart M, Singh RK, Michiels J, Versées W. Biochemical determinants of ObgE-mediated persistence. Mol Microbiol 2019; 112:1593-1608. [PMID: 31498933 DOI: 10.1111/mmi.14382] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2019] [Indexed: 11/30/2022]
Abstract
Obg is a versatile GTPase that plays a pivotal role in bacterial persistence. We previously showed that the Escherichia coli homolog ObgE exerts this activity through transcriptional activation of a toxin-antitoxin module and subsequent membrane depolarization. Here, we assessed the role of G-domain functionality in ObgE-mediated persistence. Through screening of a mutant library, we identified five obgE alleles (with substitutions G166V, D246G, S270I, N283I and I313N) that have lost their persistence function and no longer activate hokB expression. These alleles support viability of a strain otherwise deprived of ObgE, indicating that ObgE's persistence function can be uncoupled from its essential role. Based on the ObgE crystal structure, we designed two additional mutant proteins (T193A and D286Y), one of which (D286Y) no longer affects persistence. Using isothermal titration calorimetry, stopped-flow experiments and kinetics, we subsequently assessed nucleotide binding and GTPase activity in all mutants. With the exception of the S270I mutant that is possibly affected in protein-protein interactions, all mutants that have lost their persistence function display severely reduced binding to GDP or the alarmone ppGpp. However, we find no clear relation between persistence and GTP or pppGpp binding nor with GTP hydrolysis. Combined, our results signify an important step toward understanding biochemical determinants underlying persistence.
Collapse
Affiliation(s)
- Natalie Verstraeten
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20 Box 2460, 3001, Leuven, Belgium.,VIB-KU Leuven Center for Microbiology, Kasteelpark Arenberg 20 Box 2460, 3001, Leuven, Belgium
| | - Sotirios Gkekas
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium.,VIB-VUB Center for Structural Biology, Pleinlaan 2, 1050, Brussels, Belgium
| | - Cyrielle Ines Kint
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20 Box 2460, 3001, Leuven, Belgium
| | - Babette Deckers
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium.,VIB-VUB Center for Structural Biology, Pleinlaan 2, 1050, Brussels, Belgium
| | - Bram Van den Bergh
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20 Box 2460, 3001, Leuven, Belgium.,VIB-KU Leuven Center for Microbiology, Kasteelpark Arenberg 20 Box 2460, 3001, Leuven, Belgium
| | - Pauline Herpels
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20 Box 2460, 3001, Leuven, Belgium.,VIB-KU Leuven Center for Microbiology, Kasteelpark Arenberg 20 Box 2460, 3001, Leuven, Belgium
| | - Elen Louwagie
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20 Box 2460, 3001, Leuven, Belgium.,VIB-KU Leuven Center for Microbiology, Kasteelpark Arenberg 20 Box 2460, 3001, Leuven, Belgium
| | - Wouter Knapen
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20 Box 2460, 3001, Leuven, Belgium
| | - Dorien Wilmaerts
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20 Box 2460, 3001, Leuven, Belgium.,VIB-KU Leuven Center for Microbiology, Kasteelpark Arenberg 20 Box 2460, 3001, Leuven, Belgium
| | - Liselot Dewachter
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20 Box 2460, 3001, Leuven, Belgium.,VIB-KU Leuven Center for Microbiology, Kasteelpark Arenberg 20 Box 2460, 3001, Leuven, Belgium
| | - Maarten Fauvart
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20 Box 2460, 3001, Leuven, Belgium.,VIB-KU Leuven Center for Microbiology, Kasteelpark Arenberg 20 Box 2460, 3001, Leuven, Belgium.,Department of Life Science Technologies, Smart Systems and Emerging Technologies Unit, IMEC, Kapeldreef 75, 3001, Leuven, Belgium
| | - Ranjan Kumar Singh
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium.,VIB-VUB Center for Structural Biology, Pleinlaan 2, 1050, Brussels, Belgium
| | - Jan Michiels
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20 Box 2460, 3001, Leuven, Belgium.,VIB-KU Leuven Center for Microbiology, Kasteelpark Arenberg 20 Box 2460, 3001, Leuven, Belgium
| | - Wim Versées
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium.,VIB-VUB Center for Structural Biology, Pleinlaan 2, 1050, Brussels, Belgium
| |
Collapse
|
12
|
A Combination of Linalool, Vitamin C, and Copper Synergistically Triggers Reactive Oxygen Species and DNA Damage and Inhibits Salmonella enterica subsp. enterica Serovar Typhi and Vibrio fluvialis. Appl Environ Microbiol 2019; 85:AEM.02487-18. [PMID: 30552187 DOI: 10.1128/aem.02487-18] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 11/26/2018] [Indexed: 11/20/2022] Open
Abstract
Inappropriate and disproportionate use of antibiotics is contributing immensely to the development of antibiotic resistance in bacterial species associated with food contamination. The use of natural products in combination can be a potent alternative hurdle strategy to inactivate foodborne pathogens. Here, we explored the pro-oxidant properties of essential oil linalool and vitamin C in combination with copper (LVC) in combating the foodborne pathogens Vibrio fluvialis and Salmonella enterica subsp. enterica serovar Typhi using a three-dimensional (3D) checkerboard microdilution assay. Antibacterial activity in terms of the MIC revealed that the triple combination exerted a synergistic effect compared to the effects of the individual constituents. The bactericidal effect of the triple combination was confirmed by a live/dead staining assay. Reactive oxygen species (ROS) measurements with the terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling assay and scanning electron microscopy imaging strongly suggested that the increase in ROS production is the underlying mechanism of the enhanced antibacterial potency of the LVC combination (linalool [1.298 mM], vitamin C [8 mM], copper [16.3 μM]). In addition, the hypersensitivity of oxidative stress regulator mutants (oxyR, katG, ahpC, and sodA mutants) toward LVC corroborated the involvement of ROS in cell death. Live/dead staining and changes in cellular morphology revealed that oxidative stress did not transform the cells into the viable but nonculturable (VBNC) state; rather, killing was associated with intracellular and extracellular oxidative burst. Furthermore, the LVC combination did not display toxicity to human cells, while it effectively reduced the pathogen levels in acidic fruit juices by 3 to 4 log CFU/ml without adversely altering the organoleptic properties. This study opens a new outlook for combinatorial antimicrobial therapy.IMPORTANCE There is a need to develop effective antibacterial therapies for mitigating bacterial pathogens in food systems. We used a 3D checkerboard assay to ascertain a safe synergistic combination of food-grade components: vitamin C, copper, and the essential oil linalool. Individually, these constituents have to be added in large amounts to exert their antibacterial effect, which leads to unwanted organoleptic properties. The triple combination could exceptionally inhibit foodborne Gram-negative pathogens like Vibrio fluvialis and Salmonella enterica subsp. enterica serovar Typhi at low concentrations (linalool, 1.298 mM; vitamin C, 8 mM; copper, 16.3 μM) and displayed potent microbial inhibition in acidic beverages. We found increased susceptibility in deletion mutants of oxidative stress regulators (oxyR, katG, ahpC, and sodA mutants) due to ROS generation by Fenton's chemistry. The results of this study show that it may be possible to use plant-based antimicrobials in synergistic combinations to control microbial contaminants.
Collapse
|
13
|
Lee H, Lee DG. Arenicin-1-induced apoptosis-like response requires RecA activation and hydrogen peroxide against Escherichia coli. Curr Genet 2018; 65:167-177. [DOI: 10.1007/s00294-018-0855-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 06/05/2018] [Accepted: 06/06/2018] [Indexed: 12/25/2022]
|
14
|
Oraby HF, El-Tohamy MF, Kamel AM, Ramadan MF. Changes in the concentration of avenanthramides in response to salinity stress in CBF transgenic oat. J Cereal Sci 2017. [DOI: 10.1016/j.jcs.2017.06.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
15
|
Dewachter L, Verstraeten N, Jennes M, Verbeelen T, Biboy J, Monteyne D, Pérez-Morga D, Verstrepen KJ, Vollmer W, Fauvart M, Michiels J. A Mutant Isoform of ObgE Causes Cell Death by Interfering with Cell Division. Front Microbiol 2017; 8:1193. [PMID: 28702018 PMCID: PMC5487468 DOI: 10.3389/fmicb.2017.01193] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 06/12/2017] [Indexed: 01/14/2023] Open
Abstract
Cell division is a vital part of the cell cycle that is fundamental to all life. Despite decades of intense investigation, this process is still incompletely understood. Previously, the essential GTPase ObgE, which plays a role in a myriad of basic cellular processes (such as initiation of DNA replication, chromosome segregation, and ribosome assembly), was proposed to act as a cell cycle checkpoint in Escherichia coli by licensing chromosome segregation. We here describe the effect of a mutant isoform of ObgE (ObgE∗) that causes cell death by irreversible arrest of the cell cycle at the stage of cell division. Notably, chromosome segregation is allowed to proceed normally in the presence of ObgE∗, after which cell division is blocked. Under conditions of rapid growth, ongoing cell cycles are completed before cell cycle arrest by ObgE∗ becomes effective. However, cell division defects caused by ObgE∗ then elicit lysis through formation of membrane blebs at aberrant division sites. Based on our results, and because ObgE was previously implicated in cell cycle regulation, we hypothesize that the mutation in ObgE∗ disrupts the normal role of ObgE in cell division. We discuss how ObgE∗ could reveal more about the intricate role of wild-type ObgE in division and cell cycle control. Moreover, since Obg is widely conserved and essential for viability, also in eukaryotes, our findings might be applicable to other organisms as well.
Collapse
Affiliation(s)
- Liselot Dewachter
- Centre of Microbial and Plant Genetics, KU Leuven - University of LeuvenLeuven, Belgium
| | - Natalie Verstraeten
- Centre of Microbial and Plant Genetics, KU Leuven - University of LeuvenLeuven, Belgium
| | - Michiel Jennes
- Centre of Microbial and Plant Genetics, KU Leuven - University of LeuvenLeuven, Belgium
| | - Tom Verbeelen
- Centre of Microbial and Plant Genetics, KU Leuven - University of LeuvenLeuven, Belgium
| | - Jacob Biboy
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle UniversityNewcastle upon Tyne, United Kingdom
| | - Daniel Monteyne
- Laboratory of Molecular Parasitology, Institut de Biologie et de Médecine Moléculaires, Université Libre de BruxellesGosselies, Belgium
| | - David Pérez-Morga
- Laboratory of Molecular Parasitology, Institut de Biologie et de Médecine Moléculaires, Université Libre de BruxellesGosselies, Belgium.,Center for Microscopy and Molecular Imaging, Université Libre de BruxellesGosselies, Belgium
| | - Kevin J Verstrepen
- Centre of Microbial and Plant Genetics, KU Leuven - University of LeuvenLeuven, Belgium.,Systems Biology Laboratory, VIB Center for MicrobiologyLeuven, Belgium
| | - Waldemar Vollmer
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle UniversityNewcastle upon Tyne, United Kingdom
| | - Maarten Fauvart
- Centre of Microbial and Plant Genetics, KU Leuven - University of LeuvenLeuven, Belgium.,Department of Life Sciences and Imaging, Smart Electronics Unit, ImecLeuven, Belgium
| | - Jan Michiels
- Centre of Microbial and Plant Genetics, KU Leuven - University of LeuvenLeuven, Belgium
| |
Collapse
|