1
|
Liu N, Jiang J, Liu T, Chen H, Jiang N. Compositional, Structural, and Biomechanical Properties of Three Different Soft Tissue-Hard Tissue Insertions: A Comparative Review. ACS Biomater Sci Eng 2024; 10:2659-2679. [PMID: 38697939 DOI: 10.1021/acsbiomaterials.3c01796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Connective tissue attaches to bone across an insertion with spatial gradients in components, microstructure, and biomechanics. Due to regional stress concentrations between two mechanically dissimilar materials, the insertion is vulnerable to mechanical damage during joint movements and difficult to repair completely, which remains a significant clinical challenge. Despite interface stress concentrations, the native insertion physiologically functions as the effective load-transfer device between soft tissue and bone. This review summarizes tendon, ligament, and meniscus insertions cross-sectionally, which is novel in this field. Herein, the similarities and differences between the three kinds of insertions in terms of components, microstructure, and biomechanics are compared in great detail. This review begins with describing the basic components existing in the four zones (original soft tissue, uncalcified fibrocartilage, calcified fibrocartilage, and bone) of each kind of insertion, respectively. It then discusses the microstructure constructed from collagen, glycosaminoglycans (GAGs), minerals and others, which provides key support for the biomechanical properties and affects its physiological functions. Finally, the review continues by describing variations in mechanical properties at the millimeter, micrometer, and nanometer scale, which minimize stress concentrations and control stretch at the insertion. In summary, investigating the contrasts between the three has enlightening significance for future directions of repair strategies of insertion diseases and for bioinspired approaches to effective soft-hard interfaces and other tough and robust materials in medicine and engineering.
Collapse
Affiliation(s)
- Nian Liu
- West China School of Stomatology, Sichuan University, Chengdu, Sichuan 610207, China
| | - Jialing Jiang
- West China School of Stomatology, Sichuan University, Chengdu, Sichuan 610207, China
| | - Tiancheng Liu
- West China Hospital, Sichuan University, Chengdu, Sichuan 610207, China
| | - Haozhe Chen
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Nan Jiang
- State Key Laboratory of Oral Diseases, & National Clinical Research Center for Oral Disease, & West China Hospital of Stomatology and the Research Center for Nano Biomaterials, Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
2
|
Eshima K, Ohzono H, Gotoh M, Abe R, Nakamura H, Mitsui Y, Hiraoka K, Okawa T. Effects of adipose-derived cell supplementation on tendon-bone healing in a rat model of chronic rotator cuff tear with suprascapular nerve injury. J Int Med Res 2024; 52:3000605241232550. [PMID: 38456645 PMCID: PMC10924565 DOI: 10.1177/03000605241232550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/29/2024] [Indexed: 03/09/2024] Open
Abstract
OBJECTIVE To investigate the effect of adipose-derived cells (ADCs) on tendon-bone healing in a rat model of chronic rotator cuff tear (RCT) with suprascapular nerve (SN) injury. METHODS Adult rats underwent right shoulder surgery whereby the supraspinatus was detached, and SN injury was induced. ADCs were cultured from the animals' abdominal fat. At 6 weeks post-surgery, the animals underwent surgical tendon repair; the ADC (+ve) group (n = 18) received an ADC injection, and the ADC (-ve) group (n = 18) received a saline injection. Shoulders were harvested at 10, 14, and 18 weeks and underwent histological, fluorescent, and biomechanical analyses. RESULTS In the ADC (+ve) group, a firm enthesis, including dense mature fibrocartilage and well-aligned cells, were observed in the bone-tendon junction and fatty infiltration was less than in the ADC (-ve) group. Mean maximum stress and linear stiffness was greater in the ADC (+ve) compared with the ADC (-ve) group at 18 weeks. CONCLUSION ADC supplementation showed a positive effect on tendon-bone healing in a rat model of chronic RCT with accompanying SN injury. Therefore, ADC injection may possibly accelerate recovery in massive RCT injuries.
Collapse
Affiliation(s)
- Kenichiro Eshima
- Department of Orthopedic Surgery, Social insurance Tagawa Hospital, 10-18 kamihon-machi, Tagawa, Fukuoka 826-0023, Japan
| | - Hiroki Ohzono
- Department of Orthopedic Surgery, Kurume University Medical Center, 151-1 Kokubu-machi, Kurume, Fukuoka 839-0863, Japan
| | - Masafumi Gotoh
- Department of Orthopedic Surgery, Kurume University Medical Center, 151-1 Kokubu-machi, Kurume, Fukuoka 839-0863, Japan
| | - Ryunosuke Abe
- Department of Orthopedic Surgery, Kurume University Medical Center, 151-1 Kokubu-machi, Kurume, Fukuoka 839-0863, Japan
| | - Hidehiro Nakamura
- Department of Orthopedic Surgery, Kurume University Medical Center, 151-1 Kokubu-machi, Kurume, Fukuoka 839-0863, Japan
| | - Yasuhiro Mitsui
- Department of Orthopedic Surgery, Hyakutake Hospital, 4-2-15 mizugae, Saga city, Saga 840-0054, Japan
| | - Koji Hiraoka
- Department of Orthopedic Surgery, Kurume University Hospital, 67 Asahi-machi, Kurume Fukuoka 830-0011, Japan
| | - Takahiro Okawa
- Department of Orthopedic Surgery, Kurume University Medical Center, 151-1 Kokubu-machi, Kurume, Fukuoka 839-0863, Japan
| |
Collapse
|
3
|
Solari HE, Hackett LM, Lam P, Murrell GAC. The Fate of the Shoulder Post Rotator Cuff Repair: Biomechanical Properties of the Supraspinatus Tendon and Surrounding Structures. Sports Med Arthrosc Rev 2024; 32:51-57. [PMID: 38695504 DOI: 10.1097/jsa.0000000000000386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2024]
Abstract
The study aimed to describe the changes in biomechanical properties of the supraspinatus tendon, deltoid muscle, and humeral head post arthroscopic rotator cuff repair using shear wave elastography. Shear wave velocity of the tendon, deltoid, and humeral head of 48 patients was measured at predetermined sites at 1 week, 6 weeks, 12 weeks, 6 months, and 12 months post repair. One-way ANOVA with Tukey's correction and Spearman's correlation were performed. Mean±SEM healing tendon stiffness, adjacent to tendon footprint, increased from 1 week (6.2±0.2 m/s) to 6 months (7.5±0.3 m/s) and 12 months (7.8±0.3 m/s) (P<0.001). Mean±SEM deltoid muscle stiffness was higher at 12 months (4.1±0.2 m/s) compared to 1 week (3.4±0.1 m/s) and 12 weeks (3.5±0.1 m/s) (P<0.05). Humeral head stiffness did not change. Following arthroscopic rotator cuff repair, supraspinatus tendon stiffness increased in a curvilinear fashion over 6 months. From 6 months, deltoid muscle stiffness increased, corresponding to when patients were instructed to return to normal activities.
Collapse
Affiliation(s)
- Hannah E Solari
- Orthopaedic Research Institute, St George Hospital Campus, University of New South Wales, Sydney, New South Wales, Australia
| | | | | | | |
Collapse
|
4
|
Shi BY, Sriram V, Wu SY, Huang D, Cheney A, Metzger MF, Sundberg O, Lyons KM, McKenna CE, Nishimura I, Kremen TJ. Novel bisphosphonate-based cathepsin K-triggered compound targets the enthesis without impairing soft tissue-to-bone healing. Front Bioeng Biotechnol 2024; 12:1308161. [PMID: 38433822 PMCID: PMC10905384 DOI: 10.3389/fbioe.2024.1308161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 01/29/2024] [Indexed: 03/05/2024] Open
Abstract
Background: Osteoadsorptive fluorogenic sentinel 3 (OFS-3) is a recently described compound that contains a bone-targeting bisphosphonate (BP) and cathepsin K (Ctsk)-triggered fluorescence signal. A prior study in a murine Achilles repair model demonstrated its effectiveness at targeting the site of tendon-to-bone repair, but the intrinsic effect of this novel bisphosphonate chaperone on tendon-to-bone healing has not been previously explored. We hypothesized that application of this bisphosphonate-fluorophore cargo conjugate would not affect the biomechanical properties or histologic appearance of tendon-bone repairs. Materials and Methods: Right hindlimb Achilles tendon-to-bone repair was performed on 12-week old male mice. Animals were divided into 2 groups of 18 each: 1) Achilles repair with OFS-3 applied directly to the repair site prior to closure, and 2) Achilles repair with saline applied prior to closure. Repaired hindlimbs from 12 animals per group were harvested at 6 weeks for biomechanical analysis with a custom 3D-printed jig. At 4 and 6 weeks, repaired hindlimbs from the remaining animals were assessed histologically using H&E, immunohistochemistry (IHC) staining for the presence of Ctsk, and second harmonic generation (SHG) imaging to evaluate collagen fibers. Results: At 6 weeks, there was no significant difference in failure load, stiffness, toughness, or displacement to failure between repaired hindlimbs that received OFS-3 versus saline. There was no difference in tissue healing on H&E or Ctsk staining on immunohistochemistry between animals that received OFS-3 versus saline. Finally, second harmonic generation imaging demonstrated no difference in collagen fiber parameters between the two groups. Conclusion: OFS-3 did not significantly affect the biomechanical properties or histologic appearance of murine Achilles tendon-to-bone repairs. This study demonstrates that OFS-3 can target the site of tendon-to-bone repair without causing intrinsic negative effects on healing. Further development of this drug delivery platform to target growth factors to the site of tendon-bone repair is warranted.
Collapse
Affiliation(s)
- Brendan Y. Shi
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, United States
| | - Varun Sriram
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, United States
| | - Shannon Y. Wu
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, United States
| | - Dave Huang
- Department of Orthopaedic Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Alexis Cheney
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, United States
| | - Melodie F. Metzger
- Department of Orthopaedic Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Oskar Sundberg
- Department of Chemistry, University of Southern California, Los Angeles, CA, United States
| | - Karen M. Lyons
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, United States
- Department of Molecular, Cellular, and Developmental Biology, University of California at Los Angeles, Los Angeles, CA, United States
| | - Charles E. McKenna
- Department of Chemistry, University of Southern California, Los Angeles, CA, United States
| | - Ichiro Nishimura
- Weintraub Center for Reconstructive Biotechnology, School of Dentistry, University of California at Los Angeles, Los Angeles, CA, United States
| | - Thomas J. Kremen
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
5
|
Otsuka T, Kan HM, Mengsteab PY, Tyson B, Laurencin CT. Fibroblast growth factor 8b (FGF-8b) enhances myogenesis and inhibits adipogenesis in rotator cuff muscle cell populations in vitro. Proc Natl Acad Sci U S A 2024; 121:e2314585121. [PMID: 38147545 PMCID: PMC10769839 DOI: 10.1073/pnas.2314585121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/24/2023] [Indexed: 12/28/2023] Open
Abstract
Fatty expansion is one of the features of muscle degeneration due to muscle injuries, and its presence interferes with muscle regeneration. Specifically, poor clinical outcomes have been linked to fatty expansion in rotator cuff tears and repairs. Our group recently found that fibroblast growth factor 8b (FGF-8b) inhibits adipogenic differentiation and promotes myofiber formation of mesenchymal stem cells in vitro. This led us to hypothesize that FGF-8b could similarly control the fate of muscle-specific cell populations derived from rotator cuff muscle involved in muscle repair following rotator cuff injury. In this study, we isolate fibro-adipogenic progenitor cells (FAPs) and satellite stem cells (SCs) from rat rotator cuff muscle tissue and analyzed the effects of FGF-8b supplementation. Utilizing a cell plating protocol, we successfully isolate FAPs-rich fibroblasts (FIBs) and SCs-rich muscle progenitor cells (MPCs). Subsequently, we demonstrate that FIB adipogenic differentiation can be inhibited by FGF-8b, while MPC myogenic differentiation can be enhanced by FGF-8b. We further demonstrate that phosphorylated ERK due to FGF-8b leads to the inhibition of adipogenesis in FIBs and SCs maintenance and myofiber formation in MPCs. Together, these findings demonstrate the powerful potential of FGF-8b for rotator cuff repair by altering the fate of muscle undergoing degeneration.
Collapse
Affiliation(s)
- Takayoshi Otsuka
- The Cato T. Laurencin Institute for Regenerative Engineering, University of Connecticut, Storrs, CT06269
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical, and Engineering Sciences, University of Connecticut Health Center, Farmington, CT06030
| | - Ho-Man Kan
- The Cato T. Laurencin Institute for Regenerative Engineering, University of Connecticut, Storrs, CT06269
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical, and Engineering Sciences, University of Connecticut Health Center, Farmington, CT06030
| | - Paulos Y. Mengsteab
- The Cato T. Laurencin Institute for Regenerative Engineering, University of Connecticut, Storrs, CT06269
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical, and Engineering Sciences, University of Connecticut Health Center, Farmington, CT06030
- Department of Orthopedic Surgery, University of Connecticut Health Center, Farmington, CT06030
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT06269
| | - Breajah Tyson
- The Cato T. Laurencin Institute for Regenerative Engineering, University of Connecticut, Storrs, CT06269
| | - Cato T. Laurencin
- The Cato T. Laurencin Institute for Regenerative Engineering, University of Connecticut, Storrs, CT06269
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical, and Engineering Sciences, University of Connecticut Health Center, Farmington, CT06030
- Department of Orthopedic Surgery, University of Connecticut Health Center, Farmington, CT06030
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT06269
- Department of Materials Science and Engineering, University of Connecticut, Storrs, CT06269
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT06269
| |
Collapse
|
6
|
Iida K, Hashimoto Y, Nishino K, Nishida Y, Nakamura H. Lateral meniscus autograft transplantation using hamstring tendon with a sandwiched bone marrow - derived fibrin clot: A case report. Int J Surg Case Rep 2023; 108:108444. [PMID: 37429203 PMCID: PMC10382839 DOI: 10.1016/j.ijscr.2023.108444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 06/25/2023] [Accepted: 06/27/2023] [Indexed: 07/12/2023] Open
Abstract
INTRODUCTION AND IMPORTANCE Tendon autograft is a durable solution for the sub/total meniscus; however it is still considered a temporary solution. CASE PRESENTATION We report the case of a 17-year-old woman with history of subtotal lateral meniscectomy performed 6 years ago. We treated her with lateral meniscus autograft transplantation using a hamstring tendon with a sandwiched bone marrow aspirate (BMA)-derived fibrin clot. T2 relaxation times of the anterior and posterior horns of both menisci and of the cartilage were assessed. CLINICAL DISCUSSION Lateral meniscus autograft transplantation using a hamstring tendon with a sandwiched BMA clot improved clinical and radiographic outcomes at the 24-month follow-up. These findings suggest that the lateral meniscus autograft transplantation using a hamstring tendon with a sandwiched BMA clot transformed into a meniscus-like tissue and resulted in preservation of the articular cartilage. CONCLUSION Lateral meniscus autograft transplantation using a hamstring tendon with a sandwiched BMA clot can function as a meniscal transplant after total or subtotal meniscectomy in young patients.
Collapse
Affiliation(s)
- Ken Iida
- Department of Orthopaedic Surgery, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Yusuke Hashimoto
- Department of Orthopaedic Surgery, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan.
| | - Kazuya Nishino
- Department of Orthopaedic Surgery, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Yohei Nishida
- Department of Orthopaedic Surgery, Saiseikai Nakatsu Hospital, Osaka, Japan
| | - Hiroaki Nakamura
- Department of Orthopaedic Surgery, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
7
|
Abdalla AA, Pendegrass CJ. Biological approaches to the repair and regeneration of the rotator cuff tendon-bone enthesis: a literature review. BIOMATERIALS TRANSLATIONAL 2023; 4:85-103. [PMID: 38283917 PMCID: PMC10817785 DOI: 10.12336/biomatertransl.2023.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/15/2023] [Accepted: 05/05/2023] [Indexed: 01/30/2024]
Abstract
Entheses are highly specialised organs connecting ligaments and tendons to bones, facilitating force transmission, and providing mechanical strengths to absorb forces encountered. Two types of entheses, fibrocartilaginous and fibrous, exist in interfaces. The gradual fibrocartilaginous type is in rotator cuff tendons and is more frequently injured due to the poor healing capacity that leads to loss of the original structural and biomechanical properties and is attributed to the high prevalence of retears. Fluctuating methodologies and outcomes of biological approaches are challenges to overcome for them to be routinely used in clinics. Therefore, stratifying the existing literature according to different categories (chronicity, extent of tear, and studied population) would effectively guide repair approaches. This literature review supports tissue engineering approaches to promote rotator cuff enthesis healing employing cells, growth factors, and scaffolds period. Outcomes suggest its promising role in animal studies as well as some clinical trials and that combination therapies are more beneficial than individualized ones. It then highlights the importance of tailoring interventions according to the tear extent, chronicity, and the population being treated. Contributing factors such as loading, deficiencies, and lifestyle habits should also be taken into consideration. Optimum results can be achieved if biological, mechanical, and environmental factors are approached. It is challenging to determine whether variations are due to the interventions themselves, the animal models, loading regimen, materials, or tear mechanisms. Future research should focus on tailoring interventions for different categories to formulate protocols, which would best guide regenerative medicine decision making.
Collapse
Affiliation(s)
- Ahlam A. Abdalla
- Institute of Sport, Exercise and Health (ISEH), Division of Surgery & Interventional Sciences, University College London, London, UK
| | - Catherine J. Pendegrass
- Department of Orthopaedics & Musculoskeletal Science, Division of Surgery & Interventional Sciences, University College London, Brockley Hill, Stanmore, UK
| |
Collapse
|
8
|
Eshima K, Ohzono H, Gotoh M, Shimokobe H, Tanaka K, Nakamura H, Kanazawa T, Okawa T, Shiba N. Effect of suprascapular nerve injury on muscle and regenerated enthesis in a rat rotator cuff tear model. Clin Shoulder Elb 2023; 26:131-139. [PMID: 37316174 DOI: 10.5397/cise.2022.01207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 12/08/2022] [Indexed: 06/16/2023] Open
Abstract
BACKGROUND Massive rotator cuff tears (RCTs) are complicated by muscle atrophy, fibrosis, and intramuscular fatty degeneration, which are associated with postoperative tendon-to-bone healing failure and poor clinical outcomes. We evaluated muscle and enthesis changes in large tears with or without suprascapular nerve (SN) injury in a rat model. METHODS Sixty-two adult Sprague-Dawley rats were divided into SN injury (+) and SN injury (-) groups (n=31 each), comprising tendon (supraspinatus [SSP]/infraspinatus [ISP]) and nerve resection and tendon resection only cases, respectively. Muscle weight measurement, histological evaluation, and biomechanical testing were performed 4, 8, and 12 weeks postoperatively. Ultrastructural analysis with block face imaging was performed 8 weeks postoperatively. RESULTS SSP/ISP muscles in the SN injury (+) group appeared atrophic, with increased fatty tissue and decreased muscle weight, compared to those in the control and SN injury (-) groups. Immunoreactivity was only positive in the SN injury (+) group. Myofibril arrangement irregularity and mitochondrial swelling severity, along with number of fatty cells, were higher in the SN injury (+) group than in the SN injury (-) group. The bone-tendon junction enthesis was firm in the SN injury (-) group; this was atrophic and thinner in the SN injury (+) group, with decreased cell density and immature fibrocartilage. Mechanically, the tendon-bone insertion was significantly weaker in the SN injury (+) group than in the control and SN injury (+) groups. CONCLUSIONS In clinical settings, SN injury may cause severe fatty changes and inhibition of postoperative tendon healing in large RCTs. Level of evidence: Basic research, controlled laboratory study.
Collapse
Affiliation(s)
- Kenichiro Eshima
- Department of Orthopedic Surgery, Kurume University Hospital, Fukuoka, Japan
| | - Hiroki Ohzono
- Department of Orthopedic Surgery, Kurume University Medical Center, Fukuoka, Japan
| | - Masafumi Gotoh
- Department of Orthopedic Surgery, Kurume University Medical Center, Fukuoka, Japan
| | - Hisao Shimokobe
- Department of Orthopedic Surgery, Kurume University Hospital, Fukuoka, Japan
| | - Koji Tanaka
- Department of Orthopedic Surgery, Kurume University Hospital, Fukuoka, Japan
| | - Hidehiro Nakamura
- Department of Orthopedic Surgery, Kurume University Medical Center, Fukuoka, Japan
| | - Tomonoshin Kanazawa
- Department of Orthopedic Surgery, Kurume University Hospital, Fukuoka, Japan
| | - Takahiro Okawa
- Department of Orthopedic Surgery, Kurume University Medical Center, Fukuoka, Japan
| | - Naoto Shiba
- Department of Orthopedic Surgery, Kurume University Hospital, Fukuoka, Japan
| |
Collapse
|
9
|
Sullivan AL, Locke RC, Klink RK, Leek CC, Carpenter JE, Killian ML. Mechanics and differential healing outcomes of small and large defect injuries of the tendon-bone attachment in the rat rotator cuff. Connect Tissue Res 2023; 64:262-273. [PMID: 36524714 PMCID: PMC10164669 DOI: 10.1080/03008207.2022.2152334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 11/22/2022] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Rotator cuff tear size affects clinical outcomes following rotator cuff repair and is correlated with the risk of recurrent tendon defects. This study aimed to understand if and how the initial defect size influences the structural and mechanical outcomes of the injured rotator cuff attachment in vivo. METHODS Full-thickness punch injuries of the infraspinatus tendon-bone attachment in Long Evans rats were created to compare differences in healing outcomes between small and large defects. Biomechanical properties, gross morphology, bone remodeling, and cell and tissue morphology were assessed at both 3- and 8-weeks of healing. RESULTS At the time of injury (no healing), large defects had decreased mechanical properties compared to small defects, and both defect sizes had decreased mechanical properties compared to intact attachments. However, the mechanical properties of the two defect groups were not significantly different from each other after 8-weeks of healing and significantly improved compared to no healing but failed to return to intact levels. Local bone volume at the defect site was higher in large compared to small defects on average and increased from 3- to 8-weeks. In contrast, bone quality decreased from 3- to 8-weeks of healing and these changes were not dependent on defect size. Qualitatively, large defects had increased collagen disorganization and neovascularization compared to small defects. DISCUSSION In this study, we showed that both large and small defects did not regenerate the mechanical and structural integrity of the intact rat rotator cuff attachment following healing in vivo after 8 weeks of healing.
Collapse
Affiliation(s)
- Anna Lia Sullivan
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware 19716
| | - Ryan C. Locke
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware 19716
| | - Rachel K. Klink
- Department of Bioengineering, University of Utah, Salt Lake City, Utah 84111
| | - Connor C. Leek
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware 19716
- Department of Orthopaedic Surgery, Michigan Medicine, Ann Arbor, Michigan 48109
| | - James E. Carpenter
- Department of Orthopaedic Surgery, Michigan Medicine, Ann Arbor, Michigan 48109
| | - Megan L. Killian
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware 19716
- Department of Orthopaedic Surgery, Michigan Medicine, Ann Arbor, Michigan 48109
| |
Collapse
|
10
|
Gwon Y, Kim W, Park S, Kim Y, Kim H, Kim M, Kim J. Tissue-engineered tendon nano-constructs for repair of chronic rotator cuff tears in large animal models. Bioeng Transl Med 2023; 8:e10376. [PMID: 36684112 PMCID: PMC9842040 DOI: 10.1002/btm2.10376] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 06/13/2022] [Accepted: 06/24/2022] [Indexed: 01/25/2023] Open
Abstract
Chronic rotator cuff tears (RCTs) are one of the most common injuries of shoulder pain. Despite the recent advances in surgical techniques and improved clinical outcomes of arthroscopically repaired rotator cuffs (RCs), complete functional recovery-without retear-of the RC tendon through tendon-to-bone interface (TBI) regeneration remains a key clinical goal to be achieved. Inspired by the highly organized nanostructured extracellular matrix in RC tendon tissue, we propose herein a tissue-engineered tendon nano-construct (TNC) for RC tendon regeneration. When compared with two currently used strategies (i.e., transosseous sutures and stem cell injections), our nano-construct facilitated more significant healing of all parts of the TBI (i.e., tendon, fibrocartilages, and bone) in both rabbit and pig RCT models owing to its enhancements in cell proliferation and differentiation, protein expression, and growth factor secretion. Overall, our findings demonstrate the high potential of this transplantable tendon nano-construct for clinical repair of chronic RCTs.
Collapse
Affiliation(s)
- Yonghyun Gwon
- Department of Convergence Biosystems EngineeringChonnam National UniversityGwangjuRepublic of Korea
- Department of Rural and Biosystems EngineeringChonnam National UniversityGwangjuRepublic of Korea
- Interdisciplinary Program in IT‐Bio Convergence SystemChonnam National UniversityGwangjuRepublic of Korea
| | - Woochan Kim
- Department of Convergence Biosystems EngineeringChonnam National UniversityGwangjuRepublic of Korea
- Department of Rural and Biosystems EngineeringChonnam National UniversityGwangjuRepublic of Korea
- Interdisciplinary Program in IT‐Bio Convergence SystemChonnam National UniversityGwangjuRepublic of Korea
| | - Sunho Park
- Department of Convergence Biosystems EngineeringChonnam National UniversityGwangjuRepublic of Korea
- Department of Rural and Biosystems EngineeringChonnam National UniversityGwangjuRepublic of Korea
- Interdisciplinary Program in IT‐Bio Convergence SystemChonnam National UniversityGwangjuRepublic of Korea
| | - Yang‐Kyung Kim
- Department of Physical and Rehabilitation MedicineChonnam National University Medical School & HospitalGwangjuRepublic of Korea
| | - Hyoseong Kim
- Department of Convergence Biosystems EngineeringChonnam National UniversityGwangjuRepublic of Korea
- Department of Rural and Biosystems EngineeringChonnam National UniversityGwangjuRepublic of Korea
- Interdisciplinary Program in IT‐Bio Convergence SystemChonnam National UniversityGwangjuRepublic of Korea
| | - Myung‐Sun Kim
- Department of Orthopaedic Surgery, Chonnam National University Medical School & HospitalGwangjuRepublic of Korea
| | - Jangho Kim
- Department of Convergence Biosystems EngineeringChonnam National UniversityGwangjuRepublic of Korea
- Department of Rural and Biosystems EngineeringChonnam National UniversityGwangjuRepublic of Korea
- Interdisciplinary Program in IT‐Bio Convergence SystemChonnam National UniversityGwangjuRepublic of Korea
- Institute of Nano‐Stem Cells Therapeutics, NANOBIOSYSTEM Co., LtdGwangjuRepublic of Korea
| |
Collapse
|
11
|
Youn SM, Rhee YG, Rhee SM. Nontendinous healing after repairing of retracted rotator cuff tear: an imaging study. J Shoulder Elbow Surg 2021; 30:2560-2569. [PMID: 33964431 DOI: 10.1016/j.jse.2021.04.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 04/05/2021] [Accepted: 04/18/2021] [Indexed: 02/01/2023]
Abstract
BACKGROUND Follow-up magnetic resonance imaging (MRI) after rotator cuff repair can sometimes demonstrate healing with nontendinous tissue that extends from the footprint to the retracted tendon end, which is inferred as fibrous tissue formation. The aim was to investigate this particular finding and its significance. METHODS There were 494 eligible cases of healed supero-posterior medium-sized to massive rotator cuff repairs, after the exclusion of retears. A retrospective review was performed for the 3 groups that were divided according to their MRI appearances of healing: type I described the direct healing of the tendon to the footprint, whereas type II demonstrated the distinctive continuity of nontendinous tissue from the footprint to the retracted tendinous portion, and type III also showed a similar appearance but with obvious thinning of the tissue, without any evidence of defect confirmed on the routine outpatient ultrasonograph. RESULTS Only 108 of 494 patients (21.9%) demonstrated type I healing, whereas the signs of nontendinous healing were evident for the rest, with the 116 patients (23.5%) being classified as type III with attenuation. Comparing the preoperative tendon retraction, 34.8% and 37.2% of the Patte stages 2 and 3, respectively, resulted in type III healing, which were significantly higher compared with that of stage 1 (15.3%, P < .001). Type III healing had the highest average preoperative Goutallier grades. The average postoperative visual analog scale and the American Shoulder and Elbow Surgeons (ASES) scores have improved significantly for all 3 groups (P < .05), with the ASES score being 86.1±15.9 for type I, 93.7±36.1 for type II, and 87.8±15.1 for type III without significant differences between the groups (P = .3). CONCLUSIONS Only a fifth of the rotator cuff repairs led to a direct healing to the footprint, and the rest healed with MRI appearance of nontendinous tissue formation bridging the retracted tendinous portion and the footprint. These MRI appearances did not represent the true tendinous tissue formation between the torn end of the tendon and the bone after healing. Such appearances did not seem to affect the clinical outcomes.
Collapse
Affiliation(s)
- Seung-Min Youn
- Shoulder & Elbow Clinic, Department of Orthopaedic Surgery, Myongji Hospital, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Yong Girl Rhee
- Shoulder & Elbow Clinic, Department of Orthopaedic Surgery, Myongji Hospital, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Sung-Min Rhee
- Shoulder & Elbow Clinic, Department of Orthopaedic Surgery, College of Medicine, Kyung Hee University Hospital, Seoul, Republic of Korea.
| |
Collapse
|
12
|
Yamada T, Kanazawa T, Ohta K, Nakamura KI. Comparison of Structural Properties Between Postnatal and Adult Tendon Insertion with FIB/SEM Tomography in Rat. Kurume Med J 2021; 66:217-224. [PMID: 34690208 DOI: 10.2739/kurumemedj.ms664007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
OBJECTIVE The repaired tendon-bone interface after rotator cuff (RC) repair has been identified as a mechanical weak point, which may contribute to re-tearing. Analyzing the postnatal development of a normal tendon insertion in detail may be useful in helping to promote the regeneration of a normal tendon insertion. We verified the morphological differences between postnatal and adult tendon insertions in terms of the cellular structural properties using FIB/SEM tomography. MATERIALS AND METHOD SPostnatal and adult Sprague-Dawley rats were used as a model of tendon insertion. The morphological structure of the insertion was evaluated using hematoxylin and eosin (HE) staining, and the 3D ultrastructure of the cells in the insertion was evaluated using FIB/SEM tomography. Additionally, the volume of the cell bodies, nuclei, and cytoplasm were measured and compared in a quantitative analysis. RESULTS On conventional histology, the boundary line between the fibrocartilage and mineralized cartilage was flat in the adult insertions; however, the boundary line between the mineralized cartilage and bone formed deep interdigitations. The morphology of the cells among the collagen bundles in the adult insertions was completely different from those in the postnatal insertions at the 3D ultrastructural level. The cellular structural properties were statistically different between the postnatal and adult insertions. CONCLUSIONS In the present study, the morphological differences between postnatal and adult tendon insertion in terms of the ultrastructural cellular properties were clarified. These findings may aid in determining how to regenerate a clinically stable tendon insertion at the tendon-bone interface after RC repair.
Collapse
Affiliation(s)
- Taku Yamada
- Division of Microscopic and Development Anatomy, Department of Anatomy, Kurume University School of Medicine
| | - Tomonoshin Kanazawa
- Division of Microscopic and Development Anatomy, Department of Anatomy, Kurume University School of Medicine.,Department of Orthopaedic surgery, Kurume University School of Medicine
| | - Keisuke Ohta
- Division of Microscopic and Development Anatomy, Department of Anatomy, Kurume University School of Medicine
| | - Kei-Ichiro Nakamura
- Division of Microscopic and Development Anatomy, Department of Anatomy, Kurume University School of Medicine
| |
Collapse
|
13
|
Zhang S, Ju W, Chen X, Zhao Y, Feng L, Yin Z, Chen X. Hierarchical ultrastructure: An overview of what is known about tendons and future perspective for tendon engineering. Bioact Mater 2021; 8:124-139. [PMID: 34541391 PMCID: PMC8424392 DOI: 10.1016/j.bioactmat.2021.06.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/07/2021] [Accepted: 06/07/2021] [Indexed: 12/27/2022] Open
Abstract
Abnormal tendons are rarely ever repaired to the natural structure and morphology of normal tendons. To better guide the repair and regeneration of injured tendons through a tissue engineering method, it is necessary to have insights into the internal morphology, organization, and composition of natural tendons. This review summarized recent researches on the structure and function of the extracellular matrix (ECM) components of tendons and highlight the application of multiple detection methodologies concerning the structure of ECMs. In addition, we look forward to the future of multi-dimensional biomaterial design methods and the potential of structural repair for tendon ECM components. In addition, focus is placed on the macro to micro detection methods for tendons, and current techniques for evaluating the extracellular matrix of tendons at the micro level are introduced in detail. Finally, emphasis is given to future extracellular matrix detection methods, as well as to how future efforts could concentrate on fabricating the biomimetic tendons. Summarize recent research on the structure and function of the extracellular matrix (ECM) components of tendons. Comments on current research methods concerning the structure of ECMs. Perspective on the future of multi-dimensional detection techniques and structural repair of tendon ECM components.
Collapse
Affiliation(s)
- Shichen Zhang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine and Department of Orthopedic Surgery of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310052, China.,Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Wei Ju
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Xiaoyi Chen
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi-ASEAN Collaborative Innovation Center for Major Disease Prevention and Treatment, Guangxi Medical University, Guangxi, 530021, China
| | - Yanyan Zhao
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine and Department of Orthopedic Surgery of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310052, China.,Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Lingchong Feng
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Zi Yin
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, 310058, China.,Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine and Regenerative Medicine and Department of Orthopedic Surgery of Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310058, China.,Department of Sports Medicine, School of Medicine, Zhejiang University, Hangzhou, 310058, China.,China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, 310058, China
| | - Xiao Chen
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine and Department of Orthopedic Surgery of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310052, China.,Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, 310058, China.,Guangxi Key Laboratory of Regenerative Medicine, Guangxi-ASEAN Collaborative Innovation Center for Major Disease Prevention and Treatment, Guangxi Medical University, Guangxi, 530021, China.,Department of Sports Medicine, School of Medicine, Zhejiang University, Hangzhou, 310058, China.,China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, 310058, China
| |
Collapse
|
14
|
Jeong JY, Khil EK, Kim TS, Kim YW. Effect of co-administration of atelocollagen and hyaluronic acid on rotator cuff healing. Clin Shoulder Elb 2021; 24:147-155. [PMID: 34488295 PMCID: PMC8423525 DOI: 10.5397/cise.2021.00234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 05/23/2021] [Indexed: 12/15/2022] Open
Abstract
Background This study aimed to evaluate the co-administration effect of atelocollagen combined with hyaluronic acid (HA) injections for treatment of full-thickness rotator cuff tear (RCT). Methods Eighty patients who underwent arthroscopic rotator cuff repair for full-thickness RCT from March 2018 to November 2019 were enrolled. The patients were randomly allocated to the following groups: combined atelocollagen and HA injection (group I, n=28), only HA injection (group II, n=26), and no injection (group III, n=26). Clinical outcomes were assessed at 3, 6, and 12 months after surgery using the American Shoulder and Elbow Surgeons score, visual analog scale pain score , functional scores (pain visual analog scale, function visual analog score), and range of motion. Magnetic resonance imaging was performed 12 months after surgery to evaluate rotator cuff integrity. Results Preoperative demographic data and postoperative clinical outcomes did not differ significantly among the three groups (p>0.05). However, in group I, the number of steroid injections after surgery was significantly lower than that in the other groups (p=0.011). The retear rate on follow-up magnetic resonance imaging was significantly higher in group II (9.5%, n=2) and group III (13.6%, n=3) than in group I (0%) (p=0.021). Conclusions Co-administration of atelocollagen and HA improves healing of the rotator cuff and increases the integrity of the rotator cuff repair site. This study provides encouraging evidence for use of combined atelocollagen-HA injections to treat patients with full-thickness RCT.
Collapse
Affiliation(s)
- Jeung Yeol Jeong
- Department of Orthopedic Surgery, Hallym University Dongtan Sacred Heart Hospital, Medical College of Hallym University, Hwaseong, Korea
| | - Eun Kyung Khil
- Department of Radiology, Hallym University Dongtan Sacred Heart Hospital, Medical College of Hallym University, Hwaseong, Korea
| | - Tae Soung Kim
- Department of Orthopedic Surgery, Hallym University Dongtan Sacred Heart Hospital, Medical College of Hallym University, Hwaseong, Korea
| | - Young Woo Kim
- Department of Orthopedic Surgery, Hallym University Dongtan Sacred Heart Hospital, Medical College of Hallym University, Hwaseong, Korea
| |
Collapse
|
15
|
Weiner S, Raguin E, Shahar R. High resolution 3D structures of mineralized tissues in health and disease. Nat Rev Endocrinol 2021; 17:307-316. [PMID: 33758360 DOI: 10.1038/s41574-021-00479-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/11/2021] [Indexed: 02/06/2023]
Abstract
A thorough knowledge of the structures of healthy mineralized tissues, such as bone or cartilage, is key to understanding the pathological changes occurring during disease. Such knowledge enables the underlying mechanisms that are responsible for pathology to be pinpointed. One high-resolution 3D method in particular - focused ion beam-scanning electron microscopy (FIB-SEM) - has fundamentally changed our understanding of healthy vertebrate mineralized tissues. FIB-SEM can be used to study demineralized matrix, the hydrated components of tissue (including cells) using cryo-fixation and even untreated mineralized tissue. The latter requires minimal sample preparation, making it possible to study enough samples to carry out studies capable of detecting statistically significant differences - a pre-requisite for the study of pathological tissues. Here, we present an imaging and characterization strategy for tissue structures at different length scales, describe new insights obtained on healthy mineralized tissues using FIB-SEM, and suggest future research directions for both healthy and diseased mineralized tissues.
Collapse
Affiliation(s)
- Steve Weiner
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel.
| | - Emeline Raguin
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Ron Shahar
- Koret School of Veterinary Medicine, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
16
|
Sun Y, Kwak JM, Kholinne E, Koh KH, Tan J, Jeon IH. Subacromial bursal preservation can enhance rotator cuff tendon regeneration: a comparative rat supraspinatus tendon defect model study. J Shoulder Elbow Surg 2021; 30:401-407. [PMID: 32534844 DOI: 10.1016/j.jse.2020.05.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 05/08/2020] [Accepted: 05/18/2020] [Indexed: 02/01/2023]
Abstract
BACKGROUND The role of subacromial bursa in rotator cuff surgery is unknown. This study aimed to assess the subacromial bursa's role in the healing of supraspinatus tendon injury in a rat model. METHODS Twenty-three male Sprague-Dawley rats (9 weeks old; weight, approximately 296 g) were used in this study. Three rats used as biomechanical study controls were killed at 12 weeks of age. A supraspinatus tendon defect was made bilaterally in 20 rats, whereas an additional subacromial bursa sectioning was performed on the left side. Six rats were killed for biomechanical testing and 4 were killed for histologic observation at 3 and 9 weeks, respectively. RESULTS The regenerated tendon in the bursal preservation group showed significantly superior biomechanical properties in maximum load to failure at 3 and 9 weeks and stiffness at 9 weeks after surgery compared with the bursal removal group. The modified Bonar scale scores showed better regenerated supraspinatus tendons in the bursal preservation group. CONCLUSION The present study found that the subacromial bursa plays an important role in rotator cuff regeneration in this rat supraspinatus injury model. Extensive bursectomy of the subacromial bursa may not be recommended in rotator cuff repair surgery, though future in vivo human studies are needed to confirm these observations.
Collapse
Affiliation(s)
- Yucheng Sun
- Department of Hand Surgery, Affiliated Hospital of Nantong University, College of Medicine, University of Nantong, Nantong, China; Department of Orthopedic Surgery, ASAN Medical Center, College of Medicine, University of Ulsan, Seoul, Republic of Korea
| | - Jae-Man Kwak
- Department of Orthopedic Surgery, ASAN Medical Center, College of Medicine, University of Ulsan, Seoul, Republic of Korea
| | - Erica Kholinne
- Department of Orthopedic Surgery, ASAN Medical Center, College of Medicine, University of Ulsan, Seoul, Republic of Korea; Department of Orthopedic Surgery, St. Carolus Hospital, Jakarta, Indonesia
| | - Kyoung-Hwan Koh
- Department of Orthopedic Surgery, ASAN Medical Center, College of Medicine, University of Ulsan, Seoul, Republic of Korea
| | - Jun Tan
- Department of Hand Surgery, Affiliated Hospital of Nantong University, College of Medicine, University of Nantong, Nantong, China
| | - In-Ho Jeon
- Department of Orthopedic Surgery, ASAN Medical Center, College of Medicine, University of Ulsan, Seoul, Republic of Korea.
| |
Collapse
|
17
|
Xie Y, Liu S, Qiao Y, Hu Y, Zhang Y, Qu J, Shen Y, Tao H, Chen S. Quantitative T2 mapping-based tendon healing is related to the clinical outcomes during the first year after arthroscopic rotator cuff repair. Knee Surg Sports Traumatol Arthrosc 2021; 29:127-135. [PMID: 31807835 DOI: 10.1007/s00167-019-05811-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 11/19/2019] [Indexed: 12/12/2022]
Abstract
PURPOSE The objective of this study was to determine the correlation between quantitative T2 mapping-based tendon healing and clinical outcomes during the first year after arthroscopic rotator cuff repair. METHODS Twenty-two patients with rotator cuff tear were prospectively recruited. Serial clinical and MRI follow-up assessments were carried out at 1 month, 6 months and 12 months after surgery. Twenty healthy volunteers were involved and were examined with clinical and MRI assessments. Clinical assessments included Constant Score (CS), the American Shoulder and Elbow Surgeons (ASES), the modified University of California, Los Angles (UCLA) scores and Visual Analog Scale (VAS). The region of interest of tendon healing was defined directly over the medial suture anchor on T2 mapping. Spearman correlation coefficient was used to analyze the correlations between MRI measurements and clinical outcomes. RESULTS All clinical scores indicated significant improvements over the postoperative observation period compared with the initial preoperative values (all P < 0.001). At 12 months, all of the patients returned to their daily life activities. The T2 values of the healing site significantly decreased over time (P < 0.001) and were comparable to those of healthy tendons at 12 months (n.s.). Additionally, the T2 values were negatively correlated with CS (r = - 0.5, P < 0.001), ASES (r = - 0.5, P < 0.001), and UCLA (r = - 0.5, P < 0.001); and positively correlated with VAS score (r = 0.4, P < 0.001). No significant correlations were found between Sugaya classification and clinical scores (all n.s.). CONCLUSIONS With regard to tendon healing during the first follow-up year, the T2 values of the healing site decreased with the improvement of clinical outcomes over time. LEVEL OF EVIDENCE II.
Collapse
Affiliation(s)
- Yuxue Xie
- Department of Radiology & Institute of Medical Functional and Molecular Imaging, Huashan Hospital, Fudan University, 12 Middle Wulumuqizhong Road, Shanghai, 200040, China
| | - Shaohua Liu
- Department of Sports Medicine, Huashan Hospital, Fudan University, 12 middle Wulumuqizhong Road, Shanghai, 200040, China
| | - Yang Qiao
- Department of Radiology & Institute of Medical Functional and Molecular Imaging, Huashan Hospital, Fudan University, 12 Middle Wulumuqizhong Road, Shanghai, 200040, China
| | - Yiwen Hu
- Department of Radiology & Institute of Medical Functional and Molecular Imaging, Huashan Hospital, Fudan University, 12 Middle Wulumuqizhong Road, Shanghai, 200040, China
| | - Yuyang Zhang
- Department of Radiology & Institute of Medical Functional and Molecular Imaging, Huashan Hospital, Fudan University, 12 Middle Wulumuqizhong Road, Shanghai, 200040, China
| | | | | | - Hongyue Tao
- Department of Radiology & Institute of Medical Functional and Molecular Imaging, Huashan Hospital, Fudan University, 12 Middle Wulumuqizhong Road, Shanghai, 200040, China.
| | - Shuang Chen
- Department of Radiology & Institute of Medical Functional and Molecular Imaging, Huashan Hospital, Fudan University, 12 Middle Wulumuqizhong Road, Shanghai, 200040, China.
| |
Collapse
|
18
|
Shin MJ, Shim IK, Kim DM, Choi JH, Lee YN, Jeon IH, Kim H, Park D, Kholinne E, Yang HS, Koh KH. Engineered Cell Sheets for the Effective Delivery of Adipose-Derived Stem Cells for Tendon-to-Bone Healing. Am J Sports Med 2020; 48:3347-3358. [PMID: 33136454 DOI: 10.1177/0363546520964445] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Efforts are being made to treat rotator cuff tears (RCTs) that exhibit poor healing and high retear rates. Tendon-to-bone healing using mesenchymal stem cells is being explored, but research is needed to establish effective delivery options. PURPOSE To evaluate the effects of an adipose-derived stem cell (ADSC) sheet on mesenchymal stem cell delivery for tendon-to-bone healing of a chronic RCT in rats and to demonstrate that ADSC sheets enhance tendon-to-bone healing. STUDY DESIGN Controlled laboratory study. METHODS Mesenchymal stem cells were obtained from rat adipose tissue, and a cell sheet was prepared using a temperature-responsive dish. To evaluate the efficacy of stem cells produced in a sheet for the lesion, the experiment was conducted with 3 groups: repair group, cell sheet transplantation after repair group, and cell sheet-only group. Histological, biomechanical, and micro-computed tomography (micro-CT) results were compared among the groups. RESULTS Hematoxylin and eosin staining for histomorphological analysis revealed that the cell sheet transplantation after repair group (5.75 ± 0.95) showed statistically significant higher scores than the repair (2.75 ± 0.50) and cell sheet-only (3.25 ± 0.50) groups (P < .001). On safranin O staining, the cell sheet transplantation after repair group (0.51 ± 0.04 mm2) had a larger fibrocartilage area than the repair (0.31 ± 0.06 mm2) and cell sheet-only (0.32 ± 0.03 mm2) groups (P = .001). On micro-CT, bone volume/total volume values were significantly higher in the cell sheet transplantation after repair group (23.98% ± 1.75%) than in the other groups (P < .039); there was no significant difference in the other values. On the biomechanical test, the cell sheet transplantation after repair group (4 weeks after repair) showed significantly higher results than the other groups (P < .005). CONCLUSION Our study shows that engineered stem cells are a clinically feasible stem cell delivery tool for rotator cuff repair. CLINICAL RELEVANCE This laboratory study provides evidence that ADSCs are effective in repairing RCTs, which are common sports injuries.
Collapse
Affiliation(s)
- Myung Jin Shin
- Department of Orthopedic Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - In Kyong Shim
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Dong Min Kim
- Department of Orthopedic Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jae Hee Choi
- Department of Orthopedic Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.,Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Yu Na Lee
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - In-Ho Jeon
- Department of Orthopedic Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Hyojune Kim
- Department of Orthopedic Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Dongjun Park
- Department of Orthopedic Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Erica Kholinne
- Department of Orthopedic Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.,Department of Orthopedic Surgery, St Carolus Hospital, Faculty of Medicine, Trisakti University, Jakarta, Indonesia
| | - Ha-Sol Yang
- Department of Orthopedic Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Kyoung Hwan Koh
- Department of Orthopedic Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
19
|
Sun Y, Jung HW, Kwak JM, Tan J, Wang Z, Jeon IH. Reconstruction of large chronic rotator cuff tear can benefit from the bone-tendon composite autograft to restore the native bone-tendon interface. J Orthop Translat 2020; 24:175-182. [PMID: 33101968 PMCID: PMC7548344 DOI: 10.1016/j.jot.2020.01.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 12/21/2019] [Accepted: 01/03/2020] [Indexed: 01/08/2023] Open
Abstract
Purpose We designed a paired controlled study to investigate the advantages of using bone–tendon composite autograft to reconstruct chronic rotator cuff tear compared with primary repair and provide some evidence to use the bone–tendon composite autograft. Method Thirty-eight Sprague–Dawley rats were used. The native bone–tendon junctions of supraspinatus and Achilles tendon insertion from two rats were harvested for gross and histological observation. Another thirty-six rats had bilateral supraspinatus tenotomy from the great tuberosity. Three weeks later, primary repair (simple tendon pullout direct repair to bone) was performed on one side and the other side was reconstructed using an Achilles–calcaneus composite autograft from the ipsilateral leg. Nine rats were sacrificed for biomechanical testing and another three were sacrificed for histological evaluation at 3, 6, and 9 weeks after surgery, respectively. Results The Achilles–calcaneus composite autograft group showed significantly better biomechanical characteristics at 3 and 6 weeks in terms of maximum load and stiffness. Tissue histology demonstrated an organised extracellular matrix, a clear tidemark, and distinct fibrocartilage layers in the composite graft group, similar to those of the native bone–tendon interface. Additionally, clear bone-to-bone healing and tendon-to-tendon healing were observed. By contrast, the conventional primary repair could not regenerate the structure of the native bone–tendon interface. Conclusions Bone–tendon autograft for chronic rotator cuff reconstruction is superior to the primary repair regarding biomechanical property and histological structure. Our study may provide some evidence in support of the reconstruction of a chronic rotator cuff tear using bone–tendon composite autografts in clinical practice. The Translational potential of this article The current study finds the bone-tendon autograft can restore the normal bone-tendon interface, which can not regenerate after repair and is the key factor affecting re-tear. The bone-tendon autografts from our body can be the candidates for rotator cuff tear reconstruction especially the large to massive rotator cuff tear in the future to reduce the re-tear after rotator cuff tear.
Collapse
Affiliation(s)
- Yucheng Sun
- Department of Hand Surgery, Affiliated Hospital of Nantong University, College of Medicine, University of Nantong, Nantong, China.,Department of Orthopedic Surgery, Asan Medical Center, College of Medicine, University of Ulsan, Seoul, South Korea
| | - Hui-Won Jung
- Department of Environmental Science and Biological Engineering, Hankuk University of Foreign Studies, Seoul, South Korea
| | - Jae-Man Kwak
- Department of Orthopedic Surgery, Asan Medical Center, College of Medicine, University of Ulsan, Seoul, South Korea
| | - Jun Tan
- Department of Hand Surgery, Affiliated Hospital of Nantong University, College of Medicine, University of Nantong, Nantong, China
| | - Zhe Wang
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - In-Ho Jeon
- Department of Orthopedic Surgery, Asan Medical Center, College of Medicine, University of Ulsan, Seoul, South Korea
| |
Collapse
|
20
|
Regeneration of the rotator cuff tendon-to-bone interface using umbilical cord-derived mesenchymal stem cells and gradient extracellular matrix scaffolds from adipose tissue in a rat model. Acta Biomater 2020; 114:104-116. [PMID: 32682057 DOI: 10.1016/j.actbio.2020.07.020] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/07/2020] [Accepted: 07/09/2020] [Indexed: 12/17/2022]
Abstract
Regeneration of the gradient structure of the tendon-to-bone interface (TBI) is a crucial goal after rotator cuff repair. The purpose of this study was to investigate the efficacy of a biomimetic hydroxyapatite-gradient scaffold (HA-G scaffold) isolated from adipose tissue (AD) with umbilical cord derived mesenchymal stem cells (UC MSCs) on the regeneration of the structure of the TBI by analyzing the histological and biomechanical changes in a rat repair model. As a result, the HA-G scaffold had progressively increased numbers of hydroxyapatite (HA) particles from the tendon to the bone phase. After seeding UC MSCs to the scaffold, specific matrices, such as collagen, glycoaminoglycan, and calcium, were synthesized with respect to the HA density. In a rat repair model, compared to the repair group, the UC MSCs seeded HA-G scaffold group had improved collagen organization and cartilage formation by 52% at 8 weeks and 262.96% at 4 weeks respectively. Moreover, ultimate failure load also increased by 30.71% at 4 weeks in the UC MSCs seeded HA-G scaffold group compared to the repair group. Especially, the improved values were comparable to values in normal tissue. This study demonstrated that HA-G scaffold isolated from AD induced UC MSCs to form tendon, cartilage and bone matrices similar to the TBI structure according to the HA density. Furthermore, UC MSC-seeded HA-G scaffold regenerated the TBI of the rotator cuff in a rat repair model in terms of histological and biomechanical properties similar to the normal TBI. Statement of Significance We found specific extracellular matrix (ECM) formation in the biomimetic-hydroxyapatite-gradient-scaffold (HA-G-scaffold) in vitro as well as improved histological and biomechanical results of repaired rotator cuff after the scaffold implantation in a rat model. This study has four strengths; An ECM scaffold derived from human adipose tissue; only one-layer used for a gradient scaffold not a multilayer used to mimic the unique structure of the gradient tendon-to-bone-interface (TBI) of the rotator cuff; UC-MSCs as a new cell source for TBI regeneration; and the UC-MSCs synthesized specific matrices with respect to the HA density without any other stimuli. This study suggested that the UC-MSC seeded HA-G-scaffold could be used as a promising strategy for the regeneration of rotator cuff tears.
Collapse
|
21
|
Suprascapular nerve neuropathy leads to supraspinatus tendon degeneration. J Orthop Sci 2020; 25:588-594. [PMID: 31718907 DOI: 10.1016/j.jos.2019.09.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 08/20/2019] [Accepted: 09/20/2019] [Indexed: 11/20/2022]
Abstract
BACKGROUND Nowadays most of attention regarding rotator cuff is payed to how to reduce the failure after rotator cuff surgical repair rather than how to prevent the rotator cuff tear before surgery. The etiologies of rotator cuff tear are still unclear. As we all know, the nerve system include brain, spinal cord, sensory organs and all the neurons allover our body coordinates the homoeostasis of our body. We hypothesis that the nerve injury proximal to suprascapular nerve can leads to rotator cuff degeneration even tear. METHODS Thirty-six SD rats were used. A defect on the suprascapular nerve was made on the right side and a sham surgery on the nerve (expose nerve only) at the left side. The insertion of supraspinatus tendon and supraspinatus muscle were harvested for testing. Twelve rats were sacrificed for biomechanical (six rats) and histological (six rats) properties were evaluated at 3, 6, and 9 weeks after surgery, respectively. RESULTS Significant inferior biomechanical properties of rotator cuff were found in nerve injured side compared to the nerve intact side at 6-9 weeks. Significant muscle atrophy was found at nerve injured side from 3 to 9 weeks. The enthesis of nerve injured side showed significant excessive cell maturity, reduced cellularity, smaller metachromasia area and more type-III collagen especially at 9 weeks after surgery. CONCLUSIONS The neuropathy proximal to suprascapular nerve can leads to rotator cuff degeneration even tear. The nerve dysfunction maybe an important etiology for rotator cuff tear.
Collapse
|
22
|
Sun Y, Kwak JM, Qi C, Kholinne E, Wang Y, Koh KH, Jeon IH. Remnant Tendon Preservation Enhances Rotator Cuff Healing: Remnant Preserving Versus Removal in a Rabbit Model. Arthroscopy 2020; 36:1834-1842. [PMID: 32272201 DOI: 10.1016/j.arthro.2020.03.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 03/03/2020] [Accepted: 03/03/2020] [Indexed: 02/02/2023]
Abstract
PURPOSE To assess whether anatomic repair preserving remnant tendon tissue can enhance tendon-to-bone healing biomechanically and histologically in a rabbit rotator cuff tear model. METHODS In this controlled laboratory study, bilateral infraspinatus tenotomy from the greater tuberosity, with remnant tendon on the footprint, was performed in 26 New Zealand white rabbits. An open transosseous technique was used to perform bilateral infraspinatus tendon repair 1 week later. Preservation and removal of the remaining tendon were performed on the left and right sides, respectively. Seven rabbits each were killed humanely for biomechanical testing and 6 rabbits each were killed humanely for histologic evaluation at 4 and 12 weeks. RESULTS Significantly superior biomechanical properties were shown in the remnant tissue-preservation group at 4 and 12 weeks in terms of maximum load (89.6 ± 24.3 N vs 68.2 ± 20.7 N at 4 weeks, P = .048; 120.8 ± 27.5 N vs 93.3 ± 25.1 N at 12 weeks, P = .035) and stiffness (25.3 ± 3.4 N/mm vs 17.7 ± 5.2 N/mm at 4 weeks, P = .009; 26.7 ± 5.2 N/mm vs 19.4 ± 5.2 N/mm at 12 weeks, P < .001). Improved bone-tendon interface histologic maturity scores (14.8 ± 0.9 vs 8.2 ± 1.5 at 4 weeks, P = .027; 16.8 ± 0.7 vs 10.5 ± 1.4 at 12 weeks, P = .027) and large metachromasia areas (0.117 ± 0.053 mm2 vs 0.032 ± 0.017 mm2 at 4 weeks, P = .022; 0.14 ± 0.046 mm2 vs 0.037 ± 0.016 mm2 at 12 weeks, P = .007) were obtained in the preservation group compared with the removal group at 4 and 12 weeks. CONCLUSIONS This study showed that preserving remnant tissue in anatomic repair can significantly improve rotator cuff healing compared with remnant tissue removal on the footprint in terms of biomechanical properties, bone-tendon interface histologic maturity scores, and metachromasia at 4 and 12 weeks after repair in a rabbit rotator cuff tear model. CLINICAL RELEVANCE The results suggest that preservation of remnant tissue on the footprint containing the native bone-tendon interface, when present, may be a better option for rotator cuff healing in rotator cuff repair surgery.
Collapse
Affiliation(s)
- Yucheng Sun
- Department of Hand Surgery, Affiliated Hospital of Nantong University, College of Medicine, Nantong University, Nantong, China
| | - Jae-Man Kwak
- Department of Orthopedic Surgery, Asan Medical Center, College of Medicine, University of Ulsan, Seoul, Republic of Korea
| | - Chao Qi
- Department of Sports Medicine, Qingao University Affiliated Hospital, Qingdao, China
| | - Erica Kholinne
- Department of Orthopedic Surgery, Asan Medical Center, College of Medicine, University of Ulsan, Seoul, Republic of Korea; Department of Orthopedic Surgery, St. Carolus Hospital, Jakarta, Indonesia
| | - Yang Wang
- Department of Hand Surgery, Affiliated Hospital of Nantong University, College of Medicine, Nantong University, Nantong, China
| | - Kyoung-Hwan Koh
- Department of Orthopedic Surgery, Asan Medical Center, College of Medicine, University of Ulsan, Seoul, Republic of Korea
| | - In-Ho Jeon
- Department of Orthopedic Surgery, Asan Medical Center, College of Medicine, University of Ulsan, Seoul, Republic of Korea.
| |
Collapse
|
23
|
Yoshihara K, Nagaoka N, Nakamura A, Hara T, Hayakawa S, Yoshida Y, Van Meerbeek B. Three-dimensional observation and analysis of remineralization in dentinal caries lesions. Sci Rep 2020; 10:4387. [PMID: 32152430 PMCID: PMC7062784 DOI: 10.1038/s41598-020-61111-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 02/10/2020] [Indexed: 11/30/2022] Open
Abstract
The remineralization mechanism in dental caries lesions is not completely understood. This study reports on ultrastructural and chemical changes observed within arrested caries lesions. Carious human teeth were observed using scanning electron microscopy (SEM) and focused-ion-beam (FIB)-SEM. The crystals detected in the caries lesions were characterized by transmission electron microscopy (TEM), along with chemical element mapping using energy-dispersive spectroscopy (EDS)-STEM. FIB-SEM 3D reconstructions revealed a severely damaged dentin surface abundantly covered by bacteria. Although the dentin tubules were clogged up to a depth of 100 μm, bacterial invasion into dentin tubules was not observed. TEM crystal analysis and EDS-STEM revealed the presence of Ca and P, as well as of Mg within the HAp crystals deposited inside the dentin tubules. It was concluded that extensive remineralization with deposition of Mg-HAp crystals had occurred in dentin tubules of caries-arrested dentin. Understanding the natural remineralization process is thought to be helpful for developing clinical biomimetic remineralization protocols.
Collapse
Affiliation(s)
- Kumiko Yoshihara
- National Institute of Advanced Industrial Science and Technology (AIST), Health Research Institute, 2217-14 Hayashi-Cho, Takamaysu, Kagawa, 761-0395, Japan. .,Okayama University, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Department of Pathology & Experimental Medicine, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan.
| | - Noriyuki Nagaoka
- Okayama University Dental School, Advanced Research Center for Oral and Craniofacial Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Akiko Nakamura
- National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki, 305-0047, Japan
| | - Toru Hara
- National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki, 305-0047, Japan
| | - Satoshi Hayakawa
- Okayama University, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Biomaterials Laboratory, 3-1-1, Tsushima-naka, Kita-ku, Okayama, 700-8530, Japan
| | - Yasuhiro Yoshida
- Hokkaido University, Faculty of Dental Medicine, Department of Biomaterials and Bioengineering, Kita 13, Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-8586, Japan
| | - Bart Van Meerbeek
- KU Leuven (University of Leuven), Department of Oral Health Research, BIOMAT & UZ Leuven (University Hospitals Leuven), Dentistry, Kapucijnenvoer 7, 3000, Leuven, Belgium
| |
Collapse
|
24
|
Sun Y, Kwak JM, Zhou Y, Fu Y, Wang Z, Chen Q, Jeon IH. Suprascapular nerve injury affects rotator cuff healing: A paired controlled study in a rat model. J Orthop Translat 2020; 27:153-160. [PMID: 33981574 PMCID: PMC8071639 DOI: 10.1016/j.jot.2020.02.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 12/26/2019] [Accepted: 02/10/2020] [Indexed: 11/08/2022] Open
Abstract
Purpose We designed a paired controlled study to investigate the role of the suprascapular nerve (SSN) in rotator cuff healing using a rat tear model, and we hypothesised that rotator cuff healing is impaired in the absence of a healthy SSN. Methods Bilateral supraspinatus tenotomy from the great tuberosity was performed for 36 Wistar rats, which was then repaired immediately. A defect on the SSN was made on the right side, and a sham surgery was performed on the SSN at the left side. Twelve rats were sacrificed for biomechanical (six rats) and histological (six rats) testing, evaluated at 3, 6, and 9 weeks after surgery. Results The bone–tendon junction on the nerve-intact side showed significantly better biomechanical characteristics than the nerve-injured side in terms of maximum load, maximum stress over time, stiffness at 9 weeks, and Young's modulus at 3 and 9 weeks. On the nerve-injured side, significantly smaller fibrocartilage layers and muscle fibres could be obtained over time. In addition, on the nerve-injured side, inferior bone–tendon interface formation was obtained in terms of cell maturity, cell alignment, collagen orientation, and the occurrence of tidemark and Sharpey's fibres through 9 weeks. In addition, neuropeptide Y was secreted in the nerve-intact group at 6 and 9 weeks. Conclusion This study showed the inferior healing of the bone–tendon junction on the nerve-injured side compared with the nerve-intact side, which indicates that the SSN plays an important role in rotator cuff healing. Surgeons should pay more attention to SSN injury when treating patients with rotator cuff tear.
Collapse
Affiliation(s)
- Yucheng Sun
- Department of Hand Surgery, Affiliated Hospital of Nantong University, College of Medicine, University of Nantong, Nantong, China.,Department of Orthopedic Surgery, ASAN Medical Center, College of Medicine, University of Ulsan, Seoul, South Korea
| | - Jae-Man Kwak
- Department of Orthopedic Surgery, ASAN Medical Center, College of Medicine, University of Ulsan, Seoul, South Korea
| | - Youlang Zhou
- Department of Hand Surgery, Affiliated Hospital of Nantong University, College of Medicine, University of Nantong, Nantong, China
| | - Yan Fu
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhe Wang
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Qingzhong Chen
- Department of Hand Surgery, Affiliated Hospital of Nantong University, College of Medicine, University of Nantong, Nantong, China
| | - In-Ho Jeon
- Department of Orthopedic Surgery, ASAN Medical Center, College of Medicine, University of Ulsan, Seoul, South Korea
| |
Collapse
|
25
|
Tarafder S, Brito JA, Minhas S, Effiong L, Thomopoulos S, Lee CH. In situ tissue engineering of the tendon-to-bone interface by endogenous stem/progenitor cells. Biofabrication 2019; 12:015008. [PMID: 31561236 PMCID: PMC6904927 DOI: 10.1088/1758-5090/ab48ca] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The long-term success of surgical repair of rotator cuff tears is largely dependent on restoration of a functional tendon-to-bone interface. We implemented micro-precise spatiotemporal delivery of growth factors in three-dimensional printed scaffolds for integrative regeneration of a fibrocartilaginous tendon-to-bone interface. Sustained and spatially controlled release of tenogenic, chondrogenic and osteogenic growth factors was achieved using microsphere-based delivery carriers embedded in thin membrane-like scaffolds. In vitro, the scaffolds embedded with spatiotemporal delivery of growth factors successfully guided regional differentiation of mesenchymal progenitor cells, forming multiphase tissues with tendon-like, cartilage-like and bone-like regions. In vivo, when implanted at the interface between the supraspinatus tendon and the humeral head in a rat rotator cuff repair model, these scaffolds promoted recruitment of endogenous tendon progenitor cells followed by integrative healing of tendon and bone via re-formation of strong fibrocartilaginous interfaces. Our findings demonstrate the potential of in situ tissue engineering of tendon-to-bone interfaces by endogenous progenitor cells. The in situ tissue engineering approach shows translational potential for improving outcomes after rotator cuff repair.
Collapse
Affiliation(s)
- Solaiman Tarafder
- Regenerative Engineering Laboratory, Columbia University Medical Center, 630 W. 168th Street, VC12-230, NY 10032, New York
| | - John A Brito
- Regenerative Engineering Laboratory, Columbia University Medical Center, 630 W. 168th Street, VC12-230, NY 10032, New York
| | - Sumeet Minhas
- Regenerative Engineering Laboratory, Columbia University Medical Center, 630 W. 168th Street, VC12-230, NY 10032, New York
| | - Linda Effiong
- Department of Orthopedic Surgery, Columbia University Medical Center, 650 W. 168th Street, BB14-1408, NY 10032, New York
| | - Stavros Thomopoulos
- Department of Orthopedic Surgery, Columbia University Medical Center, 650 W. 168th Street, BB14-1408, NY 10032, New York
- Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace, NY 10027, New York
| | - Chang H Lee
- Regenerative Engineering Laboratory, Columbia University Medical Center, 630 W. 168th Street, VC12-230, NY 10032, New York
| |
Collapse
|
26
|
Willbold E, Wellmann M, Welke B, Angrisani N, Gniesmer S, Kampmann A, Hoffmann A, Cassan D, Menzel H, Hoheisel AL, Glasmacher B, Reifenrath J. Possibilities and limitations of electrospun chitosan‐coated polycaprolactone grafts for rotator cuff tear repair. J Tissue Eng Regen Med 2019; 14:186-197. [DOI: 10.1002/term.2985] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 09/27/2019] [Accepted: 10/17/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Elmar Willbold
- Laboratory for Biomechanics and Biomaterials, Department of Orthopaedic SurgeryHannover Medical School Hannover Germany
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE)Hannover Medical School Hannover Germany
| | - Mathias Wellmann
- Laboratory for Biomechanics and Biomaterials, Department of Orthopaedic SurgeryHannover Medical School Hannover Germany
| | - Bastian Welke
- Laboratory for Biomechanics and Biomaterials, Department of Orthopaedic SurgeryHannover Medical School Hannover Germany
| | - Nina Angrisani
- Laboratory for Biomechanics and Biomaterials, Department of Orthopaedic SurgeryHannover Medical School Hannover Germany
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE)Hannover Medical School Hannover Germany
| | - Sarah Gniesmer
- Clinic for Cranio‐Maxillo‐Facial SurgeryHannover Medical School Hannover Germany
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE)Hannover Medical School Hannover Germany
| | - Andreas Kampmann
- Clinic for Cranio‐Maxillo‐Facial SurgeryHannover Medical School Hannover Germany
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE)Hannover Medical School Hannover Germany
| | - Andrea Hoffmann
- Laboratory for Biomechanics and Biomaterials, Department of Orthopaedic SurgeryHannover Medical School Hannover Germany
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE)Hannover Medical School Hannover Germany
| | - Dominik Cassan
- Institute for Technical ChemistryBraunschweig University of Technology Braunschweig Germany
| | - Henning Menzel
- Institute for Technical ChemistryBraunschweig University of Technology Braunschweig Germany
| | - Anna Lena Hoheisel
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE)Hannover Medical School Hannover Germany
- Institute for Multiphase ProcessesLeibniz University Hannover Hannover Germany
| | - Birgit Glasmacher
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE)Hannover Medical School Hannover Germany
- Institute for Multiphase ProcessesLeibniz University Hannover Hannover Germany
| | - Janin Reifenrath
- Laboratory for Biomechanics and Biomaterials, Department of Orthopaedic SurgeryHannover Medical School Hannover Germany
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE)Hannover Medical School Hannover Germany
| |
Collapse
|
27
|
Hirashima S, Ohta K, Kanazawa T, Togo A, Kakuma T, Kusukawa J, Nakamura KI. Three-dimensional ultrastructural and histomorphological analysis of the periodontal ligament with occlusal hypofunction via focused ion beam/scanning electron microscope tomography. Sci Rep 2019; 9:9520. [PMID: 31266989 PMCID: PMC6606634 DOI: 10.1038/s41598-019-45963-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 06/18/2019] [Indexed: 12/17/2022] Open
Abstract
The periodontal ligament (PDL) maintains the environment and function of the periodontium. The PDL has been remodelled in accordance with changes in mechanical loading. Three-dimensional (3D) structural data provide essential information regarding PDL function and dysfunction. However, changes in mechanical loading associated with structural changes in the PDL are poorly understood at the mesoscale. This study aimed to investigate 3D ultrastructural and histomorphometric changes in PDL cells and fibres associated with unloading condition (occlusal hypofunction), using focused ion beam/scanning electron microscope tomography, and to quantitatively analyse the structural properties of PDL cells and fibres. PDL cells formed cellular networks upon morphological changes induced via changes in mechanical loading condition. Drastic changes were observed in a horizontal array of cells, with a sparse and disorganised area of collagen bundles. Furthermore, collagen bundles tended to be thinner than those in the control group. FIB/SEM tomography enables easier acquisition of serial ultrastructural images and quantitative 3D data. This method is powerful for revealing 3D architecture in complex tissues. Our results may help elucidate architectural changes in the PDL microenvironment during changes in mechanical loading condition and regeneration, and advance a wide variety of treatments in dentistry.
Collapse
Affiliation(s)
- Shingo Hirashima
- Division of Microscopic and Developmental Anatomy, Department of Anatomy, Kurume University School of Medicine, Kurume, 830-0011, Japan. .,Dental and Oral Medical Center, Kurume University School of Medicine, Kurume, 830-0011, Japan.
| | - Keisuke Ohta
- Division of Microscopic and Developmental Anatomy, Department of Anatomy, Kurume University School of Medicine, Kurume, 830-0011, Japan.,Advanced Imaging Research Center, Kurume University School of Medicine, Kurume, 830-0011, Japan
| | - Tomonoshin Kanazawa
- Division of Microscopic and Developmental Anatomy, Department of Anatomy, Kurume University School of Medicine, Kurume, 830-0011, Japan
| | - Akinobu Togo
- Advanced Imaging Research Center, Kurume University School of Medicine, Kurume, 830-0011, Japan
| | | | - Jingo Kusukawa
- Dental and Oral Medical Center, Kurume University School of Medicine, Kurume, 830-0011, Japan
| | - Kei-Ichiro Nakamura
- Division of Microscopic and Developmental Anatomy, Department of Anatomy, Kurume University School of Medicine, Kurume, 830-0011, Japan
| |
Collapse
|
28
|
Wang Z, Liu X, Davies MR, Horne D, Kim H, Feeley BT. A Mouse Model of Delayed Rotator Cuff Repair Results in Persistent Muscle Atrophy and Fatty Infiltration. Am J Sports Med 2018; 46:2981-2989. [PMID: 30198747 PMCID: PMC6730552 DOI: 10.1177/0363546518793403] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Rotator cuff (RC) tears are common tendon injuries seen in orthopaedic patients. Successful repair of large and massive RC tears remains a challenge due to our limited understanding of the pathophysiological features of this injury. Clinically relevant small animal models that can be used to study the pathophysiological response to repair are limited by the lack of chronic repair models. PURPOSE To develop a highly clinically relevant mouse model of delayed RC repair. STUDY DESIGN Controlled laboratory study. METHODS Three-month-old C57BL/6J mice underwent unilateral supraspinatus (SS) and infraspinatus (IS) tendon tear with immediate, 2-week delayed, or 6-week delayed tendon repair. Animals with no repair or sham surgery served as controls. Gait analysis was conducted to measure shoulder function at 2 weeks and 6 weeks after surgery. Animals were sacrificed 6 weeks after the last surgery. Shoulder joint, SS, and IS muscles were harvested and analyzed histologically. Ex vivo mechanical testing of intact and repaired SS and IS tendons was conducted. Reverse-transcriptase polymerase chain reaction was performed on SS and IS muscles to quantify atrophy, fibrosis, and fatty infiltration-related gene expression. RESULTS Histological and tendon mechanical testing showed that torn tendons could be successfully repaired as late as 6 weeks after transection. However, significant atrophy and fatty infiltration of muscle, with impaired shoulder function, were persistent in the 6-week delayed repair group. Shoulder function correlated with the severity of RC muscle weight loss and fatty infiltration. CONCLUSION We successfully developed a clinically relevant mouse model of delayed RC repair. Six-week delayed RC repair resulted in persistent muscle atrophy and fatty infiltration with inferior shoulder function compared with acute repair. CLINICAL RELEVANCE Our novel mouse model could serve as a powerful tool to understand the pathophysiological and cellular/molecular mechanisms of RC muscle and tendon degeneration, eventually improving our strategies for treating and repairing RC tears.
Collapse
Affiliation(s)
- Zili Wang
- Department of Orthopaedic Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan Province, China.,San Francisco Veterans Affairs Medical Center, Department of Veterans Affairs, San Francisco, CA. USA.,Department of Orthopedic Surgery, University of California at San Francisco, San Francisco, CA. USA
| | - Xuhui Liu
- San Francisco Veterans Affairs Medical Center, Department of Veterans Affairs, San Francisco, CA. USA.,Department of Orthopedic Surgery, University of California at San Francisco, San Francisco, CA. USA
| | - Michael R. Davies
- Department of Orthopedic Surgery, University of California at San Francisco, San Francisco, CA. USA
| | - Devante Horne
- Department of Orthopedic Surgery, University of California at San Francisco, San Francisco, CA. USA
| | - Hubert Kim
- San Francisco Veterans Affairs Medical Center, Department of Veterans Affairs, San Francisco, CA. USA.,Department of Orthopedic Surgery, University of California at San Francisco, San Francisco, CA. USA
| | - Brian T. Feeley
- San Francisco Veterans Affairs Medical Center, Department of Veterans Affairs, San Francisco, CA. USA.,Department of Orthopedic Surgery, University of California at San Francisco, San Francisco, CA. USA
| |
Collapse
|
29
|
Lemmon EA, Locke RC, Szostek AK, Ganji E, Killian ML. Partial-width injuries of the rat rotator cuff heal with fibrosis. Connect Tissue Res 2018; 59:437-446. [PMID: 29874950 PMCID: PMC6324170 DOI: 10.1080/03008207.2018.1485666] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 05/31/2018] [Accepted: 05/31/2018] [Indexed: 02/03/2023]
Abstract
PURPOSE Identify the healing outcomes following a partial-width, full-thickness injury to the rotator cuff tendon-bone attachment and establish if the adult attachment can regenerate the morphology of the healthy attachment. HYPOTHESIS We hypothesized that a partial-width injury to the attachment would heal via fibrosis and bone remodeling, resulting in increased cellularity and extra-cellular matrix deposition, reduced bone volume (BV), osteoclast presence, and decreased collagen organization compared to shams. MATERIALS AND METHODS A partial-width injury was made using a biopsy punch at the center one-third of the rat infraspinatus attachment. Contralateral limbs underwent a sham operation. Rats were sacrificed at 3 and 8 weeks after injury for analyses. Analyses performed at each time point included cellularity (Hematoxylin & Eosin), ECM deposition (Masson's Trichrome), BV (micro-computed tomography; microCT), osteoclast activity (Tartrate Resistant Acid Phosphatase; TRAP), and collagen fibril organization (Picrosirius Red). Injured and sham shoulders were compared at both 3 and 8 weeks using paired, two-way ANOVAs with repeated measures (Sidak's correction for multiple comparisons). RESULTS Cellularity and ECM deposition increased at both 3 and 8 weeks compared to sham contralateral attachments. BV decreased and osteoclast presence increased at both 3 and 8 weeks compared to sham contralateral limbs. Collagen fibril organization was reduced at 3 weeks after injury compared to 3-week sham attachments. CONCLUSIONS These findings suggest that a partial-width injury to the rotator cuff attachment does not fully regenerate the native structure of the healthy attachment. The injury model healed via scar-like fibrosis and did not propagate into a full-width tear after 8 weeks of healing.
Collapse
Affiliation(s)
- Elisabeth A Lemmon
- a Department of Animal and Food Sciences and Biomedical Engineering , University of Delaware , Newark , DE , USA
| | - Ryan C Locke
- b Department of Biomedical Engineering , University of Delaware , Newark , DE , USA
| | - Adrianna K Szostek
- a Department of Animal and Food Sciences and Biomedical Engineering , University of Delaware , Newark , DE , USA
| | - Elahe Ganji
- c Department of Mechanical Engineering and Biomedical Engineering , University of Delaware , Newark , DE , USA
| | - Megan L Killian
- b Department of Biomedical Engineering , University of Delaware , Newark , DE , USA
| |
Collapse
|
30
|
Hirashima S, Ohta K, Kanazawa T, Okayama S, Togo A, Miyazono Y, Kusukawa J, Nakamura KI. Three-dimensional ultrastructural analysis and histomorphometry of collagen bundles in the periodontal ligament using focused ion beam/scanning electron microscope tomography. J Periodontal Res 2018; 55:23-31. [PMID: 30035304 DOI: 10.1111/jre.12592] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 06/07/2018] [Accepted: 06/13/2018] [Indexed: 12/21/2022]
Abstract
BACKGROUND AND OBJECTIVE The periodontal ligament (PDL) is an essential tissue for tooth function. However, the 3-dimensional ultrastructure of these PDL collagen bundles on a mesoscale is not clear. We investigated the 3-dimensional ultrastructure of these collagen bundles and quantitatively analyzed their histomorphometry using focused ion beam/scanning electron microscope (FIB/SEM) tomography. MATERIAL AND METHODS The PDLs of the first mandibular molar of male C57BL/6 mice were analyzed using FIB/SEM tomography. The serial images of the collagen bundles so obtained were reconstructed. The collagen bundles were analyzed quantitatively using 3-dimensional histomorphometry. RESULTS Collagen bundles of the PDL demonstrated multiple branched structures, rather than a single rope-like structure, and were wrapped in cytoplasm sheets. The structure of the horizontal fiber of the collagen bundle was an extensive meshwork. In contrast, the oblique and apical fibers of the collagen bundle showed a chain-like structure. The area and the minor and major axis lengths of cross-sections of the horizontal fiber, as determined from 3-dimensional images, were significantly different from those of the oblique and apical fibers. CONCLUSION These findings indicate that collagen bundles in horizontal fiber areas have high strength and that the tooth is firmly anchored to the alveolar bone by the horizontal fibers, but is not secured evenly to the alveolar bone. The tooth is firmly anchored around the cervical area, creating a "slingshot-like structure." This study has provided further insights into the structure of the PDL and forms the basis for the development of more effective therapies for periodontal tissue regeneration.
Collapse
Affiliation(s)
- Shingo Hirashima
- Division of Microscopic and Developmental Anatomy, Department of Anatomy, Kurume University School of Medicine, Kurume, Japan.,Dental and Oral Medical Center, Kurume University School of Medicine, Kurume, Japan
| | - Keisuke Ohta
- Division of Microscopic and Developmental Anatomy, Department of Anatomy, Kurume University School of Medicine, Kurume, Japan.,Advanced Imaging Research Center, Kurume University School of Medicine, Kurume, Japan
| | - Tomonoshin Kanazawa
- Division of Microscopic and Developmental Anatomy, Department of Anatomy, Kurume University School of Medicine, Kurume, Japan
| | - Satoko Okayama
- Division of Microscopic and Developmental Anatomy, Department of Anatomy, Kurume University School of Medicine, Kurume, Japan
| | - Akinobu Togo
- Advanced Imaging Research Center, Kurume University School of Medicine, Kurume, Japan
| | - Yoshihiro Miyazono
- Dental and Oral Medical Center, Kurume University School of Medicine, Kurume, Japan
| | - Jingo Kusukawa
- Dental and Oral Medical Center, Kurume University School of Medicine, Kurume, Japan
| | - Kei-Ichiro Nakamura
- Division of Microscopic and Developmental Anatomy, Department of Anatomy, Kurume University School of Medicine, Kurume, Japan
| |
Collapse
|
31
|
Sartori J, Köhring S, Witte H, Fischer MS, Löffler M. Three-dimensional imaging of the fibrous microstructure of Achilles tendon entheses in Mus musculus. J Anat 2018; 233:370-380. [PMID: 29920671 PMCID: PMC6081500 DOI: 10.1111/joa.12837] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2018] [Indexed: 12/20/2022] Open
Abstract
The whole-organ, three-dimensional microstructure of murine Achilles tendon entheses was visualized with micro-computed tomography (microCT). Contrast-enhancement was achieved either by staining with phosphotungstic acid (PTA) or by a combination of cell-maceration, demineralization and critical-point drying with low tube voltages and propagation-based phase-contrast (fibrous structure scan). By PTA-staining, X-ray absorption of the enthesial soft tissues became sufficiently high to segment the tendon and measure cross-sectional areas along its course. With the fibrous structure scans, three-dimensional visualizations of the collagen fiber networks of complete entheses were obtained. The characteristic tissues of entheses were identified in the volume data. The tendon proper was marked as a segment manually. The fibers within the tendon were marked by thresholding. Tendon and fiber cross-sectional areas were measured. The measurements were compared between individuals and protocols for contrast-enhancement, using a spatial reference system within the three-dimensional enthesis. The usefulness of the method for investigations of the fibrous structure of collagenous tissues is demonstrated.
Collapse
Affiliation(s)
- Julian Sartori
- Institut für Zoologie und EvolutionsforschungFriedrich‐Schiller‐Universität JenaJenaGermany
| | - Sebastian Köhring
- Fachgebiet BiomechatronikFakultät für Maschinenbau / IMN MacroNano®Technische Universität IlmenauIlmenauGermany
| | - Hartmut Witte
- Fachgebiet BiomechatronikFakultät für Maschinenbau / IMN MacroNano®Technische Universität IlmenauIlmenauGermany
| | - Martin S. Fischer
- Institut für Zoologie und EvolutionsforschungFriedrich‐Schiller‐Universität JenaJenaGermany
| | - Markus Löffler
- Dresden Center for Nanoanalysis (DCN)Center for Advancing Electronics Dresden (cfaed)Technische Universität DresdenDresdenGermany
| |
Collapse
|
32
|
Jensen PT, Lambertsen KL, Frich LH. Assembly, maturation, and degradation of the supraspinatus enthesis. J Shoulder Elbow Surg 2018; 27:739-750. [PMID: 29329904 DOI: 10.1016/j.jse.2017.10.030] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 10/22/2017] [Accepted: 10/27/2017] [Indexed: 02/01/2023]
Abstract
The development of the rotator cuff enthesis is still poorly understood. The processes in the early and late developmental steps are gradually elucidated, but it is still unclear how cell activities are coordinated during development and maturation of the structured enthesis. This review summarizes current knowledge about development and age-related degradation of the supraspinatus enthesis. Healing and repair of an injured and degenerated supraspinatus enthesis also remain a challenge, as the original graded transitional tissue of the fibrocartilaginous insertion is not re-created after the tendon is surgically reattached to bone. Instead, mechanically inferior and disorganized tissue forms at the healing site because of scar tissue formation. Consequently, the enthesis never reaches mechanical properties comparable to those of the native enthesis. So far, no novel biologic healing approach has been successful in enhancing healing of the injured enthesis. The results revealed in this review imply the need for further research to pave the way for better treatment of patients with rotator cuff disorder.
Collapse
Affiliation(s)
- Peter T Jensen
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Kate L Lambertsen
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark; Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Lars H Frich
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark; Department of Orthopaedics and Traumatology, Odense University Hospital, Odense, Denmark.
| |
Collapse
|
33
|
Tanoue R, Ohta K, Miyazono Y, Iwanaga J, Koba A, Natori T, Iwamoto O, Nakamura KI, Kusukawa J. Three-dimensional ultrastructural analysis of the interface between an implanted demineralised dentin matrix and the surrounding newly formed bone. Sci Rep 2018; 8:2858. [PMID: 29434259 PMCID: PMC5809602 DOI: 10.1038/s41598-018-21291-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 02/01/2018] [Indexed: 12/15/2022] Open
Abstract
Previous investigators have reported that transplanted demineralised dentin matrix (DDM) influences bone formation in vivo. However, the specific mechanism of how dentinal tubules contribute to bone formation has not been determined with regard to DDM transplantation therapy. In this study, we ultrastructurally investigated how DDM contacted the surrounding newly formed bone using a scanning electron microscopy (SEM) three-dimensional reconstruction method that is based on focused ion beam slicing and SEM (FIB/SEM). A pulverised and processed DDM derived from human teeth was implanted into rat calvarial bone defects, and a series of X-ray computed tomographic images were obtained over 12 weeks. Implants with surrounding new bone were removed and histologically examined using FIB/SEM. After obtaining objective block-face images, the target boundary face was reconstructed three-dimensionally. The osteocytes of the new bone tissue surrounding the DDM formed a network connected by their cellular processes and formed bone tissue. It is also interesting that the cellular processes of the osteocytes extended into the dentinal tubules, and that bone tissue with canaliculi had formed and filled the DDM surface.
Collapse
Affiliation(s)
- Ryuichiro Tanoue
- Dental and Oral Medical Centre, Kurume University School of Medicine, Kurume, Fukuoka, Japan.
- Department of Dentistry and Oral Surgery, Jyosuikai Imamura Hospital, Tosu, Saga, Japan.
| | - Keisuke Ohta
- Division of Microscopic and Developmental Anatomy, Department of Anatomy, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Yoshihiro Miyazono
- Division of Microscopic and Developmental Anatomy, Department of Anatomy, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Joe Iwanaga
- Dental and Oral Medical Centre, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Akihiro Koba
- Dental and Oral Medical Centre, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Toru Natori
- Dental and Oral Medical Centre, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Osamu Iwamoto
- Dental and Oral Medical Centre, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Kei-Ichiro Nakamura
- Division of Microscopic and Developmental Anatomy, Department of Anatomy, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Jingo Kusukawa
- Dental and Oral Medical Centre, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| |
Collapse
|
34
|
Wu J, Yuan H, Li L, Fan K, Qian S, Li B. Viscoelastic shear lag model to predict the micromechanical behavior of tendon under dynamic tensile loading. J Theor Biol 2017; 437:202-213. [PMID: 29111420 DOI: 10.1016/j.jtbi.2017.10.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 10/13/2017] [Accepted: 10/16/2017] [Indexed: 12/26/2022]
Abstract
Owing to its viscoelastic nature, tendon exhibits stress rate-dependent breaking and stiffness function. A Kelvin-Voigt viscoelastic shear lag model is proposed to illustrate the micromechanical behavior of the tendon under dynamic tensile conditions. Theoretical closed-form expressions are derived to predict the deformation and stress transfer between fibrils and interfibrillar matrix while tendon is dynamically stretched. The results from the analytical solutions demonstrate that how the fibril overlap length and fibril volume fraction affect the stress transfer and mechanical properties of tendon. We find that the viscoelastic property of interfibrillar matrix mainly results in collagen fibril failure under fast loading rate or creep rupture of tendon. However, discontinuous fibril model and hierarchical structure of tendon ensure relative sliding under slow loading rate, helping dissipate energy and protecting fibril from damage, which may be a key reason why regularly staggering alignment microstructure is widely selected in nature. According to the growth, injury, healing and healed process of tendon observed by many researchers, the conclusions presented in this paper agrees well with the experimental findings. Additionally, the emphasis of this paper is on micromechanical behavior of tendon, whereas this analytical viscoelastic shear lag model can be equally applicable to other soft or hard tissues, owning the similar microstructure.
Collapse
Affiliation(s)
- Jiayu Wu
- MOE Key Laboratory of Disaster Forecast and Control in Engineering, Institute of Applied Mechanics, Jinan University, Guangzhou 510632, China; School of Engineering, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK
| | - Hong Yuan
- MOE Key Laboratory of Disaster Forecast and Control in Engineering, Institute of Applied Mechanics, Jinan University, Guangzhou 510632, China.
| | - Longyuan Li
- School of Engineering, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK
| | - Kunjie Fan
- School of Engineering, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK
| | - Shanguang Qian
- Architecture Engineering Faculty, Kunming Metallurgy College, Kumming 650033, China
| | - Bing Li
- Blackett Laboratory, Imperial College London, South Kensington Campus, SW7 2AZ, UK
| |
Collapse
|
35
|
Locke RC, Abraham AC, Killian ML. Orthopedic Interface Repair Strategies Based on Native Structural and Mechanical Features of the Multiscale Enthesis. ACS Biomater Sci Eng 2016; 3:2633-2643. [PMID: 32832593 DOI: 10.1021/acsbiomaterials.6b00599] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The enthesis is an organ that connects a soft, aligned tissue (tendon/ligament) to a hard, amorphous tissue (bone) via a fibrocartilage interface. Mechanically, the enthesis sustains a dynamic loading environment that includes tensile, compressive, and shear forces. The structural components of the enthesis act to minimize stress concentrations and control stretch at the interface. Current surgical repair of the enthesis, such as in rotator cuff repair and anterior cruciate ligament reconstruction, aim to bridge the gap between the injured ends via reattachment of soft-to-hard tissues or graft replacement. In this review, we discuss the multiscale, morphological, and mechanical characteristics of the fibrocartilage attachment. Additionally, we review historical and recent clinical approaches to treating enthesis injury. Lastly, we explore new technological advancements in tissue-engineered biomaterials that have shown promise in preclinical studies.
Collapse
Affiliation(s)
- Ryan C Locke
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Adam C Abraham
- Department of Orthopedic Surgery, Columbia University Medical Center, New York, New York 10032, United States
| | - Megan L Killian
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|