1
|
Falcone E, Faller P. Thermodynamics-based rules of thumb to evaluate the interaction of chelators and kinetically-labile metal ions in blood serum and plasma. Dalton Trans 2023; 52:2197-2208. [PMID: 36734607 DOI: 10.1039/d2dt03875g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Metal ions play a very important role in nature and their homeostasis is crucial. A lot of metal-related chemical research activities are ongoing that concern metal-based drugs or tools, such as chelation therapy, metal- and metabolite sensors, metallo-drugs and prodrugs, PET and MRI imaging agents, etc. In most of these cases, the applied chelator/ligand (L) or metal-ligand complex (M-L) has at least to pass the blood plasma to reach the target. Hence it is exposed to several metal-binding proteins (mainly serum albumin and transferrin) and to all essential metal ions (zinc, copper, iron, etc.). This holds also for studies in cultured cells when fetal calf serum is used in the medium. There is a risk that the applied compound (L or M-L) in the serum is transformed into a different entity, due to trans-metallation and/or ligand exchange reactions. This depends on the thermodynamics and kinetics. For kinetically-labile complexes, the complex stability with all the ligands and all metal ions present in serum is decisive in evaluating the thermodynamic driving force towards a certain fate of the chelator or metal-ligand complex. To consider that, an integrative view is needed on the stability constants, by taking into account all the metal ions present and all the main proteins to which they are bound, as well as the non-occupied metal binding site in proteins. Only then, a realistic estimation of the complex stability, and hence its potential fate, can be done. This perspective aims to provide a simple approach to estimate the thermodynamic stability of labile metal-ligand complexes in a blood plasma/serum environment. It gives a guideline to obtain an estimation of the plasma and serum complex stability and metal selectivity starting from the chemical stability constants of metal-ligand complexes. Although of high importance, it does not focus on the more complex kinetic aspects of metal-transfer reactions. The perspective should help for a better design of such compounds, to perform test tube assays which are relevant to the conditions in the plasma/serum and to be aware of the importance of ternary complexes, kinetics and competition experiments.
Collapse
Affiliation(s)
- Enrico Falcone
- Institut de Chimie, UMR 7177, Université de Strasbourg, CNRS, 4 Rue Blaise Pascal, 67000, Strasbourg, France.
| | - Peter Faller
- Institut de Chimie, UMR 7177, Université de Strasbourg, CNRS, 4 Rue Blaise Pascal, 67000, Strasbourg, France. .,Institut Universitaire de France (IUF), 1 rue Descartes, 75231 Paris, France
| |
Collapse
|
2
|
Li C, Tang W, Chen S, He J, Li X, Zhu X, Li H, Peng Y. Phytochemical Properties and In Vitro Biological Activities of Phenolic Compounds from Flower of Clitoria ternatea L. Molecules 2022; 27:6336. [PMID: 36234873 PMCID: PMC9573559 DOI: 10.3390/molecules27196336] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/18/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Phenolic compounds from the flower of Clitoria ternatea L. (PCFCTL) were extracted using a high-speed shearing extraction technique and purified by AB-8 macroporous resins, and the phytochemical composition of the purified phenolic compounds from the flower of Clitoria ternatea L. (PPCFCTL) was then analyzed. Subsequently, its bioactivities including antioxidant properties, enzyme inhibitory activities, and antiproliferative activities against several tumor cell lines were evaluated. Results indicated that the contents of total phenolics, flavonoids, flavonols, flavanols, and phenolic acids in PPCFCTL were increased by 3.29, 4.11, 2.74, 2.43, and 2.96-fold, respectively, compared with those before being purified by AB-8 macroporous resins. The results showed PPCFCTL have significant antioxidant ability (measured by reducing power, RP, and ferric reducing antioxidant power method, FRAP) and good DPPH, ABTS+, and superoxide anion radical scavenging activities. They can also significantly inhibit lipase, α-amylase, and α-glucosidase. In addition, morphological changes of HeLa, HepG2, and NCI-H460 tumor cells demonstrated the superior antitumor performance of PPCFCTL. However, the acetylcholinesterase inhibitory activity was relatively weak. These findings suggest that PPCFCTL have important potential as natural antioxidant, antilipidemic, anti-glycemic and antineoplastic agents in health-promoting foods.
Collapse
Affiliation(s)
- Chao Li
- College of Food and Bioengineering, Xuzhou University of Technology, Xuzhou 221018, China
| | - Wei Tang
- College of Food and Bioengineering, Xuzhou University of Technology, Xuzhou 221018, China
| | - Shanglong Chen
- College of Food and Bioengineering, Xuzhou University of Technology, Xuzhou 221018, China
| | - Juping He
- College of Food and Bioengineering, Xuzhou University of Technology, Xuzhou 221018, China
| | - Xiaojing Li
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xucheng Zhu
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Haimei Li
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Yao Peng
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
3
|
Klahn P, Zscherp R, Jimidar CC. Advances in the Synthesis of Enterobactin, Artificial Analogues, and Enterobactin-Derived Antimicrobial Drug Conjugates and Imaging Tools for Infection Diagnosis. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/a-1783-0751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
AbstractIron is an essential growth factor for bacteria, but although highly abundant in nature, its bioavailability during infection in the human host or the environment is limited. Therefore, bacteria produce and secrete siderophores to ensure their supply of iron. The triscatecholate siderophore enterobactin and its glycosylated derivatives, the salmochelins, play a crucial role for iron acquisition in several bacteria. As these compounds can serve as carrier molecules for the design of antimicrobial siderophore drug conjugates as well as siderophore-derived tool compounds for the detection of infections with bacteria, their synthesis and the design of artificial analogues is of interest. In this review, we give an overview on the synthesis of enterobactin, biomimetic as well as totally artificial analogues, and related drug-conjugates covering up to 12/2021.1 Introduction2 Antibiotic Crisis and Sideromycins as Natural Templates for New Antimicrobial Drugs3 Biosynthesis of Enterobactin, Salmochelins, and Microcins4 Total Synthesis of Enterobactin and Salmochelins5 Chemoenzymatic Semi-synthesis of Salmochelins and Microcin E492m Derivatives6 Synthesis of Biomimetic Enterobactin Derivatives with Natural Tris-lactone Backbone7 Synthesis of Artificial Enterobactin Derivatives without Tris-lactone Backbone8 Conclusions
Collapse
Affiliation(s)
- Philipp Klahn
- Institute of Organic Chemistry, Technische Universität Braunschweig
- Department for Chemistry and Molecular Biology, University of Gothenburg
| | - Robert Zscherp
- Institute of Organic Chemistry, Technische Universität Braunschweig
| | | |
Collapse
|
4
|
Oh J, Kang D, Hong S, Kim SH, Choi JH, Seo J. Formation of a tris(catecholato) iron(III) complex with a nature-inspired cyclic peptoid ligand. Dalton Trans 2021; 50:3459-3463. [PMID: 33599663 DOI: 10.1039/d1dt00091h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Siderophore-mimicking macrocyclic peptoids were synthesized. Peptoid 3 with intramolecular hydrogen bonds showed an optimally arranged primary coordination sphere leading to a stable catecholate-iron complex. The tris(catecholato) structure of 3-Fe(iii) was determined with UV-vis, fluorescence, and EPR spectroscopies and DFT calculations. The iron binding affinity was comparable to that of deferoxamine, with enhanced stability upon air exposure.
Collapse
Affiliation(s)
- Jinyoung Oh
- Department of Chemistry, School of Physics and Chemistry, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, Republic of Korea.
| | - Dahyun Kang
- Department of Chemistry, School of Physics and Chemistry, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, Republic of Korea.
| | - Sugyeong Hong
- Western Seoul Center, Korea Basic Science Institute, University-Industry Cooperation Building, 150 Bukahyun-ro, Seodaemun-gu, Seoul, 120-140, Republic of Korea
| | - Sun H Kim
- Western Seoul Center, Korea Basic Science Institute, University-Industry Cooperation Building, 150 Bukahyun-ro, Seodaemun-gu, Seoul, 120-140, Republic of Korea
| | - Jun-Ho Choi
- Department of Chemistry, School of Physics and Chemistry, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, Republic of Korea.
| | - Jiwon Seo
- Department of Chemistry, School of Physics and Chemistry, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, Republic of Korea.
| |
Collapse
|
5
|
Zhang Q, Jin B, Zheng T, Tang X, Guo Z, Peng R. Hexadentate β-Dicarbonyl(bis-catecholamine) Ligands for Efficient Uranyl Cation Decorporation: Thermodynamic and Antioxidant Activity Studies. Inorg Chem 2019; 58:14626-14634. [PMID: 31613591 DOI: 10.1021/acs.inorgchem.9b02306] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The special linear dioxo cation structure of the uranyl cation, which relegates ligand coordination to an equatorial plane perpendicular to the O═U═O vector, poses an unusual challenge for the rational design of efficient chelating agents. Therefore, the planar hexadentate ligand rational design employed in this work incorporates two bidentate catecholamine (CAM) chelating moieties and a flexible linker with a β-dicarbonyl chelating moiety (β-dicarbonyl(CAM)2 ligands). The solution thermodynamics of β-dicarbonyl(CAM)2 with a uranyl cation was investigated by potentiometric and spectrophotometric titrations. The results demonstrated that the pUO22+ values are significantly higher than for the previously reported TMA(2Li-1,2-HOPO)2, and efficient chelation of the uranyl cation was realized by the planar hexadentate β-dicarbonyl(CAM)2. The efficient chelating ability of β-dicarbonyl(CAM)2 was attributed to the presence of the more flexible β-dicarbonyl chelating linker and planar hexadentate structure, which favors the geometric arrangement between ligand and uranyl coordinative preference. Meanwhile, β-dicarbonyl(CAM)2 also exhibits higher antiradical efficiency in comparison to butylated hydroxyanisole. These results indicated that β-dicarbonyl(CAM)2 has potential application prospects as a chelating agent for efficient chelation of a uranyl cation.
Collapse
Affiliation(s)
- Qingchun Zhang
- State Key Laboratory of Environment-friendly Energy Materials , Southwest University of Science and Technology , Mianyang 621010 , People's Republic of China
| | - Bo Jin
- State Key Laboratory of Environment-friendly Energy Materials , Southwest University of Science and Technology , Mianyang 621010 , People's Republic of China
| | - Tian Zheng
- State Key Laboratory of Environment-friendly Energy Materials , Southwest University of Science and Technology , Mianyang 621010 , People's Republic of China
| | - Xingyan Tang
- Sichuan Research Center of New Materials, Institute of Chemical Materials , China Academy of Engineering Physics , Chengdu 610200 , People's Republic of China
| | - Zhicheng Guo
- School of National Defense Science and Technology , Southwest University of Science and Technology , Mianyang 621010 , People's Republic of China
| | - Rufang Peng
- State Key Laboratory of Environment-friendly Energy Materials , Southwest University of Science and Technology , Mianyang 621010 , People's Republic of China
| |
Collapse
|
6
|
New hexadentate tris(dopamine) as iron chelating agent: Synthesis, solution thermodynamic stability and antioxidant activity studies. Polyhedron 2019. [DOI: 10.1016/j.poly.2018.12.053] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
7
|
Saha P, Xiao X, Yeoh BS, Chen Q, Katkere B, Kirimanjeswara GS, Vijay-Kumar M. The bacterial siderophore enterobactin confers survival advantage to Salmonella in macrophages. Gut Microbes 2018; 10:412-423. [PMID: 30449241 PMCID: PMC6546333 DOI: 10.1080/19490976.2018.1546519] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 08/31/2018] [Accepted: 10/30/2018] [Indexed: 02/03/2023] Open
Abstract
Enterobactin (Ent), a prototypical bacterial siderophore known for its unparalleled affinity for iron, is widely conserved among members of the Enterobacteriaceae family of Gram-negative bacteria. In this study, we demonstrated that, aside from mediating iron acquisition, Ent also dampened the macrophages (MΦs) antimicrobial responses against intracellular infection by Salmonella enterica serovar Typhimurium. Accordingly, the loss of Ent expression (ΔentB) in Salmonella demoted their survivability against MΦs. Addition of exogenous Ent not only rescued the survival of ΔentB Salmonella, but also augmented WT Salmonella to better withstand the microbicidal activity of MΦs. The protection conferred to WT Salmonella was observed only when Ent was administered as iron-free, thus indicating the requirement of iron chelation in this context. In contrast, the exogenous iron-bound Ent retained its ability to promote the survival of ΔentB Salmonella, albeit modestly. Assessment on MΦs labile iron pool (LIP) revealed that iron-free Ent is able to permeate into MΦs, chelate the intracellular LIP, and regulate the expression of several key iron-regulatory proteins, i.e., divalent metal transporter 1, ferroportin, and hepcidin. Chelation of iron by Ent was also observed to promote the MΦs towards M2 polarization. Collectively, our findings demonstrated that Ent not only facilitates bacterial iron uptake but also disrupts MΦs iron homeostasis and M1/M2 polarization to safeguard intracellular bacteria against the anti-bacterial effects of their host.
Collapse
Affiliation(s)
- Piu Saha
- Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Xia Xiao
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Beng San Yeoh
- Graduate Program in Immunology & Infectious Disease, Pennsylvania State University, University Park, PA, USA
| | - Qiuyan Chen
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Bhuvana Katkere
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, USA
| | | | - Matam Vijay-Kumar
- Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
- Department of Medical Microbiology & Immunology, University of Toledo, Toledo, OH, USA
| |
Collapse
|
8
|
Zhang Q, Jin B, Wang X, Lei S, Shi Z, Zhao J, Liu Q, Peng R. The mono(catecholamine) derivatives as iron chelators: synthesis, solution thermodynamic stability and antioxidant properties research. ROYAL SOCIETY OPEN SCIENCE 2018; 5:171492. [PMID: 30110407 PMCID: PMC6030290 DOI: 10.1098/rsos.171492] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 05/02/2018] [Indexed: 06/08/2023]
Abstract
There is a growing interest in the development of new iron chelators as novel promising therapeutic strategies for neurodegenerative disorders. In this article, a series of mono(catecholamine) derivatives, 2,3-bis(hydroxy)-N-(hydroxyacyl)benzamide, containing a pendant hydroxy, have been synthesized and fully characterized by nuclear magnetic resonance, Fourier transform infrared spectroscopy and mass spectrum. The thermodynamic stability of the chelators with FeIII, MgII and ZnII ions was then investigated. The chelators enable formation of (3 : 1) FeIII complexes with high thermodynamic stability and exhibited improved selectivity to FeIII ion. Meanwhile, the results of 1,1-diphenyl-2-picryl-hydrazyl assays of mono(catecholamine) derivatives indicated that they all possess excellent antioxidant properties. These results support the hypothesis that the mono(catecholamine) derivatives be used as high-affinity chelator for iron overload situations without depleting essential metal ions, such as MgII and ZnII ions.
Collapse
Affiliation(s)
- Qingchun Zhang
- State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, Southwest University of Science and Technology, Mianyang 621010, People's Republic of China
- School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, People's Republic of China
| | - Bo Jin
- State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, Southwest University of Science and Technology, Mianyang 621010, People's Republic of China
| | - Xiaofang Wang
- State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, Southwest University of Science and Technology, Mianyang 621010, People's Republic of China
| | - Shan Lei
- State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, Southwest University of Science and Technology, Mianyang 621010, People's Republic of China
| | - Zhaotao Shi
- School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, People's Republic of China
| | - Jia Zhao
- School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, People's Republic of China
| | - Qiangqiang Liu
- Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621010, People's Republic of China
| | - Rufang Peng
- State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, Southwest University of Science and Technology, Mianyang 621010, People's Republic of China
| |
Collapse
|
9
|
Zhang Q, Jin B, Wang X, Lei S, Liu Q, Liang H, Chu S, Peng R. Chlorofullerene C60
Cl6
: A Precursor for Straightforward Preparation of Highly Water-Soluble Poly-hydroxypyridinone Fullerene Derivatives as Potential Radionuclide Chelators. ChemistrySelect 2017. [DOI: 10.1002/slct.201702049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Qingchun Zhang
- State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials; Southwest University of Science and Technology; Mianyang 621010 China
| | - Bo Jin
- State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials; Southwest University of Science and Technology; Mianyang 621010 China
| | - Xiaofang Wang
- School of Materials Science and Engineering; Southwest University of Science and Technology; Mianyang 621010 China
| | - Shan Lei
- School of Materials Science and Engineering; Southwest University of Science and Technology; Mianyang 621010 China
| | - Qiangqiang Liu
- Research Center of Laser Fusion; China Academy of Engineering Physics; Mianyang 621010 China
| | - Hua Liang
- State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials; Southwest University of Science and Technology; Mianyang 621010 China
| | - Shijin Chu
- State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials; Southwest University of Science and Technology; Mianyang 621010 China
| | - Rufang Peng
- State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials; Southwest University of Science and Technology; Mianyang 621010 China
| |
Collapse
|